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Abstract. The paper introduces evolving fuzzy neural networks (EFuNNs) as a means for

the implementation of the evolving connectionist systems (ECOS) paradigm that is aimed

at building on-line, adaptive intelligent systems that have both their structure and

functionality evolving in time. EFuNNs evolve their structure and parameter values

through incremental, hybrid supervised/unsupervised, on-line learning. They can

accommodate new input data, including new features, new classes, etc. through local

element tuning. New connections and new neurons are created during the operation of the

system. EFuNNs can learn spatial-temporal sequences in an adaptive way through one

pass learning, and automatically adapt their parameter values as they operate. Fuzzy or

crisp rules can be inserted and extracted at any time of the EFuNN operation. The

characteristics of EFuNNs are illustrated on several case study data sets for time series

prediction and spoken word classification. Their performance is compared with traditional

connectionist methods and systems. The applicability of EFuNNs as general purpose on-

line learning machines is discussed what concerns systems that learn from large databases,

life-long learning systems, on-line adaptive systems in different areas of Engineering.
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1. Introduction

The complexity and the dynamics of real-world problems, such as adaptive speech

recognition and language acquisition [21,34,41], adaptive intelligent prediction and

control systems [1], intelligent agent-based systems and adaptive agents on the Web [81],

mobile robots [20], visual monitoring systems and multi-modal information processing

[37,54], large Bio-informatics data processing, and many more [2,4], require sophisticated

methods and tools for building on-line, adaptive, knowledge-based intelligent   systems

(IS). Such systems should be able to: (1) learn fast from a large amount of data (using fast

training); (2) adapt incrementally in an on-line mode; (3) dynamically create new modules

– have open structure; (4) memorise information that can be used at a later stage; (5)

interact continuously with the environment in a “life-long” learning mode; (6) deal with

knowledge (e.g. rules), as well as with data; (7) adequately represent space and time

[2,5,35,36,38,61,66,71].  Developing a computational model called evolving fuzzy neural

network (EFuNN) that meets the seven requirements above is the objective of the current

paper.

Several methods and systems have been developed so far that meet some of the criteria

above and that have influenced the development of EFuNNs. These are methods and

systems for: adaptive learning [4,5,7,8,14,30,46,47,48]; incremental learning

[6,7,8,9,19,53,58,61,71]; lifelong learning [69,35,36,82]; on-line learning

[17,21,22,28,31,35,36,42,44,61,66,67,69]; constructivist structural learning

[15,19,11,14,9] that is supported by biological facts [14,62,73,77,82]; selectivist structural

learning [26,29,49,56,59,64,50,32]; hybrid constructivist/selectivist structural learning
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[52,66,70,31]; knowledge-based learning neural networks (KBNN) [57,24,25,30,33,38,44,

45,51,63,76,77,83].

The EFuNN model presented in the paper has elements from all the groups above. The

model is called evolving because of the nature of the structural growth and structural

adaptation of the whole evolving connectionist system (ECOS) it is part of. In terms of

on-line neuron allocation, the EFuNN model is similar to the Resource Allocating

Network (RAN) suggested by Platt [61] and improved in other related models [21,66].

The RAN model allocates a new neuron for a new input example (x,y) if the input vector

x is not close in the input space to any of the already allocated radial basis neurons

(centers), and also – if the output error evaluation (y-y’), where y’ is the produced by the

system output for the input vector x, is above an error threshold. Otherwise, centers will

be adapted to minimise the error for the example (x,y) through a gradient descent

algorithm. In terms of adaptive optimisation of many individual linear units, EFuNN is

close to the Receptive Field Weight regression (RFWR) model by Schaal and Atkeson

[71]. EFuNNs have also similarities with the Fritzke’s Growing Cell Structures and

Growing Neural Gas models [19], and with other dynamic radial basis function networks

(RBFN) [58,5,78] and with the counter-propagation networks [27] in terms of separating

the unsupervised learning, which is performed first, from the supervised learning, applied

next, in a two-tyre structure. Creating new nodes is a feature also of SCONN [12] and VC

network [84]. The EFuNN learning algorithm differs from the above in many aspects,

mainly in the local element tuning, in the employment of simpler and faster learning

modes, in more flexibility when evolving internal structures and representations, and in

the knowledge-based orientation. A comparative analysis between EFuNNs and other

similar models on benchmark problems shows that while EFuNNs are comparable with

the other methods in terms of accuracy of the obtained results, they are much faster, more
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controllable, and evolve meaningful internal representations. EFuNNs suggest a new

neuro-fuzzy systemic approach that employs more sophisticated supervised/unsupervised,

knowledge-based learning methods. The functionality of EFuNNs can be fully utilised

when EFuNNs are used as elements of an ECOS framework for adaptive, intelligent,

knowledge-based systems.

2. The ECOS framework

Evolving connectionist systems (ECOS) are systems that evolve their structure and

functionality over time through interaction with the environment – fig.1 [35]. They have

some (“genetically”) pre-defined parameters (knowledge) but they also learn and adapt as

they operate. They emerge, evolve, develop, unfold through learning, and through

changing their structure in order to better represent incoming data.

[Figure 1]

A block diagram of the ECOS framework is given in fig.2. ECOS are multi-level, multi-

modular structures where many neural network modules (denoted as NNM) are connected

with inter-, and intra- connections.

[Figure 2]

The main blocks of ECOS are described below.

Feature selection part. It performs filtering of the input information, feature extraction and

forming the input vectors.

Representation (memory) part, where information (patterns) are stored. It is a multi-

modular, evolving structure of NNMs organised in groups. This is the most important part

of ECOS. One realisation of a NNM is the EFuNN, presented in the next section.

Higher-level decision part. It consists of modules that receive inputs from the

representation part and also feedback from the environment.
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(1) Action part. These are modules that take input values from the decision part and pass

output information to the environment.

Knowledge-based part. This part extracts compressed abstract information from the

representation modules and from the decision modules in different forms of rules, abstract

associations, etc. This part requires that the NNM should operate in a knowledge-based

learning mode and provide with the knowledge about the problem under consideration.

Adaptation part. This part uses statistical, evolutionary (e.g. genetic algorithms [23,79]),

and other techniques to evaluate and optimise the parameters of the ECOS during its

operation.

The ECOS operation principles correspond to the seven requirements to the intelligent

systems presented in section 1 [35]. They are also based on some biological facts and

biological principles (see for example [55,62,68,72,82]). Implementing NNMs of the

ECOS framework require connectionist models that support these principles. Such model

is the evolving fuzzy neural network (EFuNN).

3. The Evolving Fuzzy Neural Network (EFuNN) Model

3.1. General principles of EFuNNs

Fuzzy neural networks are connectionist structures that implement fuzzy rules and fuzzy

inference [25,51,63,83,38]. FuNNs represent a class of them  [38,33,39,40]. The EFuNN

model presented here is principally different from all the fuzzy neural network models

introduced so far despite some structural similarities. EFuNNs evolve according to the

ECOS principles. A brief first introduction of EFuNN was given in [36]. Here the EFuNN

architecture and functionality are further developed, illustrated and analysed in details.

EFuNNs have a five-layer structure, similar to the structure of FuNNs (fig.3a). But here

nodes and connections are created/connected as data examples are presented. An optional
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short-term memory layer can be used through a feedback connection from the rule (also

called, case) node layer (see fig.3b). The layer of feedback connections could be used if

temporal relationships of input data are to be memorised structurally.

[Figure 3 a,b]

The input layer represents input variables. The second layer of nodes (fuzzy input

neurons, or fuzzy inputs) represents fuzzy quantization of each input variable space. For

example, two fuzzy input neurons can be used to represent "small" and "large" fuzzy

values for a particular input variable. Different membership functions (MF) can be

attached to these neurons (triangular –fig.4, Gaussian, etc.).

[Figure 4]

The number and the type of MF can be dynamically modified which is explained in sub-

section 3.4. The task of the fuzzy input nodes is to transfer the input values into

membership degrees to which they belong to the MF.

The third layer contains rule (case) nodes that evolve through supervised and/or

unsupervised learning. The rule nodes represent prototypes (exemplars, clusters) of input-

output data associations that can be graphically represented as associations of hyper-

spheres from the fuzzy input and the fuzzy output spaces. Each rule node r is defined by

two vectors of connection weights – W1(r) and W2(r), the latter being adjusted through

supervised learning based on the output error, and the former being adjusted through

unsupervised learning based on similarity measure within a local area of the problem

space. A linear activation function, or a Gaussian function, is used for the neurons of this

layer.

The fourth layer of neurons represents fuzzy quantization of the output variables, similar

to the input fuzzy neuron representation. Here, a weighted sum input function and a

saturated linear activation function is used for the neurons to calculate the membership
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degrees to which the output vector associated with the presented input vector belongs to

each of the output MFs. The fifth layer represents the values of the output variables. Here

a linear activation function is used to calculate the defuzzified values for the output

variables.

A partial case of EFuNN would be a three layer network without the fuzzy input and the

fuzzy output layers. In this case a slightly modified versions of the algorithms described

below is applied, mainly in terms of measuring Euclidean distance and using Gaussian

activation functions.

The evolving process is based on either of the two assumptions: (1) no rule nodes exist

prior to learning and all of them are created (generated) during the evolving process; or (2)

there is an initial set of rule nodes that are not connected to the input and output nodes and

become connected through the learning (evolving) process. The latter case is more

biologically plausible [82]. The EFuNN evolving algorithm presented in the next section

does not make a difference between these two assumptions.

Each rule node, e.g. rj, represents an association between a hyper-sphere from the fuzzy

input space and a hyper-sphere from the fuzzy output space (see fig.5a), the W1(rj)

connection weights representing the co-ordinates of the center of the sphere in the fuzzy

input space, and the W2 (rj) – the co-ordinates in the fuzzy output space. The radius of the

input hyper-sphere of a rule node rj is defined as Rj=1- Sj, where Sj is the sensitivity

threshold parameter defining the minimum activation of the rule node rj to a new input

vector x from a new example (x,y) in order the example to be considered for association

with this rule node. The pair of fuzzy input-output data vectors (xf,yf) will be allocated to

the  rule node rj if xf falls into the rj input receptive field (hyper-sphere), and yf falls in the

rj output reactive field hyper-sphere. This is ensured through two conditions, that a local

normalised fuzzy difference between xf and W1(rj) is smaller than the radius Rj, and the
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normalised output error Err= ||y – y’ || / Nout  is smaller than an error threshold E, Nout is

the number of the outputs and y’ is the produced by EFuNN output vector. The error

parameter E sets the error tolerance of the system.

Definition. A local normalised fuzzy difference (distance) between two fuzzy membership

vectors d1f and d2f that represent the membership degrees to which two real-value data

vectors d1 and d2 belong to pre-defined MFs, is calculated as:

D(d1f,d2f) = ||d1f - d2f || / ||d1f + d2f||,                                                                        (1)

where: ||x - y||  denotes the sum of all the absolute values of a vector that is obtained after

vector subtraction (or summation in case of ||x + y||) of two vectors x and y; ‘ / ‘ denotes

division.  For example, if d1f=(0,0,1,0,0,0) and d2f=(0,1,0,0,0,0), than D(d1,d2) = (1+1)/2=1

which is the maximum value for the local normalised fuzzy difference (see fig.4). In

EFuNNs the local normalised fuzzy distance is used to measure the distance between a

new input data vector and a rule node in the local vicinity of the rule node. In RBF

networks Gaussian radial basis functions are allocated to the nodes and used as activation

functions to calculate the distance between the node and the input vector across the whole

input space.

Through the process of associating (learning) of new data points to a rule node rj, the

centres of this node hyper-spheres adjust in the fuzzy input space depending on the

distance between the new input vector and the rule node through a learning rate lj, and in

the fuzzy output space depending on the output error trough the Widrow-Hoff LMS

algorithm (delta algorithm) [80], as it is shown in fig.5a. This adjustment can be

represented mathematically by the change in the connection weights of the rule node rj

from W1(rj
(t)) and W2(rj

(t)) to W1(rj
(t+1)) and W2(rj

(t+1)) respectively according to the

following vector operations:
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W1(rj
(t+1))=W1 (rj

(t)) + lj,1  . (W1 (rj
(t)) - xf)                                                                   (2)

W2 (rj
(t+1) ) = W2(rj

(t))  + lj,2 . (A2 - yf) . A1(rj
(t))                                                          (2’)

where: A2=f2(W2.A1) is the activation vector of the fuzzy output neurons in the EFuNN

structure when x is presented; A1(rj
(t)) =f1 (D(W1(rj

(t)), xf)) is the activation of the rule

node rj
(t) ; a simple linear function can be used for f1 and f2, e.g. A1(rj

(t )) = 1- D(W1(rj
(t)),

xf)); lj,1 and lj,2  are the current learning rates of rule node rj for its input layer and its output

layer of connections respectively; further in the paper we will assume that the two learning

rates have the same value calculated as lj  = 1/ Nex(rj), where Nex(rj) is the number of

examples currently associated with rule node rj.  The statistical rationale behind this is that

the more examples are associated with a rule node the less it will “move” in the input

space when a new example has to be accommodated by this rule node.

When a new example is associated with a rule node rj not only its location in the input

space, but also its receptive field expressed as its radius Rj, and its sensitivity threshold Sj

change as follows:

Rj (t+1) = Rj (t)  + D (W1 (rj
(t+1)), W1 (rj

(t))),  respectively                                       (3)

Sj (t+1) = Sj (t)   -   D (W1 (rj
(t+1)), W1 (rj

(t)))

The learning process in the fuzzy input space is illustrated in fig.5b on four data points

d1,d2,d3 and d4. Fig.5b shows how the centre rj(1) of the rule node rj adjusts (after learning

each new data point) to its new positions rj(2), rj
(3), rj

(4) when one pass learning is applied.

Fig.5c shows how the rule node position would move to new positions rj(2(2),  rj
(3(2), and

rj
(4(2), if another pass of learning was applied.

[Figure 5a,b,c]

The weight adjustment formulas (2) and (3) define a standard EFuNN that has the first

part updated in an unsupervised mode and the second – in a supervised mode similar to

standard RBF networks [58] and their modifications [5,78]. But here the formulas are
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applied once for each example (x,y) in an on-line mode, that is similar to the RAN model

[61] and its modifications [66]. The standard supervised/unsupervised learning EFuNN is

denoted as EFuNN-s/u. In two other modifications of EFuNN, namely double pass

learning EFuNN (EFuNN-dp), and gradient descent learning EFuNN (EFuNN-gd) slightly

different update functions are used as explained in the next sub-section.

While the connection weights W1 and W2 capture fuzzy co-ordinates of the learned

prototypes (exemplars) represented as centres of hyper-spheres, the temporal layer of

connection weights W3 from fig.3b captures temporal dependencies between consecutive

data examples. If the winning rule node at the moment (t-1) (to which the input data

vector at the moment (t-1) was associated) was rmax (t-1), and the winning node at the

moment t is rmax
(t), then a link between the two nodes is established as follows:

W3(rmax
(t-1),rmax

(t))=W3(rmax
(t-1),rmax

(t)) + l3. A1(rmax
(t-1)) A1(rmax

(t)))                           (4)

where:  A1(r(t))  denotes the activation of a rule node r at a time moment (t); l3 defines a

learning rate - the degree to which the EFuNN associates links between rule nodes

(clusters, prototypes) that include consecutive data examples. If l3=0, no temporal

associations are learned in an EFuNN structure and the EFuNN from fig.3b becomes the

one from fig.3a.

The learned temporal associations can be used to support the activation of rule nodes

based on temporal pattern similarity. Here, temporal dependencies are learned through

establishing structural links. These dependencies can be further investigated and enhanced

through synaptic analysis (at the synaptic memory level) rather than through neuronal

activation analysis (at the behavioural level). The ratio spatial-similarity/temporal-

correlation can be balanced for different applications through two parameters Ss and Tc

such that the activation of a rule node r for a new data example dnew is defined through the

following vector operations:



IEEE Transactions of Systems, Man and Cybernetics, Part B – Cybernetics (2001), vol31,No.6,
December,2001

11

A1 (r) = 1 – Ss. D(W1(r), dnewf) + Tc.W3(rmax
(t-1), r) [0,1]                                      (5)

where: .[0,1]  is a bounded operation in the interval [0,1]; D(W1(r),dnewf) is the normalised

local fuzzy distance value and rmax
(t-1)  is the winning neuron at the previous time moment.

Here temporal connections can be given a higher importance in order to tolerate a higher

spatial distance. If Tc=0, then temporal links are excluded from the functioning of the

system.

Figure 6 shows a schematic diagram of the process of evolving of three rule nodes and

setting the temporal links between them for data taken from consecutive frames of a

spoken word “eight”, also used in section 4.1.

[Figure 6]

The EFuNN system was explained so far with the use of one rule node activation (the

winning rule node for the current input data). The same formulas are applicable when the

activation of m rule nodes is propagated and used (the so called ‘many-of-n’ mode, or ‘m-

of-n’ for short). Usually m=3.

The supervised learning in EFuNN is based on the above explained principles, so when a

new data example d=(x,y) is presented, the EFuNN either creates a new rule node rn to

memorise the two input and output fuzzy vectors W1(rn)= xf and W2(rn)= yf, or adjusts the

winning rule node rj (or m rule nodes respectively).

After a certain time (when certain number of examples have been presented) some neurons

and connections may be pruned or aggregated. Aggregation techniques are explained in 3.4.

Different pruning rules can be applied for a successful pruning of unnecessary nodes and

connections. One of them is given below:

IF (Age(rj) > OLD) AND (the total activation TA(rj) is less than a pruning parameter Pr

times Age (rj) )  THEN  prune rule node rj,
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where Age(rj) is calculated as the number of examples that have been presented to the

EFuNN after rj had been fist created; OLD is a pre-defined age limit; Pr is a pruning

parameter in the range [0,1], and the total activation TA(rj) is calculated as the number of

examples for which rj has been the correct winning node (or among the m winning nodes

in the m-of-n mode of operation).

The above pruning rule requires that the fuzzy concepts of OLD, HIGH, etc. are defined

in advance. As a partial case, a fixed value can be used, e.g. a node is OLD if it has

existed during the evolving of a FuNN from more than p examples. The pruning rule and

the way the values for the pruning parameters are defined, depend on the application task.

There are other functions applied on an EFuNN during its operation. Such functions are:

rule extraction (see section 3.3.), MF modification (see 3.4), parameter optimisation (see

3.7).

3.2. EFuNN supervised learning algorithms and inference methods

Three supervised learning algorithms are outlined here that differ in the weight adjustment

formulas:

EFuNN-s/u Learning Algorithm:

Set initial values for the system parameters: number of membership functions; initial

sensitivity threshold S and maximum radius Rmax; error threshold E; aggregation

parameter Nagg - number of consecutive examples after which aggregation is performed

(to be explained in section 3.4); pruning parameters OLD and Pr; number m of nodes

which activation is propagated to the output layer (for the ‘m-of-n’ mode); thresholds T1

and T2 for rule extraction.

Set the first rule node to memorise the first example (x,y):

W1(r0)= xf and W2(r0)=yf;                                                                                              (6)
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Loop over presentations of input-output pairs (x,y)

        {

Evaluate the local normalised fuzzy distance D between xf and the existing rule node

connections W1 (formulae (1)).

Calculate the activation A1 of the rule node layer. Find the closest rule node rk (or the

closest m rule nodes in case of m-of-n mode) to the fuzzy input vector xf  so that the input

vector is in the receptive field of this rule node.

 if  A1( rk) < Sk (sensitivity threshold for the node rk), create a new rule node for (xf,yf)

               else

Find the activation of the fuzzy output layer A2=W2.A1(1-D(W1,x))) and the output error

Err= || y- y’|| / Nout.

 If Err  > E,

         create a new  rule node to accommodate the current example (xf,yf)

   else

update W1(rk) and W2(rk) according to (2) and (3) (in case of m-of-n EFuNN update all

the m rule nodes with the highest A1 activation).

Apply aggregation procedure to the existing rule nodes after each group of  Nagg examples

are presented (see explanation in section 3.4).

Update the values for the rule node rk parameters Sk, Rk, Age(rk), TA (rk).

Prune rule nodes if necessary, as defined by pruning parameters.

Modify membership functions if necessary (see section 3.4).

Extract rules from the rule nodes (as explained in 3.3)

}

The two other learning algorithms presented next are exceptions and if it is not explicitly

mentioned otherwise, the denotation EFuNN will mean EFuNN-s/u.
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(b) EFuNN –dp Learning Algorithm

This is different from the EFuNN-s/u in the weight adjustment formula for W2 that is a

modification of (3):

W2 (rj
(t+1) ) = W2(rj

(t))  + lj. (A2 - yf). A1(rj
(t+1)),                                                (7)

meaning that after the first propagation of the input vector and error Err calculation, if the

weights are going to be adjusted,  W1 weights are adjusted first with the use of (2) and

then the input vector x is propagated again through the already adjusted rule node rj to its

position rj(t+1) in the input space; a  new error  Err  is calculated and after that the W2

weights of the rule node rj  are adjusted. This is a finer weight adjustment than the

adjustment in EFuNN-s/u that may make a difference in learning short sequences, but for

learning longer sequences it may not cause any difference in the results obtained through

the simpler and faster EFuNN-s/u. This is demonstrated in the experiments in section 4.

(c ) EFuNN-gd Learning Algorithm

This algorithm is different from the EFuNN-s/u in the way the W1 connections are

adjusted which is no more unsupervised, but here a one step gradient descent algorithm is

used similar to the RAN model [61]:

W1(rj
(t+1))=W1 (rj

(t)) + lj. (W1 (rj
(t) ) -  xf ) (A2 – yf) A1 (rj

(t)) W2(rj
(t))                        (8)

Formulae (8) should be extended when m-of-n mode is applied. The EFuNN-gd algorithm

is no more supervised/unsupervised and the rule nodes are no more allocated at the cluster

centers of the input space. This leads to a slower learning and more difficult interpretation

of the EFuNN structure in terms of extracting meaningful rules. These are the main

reasons why this algorithm is not used further in the paper.

An important characteristic of the EFuNN learning is the local element tuning. Only one

(or m, in the m-of-n mode) rule node will be either updated, or created for each data

example. This makes the learning procedure very fast (especially in the case when
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specialised parallel hardware platforms are used). Another advantage is that learning a

new data example does not cause forgetting of old ones [18,65]. A third advantage is that

new input and new output variables can be added during the learning process, thus making

the EFuNN system more flexible to accommodate new information, once such becomes

available, without disregarding the already learned information.

The use of MFs and membership degrees (layer two of neurons), and also the use of

normalised local fuzzy difference, makes it possible to deal with missing attribute values.

In such cases, the membership degrees of all MFs will be set to 0.5 indicating that the

value, if it existed, may belong to them. Preference, in terms of which fuzzy MF the

missing value might belong to, can also be represented through assigning appropriate

membership degrees, e.g. 0.7 degrees to “Small” means that the value is more likely to be

small rather than “Medium”, or “Large”.

The supervised learning algorithms above allow for an EFuNN system to always evolve

and learn when a new input-output pair of data becomes available. This is an active mode

of learning. In another mode, passive (inner, sleep) learning, learning is performed when

there is no input pattern presented. This may be necessary after an initial learning has

already been applied. In this case existing connections, that store previously fed input

patterns (prototypes), are used as “echo” data (here denoted as ECO) to reiterate the

learning process. This type of learning may be applied in case of a short  on-line

presentation of the data, when only small portion of data is learned, and then the training

is refined through the ECO learning method [31,35].

The evolved EFuNN can perform inference when recalled on new input data. The EFuNN

inference method consists of calculating the output activation value and is part of the

EFuNN supervised learning method when only the input vector x is propagated through

the EFuNN. In case of one-of-n learning mode, the inference is based on the highest rule
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node activation where the new input data falls into the node’s receptive field, or just the

highest  rule node activation if the new input vector does not fall into any of the node

receptive fields. In the m-of-n mode there will be m rules used in the EFuNN inference

process.

3.3. Knowledge–based learning in EFuNNs: rule insertion and rule extraction

EFuNNs are adaptive rule-based systems. Manipulating rules is essential for their

operation.  This includes rule insertion, rule extraction, and rule adaptation.

At any time (phase) of the evolving (learning) process fuzzy or exact rules can be inserted

and extracted. Insertion of fuzzy rules is achieved through setting a new rule node rj for

each new rule, such that the connection weights W1(rj) and W2(rj) of the rule node

represent this rule. For example, the fuzzy rule  (IF x1 is Small and x2 is Small THEN y is

Small) can be inserted into an EFuNN structure by setting the input connections of a new

rule node from the fuzzy input nodes  x1- Small and x2- Small to a value of 1, and setting

the output connection of this rule node to the fuzzy output node y-Small to a value of 1.

The rest of the connections are set to a value of zero. Similarly, an exact rule can be

inserted into an EFuNN structure, e.g. IF x1 is 3.4 and x2 is 6.7 THEN y is 9.5.  Here, the

membership degrees to which the input values x1 = 3.4 and x2=6.7, and the output value

y=9.5 belong to the corresponding fuzzy values are calculated and attached to the

corresponding connection weights.

Rule insertion and rule extraction are important operations of an EFuNN as it is a

knowledge-based connectionist model. Each rule node rj can be expressed as a fuzzy rule,

for example:

rj: IF x1 is Small 0.85 and x1 is Medium 0.15 and x2 is Small 0.7 and x2 is Medium 0.3

(Radius of the receptive field Rj=0.1, maxRj=0.75)
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THEN y is Small 0.2 and y is Large 0.8 (20 out of 175 examples are associated with this

rule),

where the numbers attached to the fuzzy labels denote the degree to which the centers of

the input and the output hyper-spheres belong to the respective MFs. The degrees

associated to the condition elements are the connection weights from the matrix W1. Only

values that are greater than a threshold T1 are left in the rules. The degrees associated with

the conclusion part are the connection weights from W2 that are greater than a threshold

of T2.  The other parameters associated with the rule represent the importance and the

strength of the rule. An example of rules extracted from a bench-mark dynamic time

series data is given in sub-section 3.5. The two thresholds T1 and T2 are used to disregard

the connections from W1 and W2 that represent small and insignificant membership

degrees (e.g., less than 0.1).

3.4. Rule node aggregation and membership function modification

Another knowledge-based technique applied to EFuNNs is rule node aggregation.

Through this technique several rule nodes are merged into one as it is shown in fig.7a,b

and c on an example of three rule nodes r1, r2 and r3 (only the input space is shown there).

[Figure 7a,b,c]

For the aggregation of three rule nodes r1 , r2, and r3 the following two aggregation rules

can be used to calculate the W1 connections for the new aggregated rule node ragg (the

same formulas are used to calculate the W2 connections)

- as a geometrical center of the three nodes:

W1(ragg)=(W1(r1)+W1(r2)+W1(r3))/ 3                                                                            (9)

   -  as a weighted statistical center:

W2(ragg)=(W2(r1).Nex(r1)+W2(r2).Nex(r2)+W2(r3).Nex(r3))/Nsum                             (10)
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where: Nex(ragg)= Nsum = Nex(r1)+Nex(r2)+Nex(r3)<=Rmax ;   Rragg  = d(W1(ragg),

W1(rj)) + Rj;  rj  is the rule node from the three nodes that has a maximum distance from

the new node ragg  and Rj is its radius of the receptive field. The three rule nodes will

aggregate only if the radius of the aggregated node receptive field is less than a pre-

defined maximum radius Rmax.

In order to select for a given node rj the other nodes it will aggregate with, two subsets of

nodes are formed – the subset of nodes rk that if activated to a degree of 1 will produce an

output value y’(rk) that is different from y’(rj) in less than the error threshold E, and the

subset of nodes that if activated to a degree of 1 will cause output values different from

y’(rk) in more than E. These two subsets are derived from the W2 connections. Than all

the rule nodes from the first subset that are closer to rj in the input space than the closest to

rj node from the second subset in terms of W1 distance, get aggregated if the radius of the

new node ragg is less than the pre-defined limit Rmax ( as illustrated in fig.7c.

Instead of aggregating all the rule nodes that are closer to a rule node rj than the closest

node from a neighbouring class (these nodes form an aggregation pool for rj), it is possible

to keep the closest node from the aggregation pool to the other class out of the aggregation

procedure - as a separate node – a “guard” (see fig.8), thus preventing miss-classification

between the two classes on the bordering area. The “guardian” node represents the same

class as rj.

[Figure 8]

Through node creation and consecutive aggregation, an EFuNN system can adjust over

time to changes in the data stream and at the same time – preserve its generalisation

capabilities.
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Through analysis of the weights W3 of an evolved EFuNN, temporal correlation between

time consecutive exemplars can be expressed in terms of rules and conditional

probabilities, e.g.:

                  IF r1 (t-1) THEN r2 (t) (0.3)

(11)

The meaning of the above rule is that some examples that belong to the rule (prototype) r2

follow in time examples from the rule prototype r1 with a relative conditional probability

of 0.3.

Changing (evolving) MF is another knowledge-based operation that may be needed for a

refined performance after a certain time moment of the EFuNN’s operation. Changing the

shape of the MF in a fuzzy neural structure such as FuNN through gradient descent

algorithm is suggested in [39,45]. Another approach to changing MF is using the data

distribution for each variable, i.e. calculating in an on-line mode the histogram of each

variable and placing the centers of its MFs at the middle of the areas that are of highest

density. Both changing the number and the shape of MFs may be needed for a better

performance of an EFuNN. For example, instead of three MF, the system may perform

better if it had five MF for some of the variables. In EFuNNs there are several possibilities

to implement such dynamical changes of MF as it is graphically illustrated on fig.9a,b:

(a) New MF are created (fuzzy nodes are inserted) in the most dense areas of the input

space without a need for the old MF to be changed (fig.9a). The degree to which each

cluster centre (each rule node) belongs to the new MF can be calculated through: (i)

defuzzifying the centres into real values with the use of the existing MF; (ii) finding

the membership degrees to which these values belong to the new MF; (iii) creating

new connections that have as weights these membership degrees;
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(b) All MFs change in order new ones to be introduced. For example, all stored fuzzy

exemplars in W1 and W2 that have three MFs, are defuzzified (e.g., through the center

of gravity deffuzification technique) and than used to evolve a new EFuNN structure

that has five MFs (fig.9b)

   [Figure 9a,b]

3.5. Examples of EFuNN learning, aggregation and rule extraction methods for a chaotic

benchmark time series prediction task

Here the operation of EFuNNs is illustrated on the Mackey-Glass chaotic time series data

(see also [16,45,61,5]) defined by the Mackey Glass time delay differential equation:

d(x)              a x(t - τ)

            =                                - b x(t)
(12)
d(t)             1 + x 10 (t - τ)

This series behaves as a chaotic time series for some values of the parameters x(0) and τ

[16,45]. Here x(0) = 1.2, τ = 17, a=0.2, b=0.1 and x(t) = 0 for t < 0 were assumed. The input-

output data for evolving an EFuNN from the Mackey Glass time series data is in the

following format: input vector:  [x(t), x(t-6), (t-12)  x(t-18))]; output vector [x(t+6)]. The task

is to predict future values x(t+6) from 4 points spaced at six time intervals in the past.

Example 1. The following values for the EFuNN parameters were set: initial value for

sensitivity threshold S of 0.9; error threshold E=0.1; a maximum radius Rmax=0.2; a rule

extraction threshold of 0.5; aggregation is performed after each consecutive group of 100

examples is presented; “m-of-n” mode, where m=1, is used; the number of membership
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functions MF is 5; 1000 consecutive data examples are used. Some experimental results of the

on-line evolving of an EFuNN are shown in fig.10, namely: (a) the desired versus the

predicted six steps ahead values through one-pass on-line learning;  (b) the absolute-, the local

on-line RMSE (LRMSE), and the local on-line NDEI (LNDEI) error over time as described

below; (c) the number of the rule nodes created and aggregated over time; (d) a plot of the

input data vectors (circles) and the evolved rule nodes (crosses) projected in the two

dimensional input space of the first two input variables x(t)  and x(t-6).

[Figure 10a,b,c,d]

The generalisation error of an EFuNN on a next new input vector (or vectors) from the input

stream calculated through the evolving process is called local on-line generalisation error.

The local on-line generalisation error at the moment t for example, when the input vector is

x(t), and the calculated by the evolved EFuNN output vector is y(t)’ is expressed as Err(t)=

(y(t) - y(t)’)/Nout, where Nout is the number of the outputs of the EFuNN. The local on-line

root mean square error, and the local on-line non-dimensional error index LNDEI(t) can be

calculated at each time moment t as:

LRMSE(t)=√(Σi=1,2…,t(Err(i)2)/t)); LNDEI(t)=LRMSE(t)/std(y(1):y(t)),                  (13)

where std(y(1):y(t)) is the standard deviation of the output data points from 1 to t.

For the chosen values of the parameters, there were 86 rule nodes evolved each of them

represented as one rule (some rules are shown in tabl.1). These rules and the EFuNN

inference mechanism define a system that is equivalent to the equation (12) in terms of the

chosen inputs and output variables subject to the calculated error.

[Table 1]

After certain time moment the LRMSE and LNDEI converge to constant values subject to

a small error, in the example from fig.10 - LRMSE=0.102, LNDEI=0.191. Generally

speaking, in the case of compact and bounded problem space the error can be made
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sufficiently small subject to appropriate selection of the parameter values for the EFuNN,

an issue discussed in 3.7. In the experiment above the chosen error tolerance was

comparatively high, but the evolved EFuNN was kept of a small size. If the chosen error

threshold E was smaller (e.g. 0.05, or 0.02) more rule nodes would have been evolved and

better prediction accuracy could have been achieved. Different EFuNNs have different

optimal parameter values, which also depends on the task (e.g. time series prediction,

classification).

The example here demonstrates that an EFuNN can learn a complex chaotic function

through on-line evolving from one-pass data propagation. But the real strength of the

EFuNNs is in learning time-series that change their dynamics through time, e.g. changing

values for the parameter τ from equation (12). Time series processes with changing

dynamics could be of different origin, e.g.: biological, financial and economics,

environmental, industrial processes, control.

EFuNNs can also be used for off-line training and testing similar to other standard NN

techniques. This is illustrated in another example shown in fig.11.

Example 2.  The following parameter values are set before an EFuNN is evolved: MF=5;

initial S=0.9; E=0.05; m=1; Rmax=0.2. The EFuNN is evolved on the first 500 data

examples from the same Mackey-Glass time series as in example1. Fig.11a shows the

desired versus the predicted on –line values on the first 500 examples of the time series.

After the EFuNN is evolved, it is tested for a global generalisation on the second 500

examples. Figure 11b shows the desired versus the predicted by the EFuNN values for

these examples in an off-line mode.

In a general case, the global generalisation root mean square error RMSE and the non-

dimensional error index are evaluated on a set of p new (test) examples from the problem

space as follows:



IEEE Transactions of Systems, Man and Cybernetics, Part B – Cybernetics (2001), vol31,No.6,
December,2001

23

RMSE=√ (Σi=1,2,…p[(yi– yi’)2]/p;  NDEI=RMSE/std(1:p),                            

(14)

where: std (1:p) is the standard deviation of the data from 1 to p in the test set . The

evaluated in this example RMSE is 0.01, and the NDEI is 0.046. After having evolved an

EFuNN on a small, but representative part of the whole problem space, its global

generalisation error can saturate to a satisfactory value.

[Figure 11]

An EFuNN can also be tested for on-line test error on a test data while further training on

this data is still performed. The on-line local test error is slightly smaller for the example

above.

Generally speaking, if a continuous, incremental learning on all data is possible (in many

cases of time series prediction it is) EFuNNs should be continuously evolved all the time

in an adaptive, life-long learning mode, always improving their performance. Typical

application of EFuNN would be modelling and predicting of a continuous financial time

series, modelling of large DNA data sequences, or adaptive spoken word classification

(section 4 and table 3).

3.6. Unsupervised and hybrid (supervised/unsupervised) learning in EFuNNs

     The unsupervised method of learning assumes that there are no desired output values

available and the EFuNN evolves its rule nodes from the input space. A node allocation is

based only on the defined maximum radius Rmax.  If a new data item d activates a certain

rule node rj above the level of  Sj = (1- Rj), this rule node is adjusted to accommodate the

new data item according to formulae (2), otherwise a new rule node is created. The
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EFuNN unsupervised learning method is based on the steps described as part of the

supervised learning method when only the input vector x is available for the current input

data item d. And the input vector can be either fuzzy or non-fuzzy.

This method of learning is illustrated here on speech data that represents a spoken word

“eight” (in a phonemic representation: /silence//ei//t//silence/).  In the experimental results

shown in fig.12, three time lags of 26 mel scale coefficients taken from a window of 12

ms of the speech signal, with an overlap of 50%, are used to form 78–element input

vectors. The input vectors are plotted over time in fig.12b.

Each new input vector from the spoken word is either associated with an existing

rule node that is modified to accommodate this data, or a new rule node is created.

Regularly the rule nodes are aggregated. After the whole word is presented the aggregated

rule nodes represent the centres of the anticipated phoneme clusters without the concept of

phonemes being introduced to the system (fig.12a). The latter figure shows clearly that

three rule nodes were evolved after aggregation, that represent the stable sounds as

follows: frames 0-53 and 96-170 are allocated to rule node 1 that represents /silence/;

frames 56-78 are allocated to rule node 2 that represents the phoneme /ei/; frames 85-91

are allocated to rule node 3 that represents the phoneme /t/; the rest of the frames represent

transitional states, e.g. frames 54-55 the transition between /silence/ and /ei/, frames 79-84

– the transition between /ei/ and /t/, and frames 92-96 – the transition between /t/ and

silence/, are allocated to some of the closest rule nodes in the input space. If a higher

sensitivity threshold was used, there would have been additional rule nodes evolved to

represent these short transitional sounds.

[Figure 12a,b]

When more pronunciations of the word ‘eight’ are presented to the unsupervised

EFuNN system, the system refines the phoneme regions and the phoneme rule nodes.
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Both the supervised and the unsupervised learning methods for EFuNNs are based on the

same principles of building the W1 layer of connections. Either of them can be applied on

an evolving EFuNN, so that if there are known output values the system will use a

supervised learning method, otherwise – it will apply the unsupervised learning method

on the same structure. For example, after having evolved in an unsupervised way an

EFuNN from the spoken word “eight” input data, more data that are labelled with the

appropriate phoneme labels, can be used to continue the learning process of this EFuNN,

now in a supervised mode.

The EFuNNs also allow for reinforcement learning when instead of exact desired values,

only their fuzzy labels become known during the evolving process. Such values are for

example, Small, Not Very Good, etc. This type of learning is outside the scope of the

paper.

3.7. On-line parameter adaptation and feature evaluation in EFuNNs

Once set, the initial values of the following EFuNN parameters can be either kept fixed

during the entire operation of the system, or can be adapted (optimised) according to the

incoming data: number of membership functions; value for m-of-n parameter; error

threshold E; maximum receptive field Rmax; rule extraction thresholds T1 and T2;

number of examples for aggregation Nagg; pruning parameters OLD and Pr. Adaptation

can be achieved through the analysis of the behaviour of the system, or through a

feedback connection from higher level modules in the ECOS architecture.

One scenario for on-line parameter adaptation is that after some number of examples

presented, or certain time, the initial parameter values will start to adapt to the

characteristics of the input data, such as distribution, dimensionality, time-dependence,

etc. For example, after certain number of examples or if the distribution of the incoming
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data does not change significantly from one time segment to another, the restriction Rmax

can be removed as the receptive field of every rule node will be restricted by the closest to

this rule node example that belongs to another class. This is true if there are sufficient data

points that cover most of the areas of the problem space. Another parameter, Nagg, can

also be removed as a restriction after certain distribution of the input-output space is

achieved and aggregation can be applied after every single example is learned.

In another scenario, genetic algorithms (GA) and evolutionary programming techniques

[23,20,78,79] can be applied to optimise the EFuNNs structural and functional parameters

through evolving populations of EFuNNs over generations and evaluating each EFuNN in

the population at certain time intervals. After that, only the best EFuNNs are kept and

reproduced in another population, which process continuous to evolve in an on-line mode.

Evolutionary strategies that constitute another class of evolutionary computational

methods, are also suitable techniques to optimise the EFuNN parameters over time.

The evaluation of the relevance of the input variables to the task can be done in an on-line

mode through iterative calculation of the correlation of each input variable to each output

class, or to each membership function of the output variables, e.g. Corr (x1, [y is Small,

Medium, High]) = [0.7, 0.4, -0.3] thus producing a continuous information on the most

relevant input features which information is added to the extracted rules and knowledge.

3.8. Adding new inputs and outputs to EFuNN during on-line learning

The local learning procedure and the local normalised fuzzy distance used in the EfuNN

architecture allow for adding new inputs or/and outputs at any time of the system

operation. In this respect the problem space, EFuNN is operating in, is open and the
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accumulated knowledge in an EFuNN structure is incremental. This way of learning is

typical for humans who always use new sources of information and add new input

variables, classes, concepts in a continuous manner.

4.  Comparative Analysis of EFuNNs and other NN and AI Techniques for

On-Line, Knowledge-based Learning

4.1. EFuNN versus traditional NN and fuzzy-neural systems

EFuNNs are learning machines that can learn in an on-line mode any data set, regardless

of the class of the problem (function approximation, time series prediction, classification,

etc.) either in a supervised-, or in an unsupervised-, or in a hybrid learning mode, subject

to appropriate parameter values selected and certain minimum number of examples

presented.

When issues such as applicability of the EFuNN model, learning accuracy, generalisation

and convergence are discussed for different tasks, two cases must be distinguished:

(a) The incoming data are from a compact and bounded data space. In this case the more

data vectors are used for evolving an EFuNN, the better its generalisation is on the whole

problem space. After a time moment T, if appropriate values for the EFuNN parameters are

used, each of the fuzzy input and the fuzzy output spaces (they are compact and bounded) will

be covered by hyper-spheres of the evolved rule nodes that will have different receptive fields

in the general case. We can assume that by a certain time moment T a sufficient number of

examples from the stream have been presented and rule node hyper-spheres cover the problem

space to a desired accuracy. The local on-line error will saturate at this time because any two

associated compact and bounded fuzzy spaces Xf and Yf that represent a problem space, can

be fully covered by a sufficient number of associated (possibly overlapping) fuzzy hyper-
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spheres (see fig.5). The number of these spheres (the number of rule nodes) depends a great

deal on the error threshold E, set before the training of the system.

(b) The incoming data are from an open problem space, where data dynamics and data

distribution may change over time in a continuous way. In this case the local on-line error

will depend on the closeness of the new input data to already stored prototypes in the

existing rule nodes.

The well-established NN and AI techniques have difficulties when applied for on-line,

knowledge based learning [18,65,38]. For example, the multi-layer perceptrons (MLP)

and the backpropagation learning algorithm have the following problems: catastrophic

forgetting [65,38], local minima problem [3,10], difficulties to extract rules [38], not able

to adapt to new data without re-training on old ones [65], too long training when applied

to large data sets. Many neuro-fuzzy systems, such as ANFIS [63], FuNN [39], neo-fuzzy

neuron [83], cannot update the learned rules through continuous training on additional

data without suffering the catastrophic forgetting. The SOM [47,48] may not be efficient

when applied for unsupervised adaptive learning on new data as SOM assume a fixed

structure and a fixed grid of nodes connected in a topological output space that may not be

appropriate for the projection of a particular data set. The radial basis neural networks

require clustering to be performed first and then the backpropagation algorithm applied

[38]. They are not efficient for adaptive, on-line learning either, despite of some

improvements [5,78].

The EFuNN evolving procedure leads to a similar local on-line error as RAN [61] and its

modifications [66,21], but EFuNNs allow for meaningful rules to be extracted and

inserted at any time of the operation of the system thus providing the knowledge about the

problem and reflecting to changes in its dynamics. In this respect the EFuNN is a flexible,

on-line, knowledge engineering and statistical model. As a statistical model the EfuNN
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performs clustering of the input space. The EfuNN structure also reflects the data

distribution of the input-output space.

The above said is illustrated here with two experiments. The first one deals with the task

of on-line time series prediction of the Mackey-Glass data. The second one deals with a

classification task on a case study data of spoken digits.

Experiment 1. Time series prediction

A description of the bench-mark data set of Mackey-Glass data was given in section 3.5.

Here the standard CMU benchmark format of the time series is used. The data was

generated with τ=17, using a second order Runge-Kutta method with a step size of 0.1, of

four inputs:  x(t), x(t-6), x(t-12) and x(t-18), and one output: x(t+85). Training data is

from t=200 to t=3200, while test data is from t= 5000 to 5500. All the 3,000 training data

were used to evolve three types of EFuNNs. For the EFuNN-s/u and EFuNN-dp the

following initial values of the parameters were chosen manually: MF=3, S=0.9, E=0.05,

m=1, Rmax=0.2, nagg=100. For the EFuNN-gd model the following initial values of the

parameters were used: MF=3, S=0.9, E=0.05, m=1, Rmax=0.2, nagg=100. The number of

the centers (rule nodes in EFuNN) and the local on-line LNDEI is calculated and

compared with the one for the RAN model [61] and its modifications [66]. The results are

shown in table 2. The three modifications of EFuNN result in a smaller on-line error than

the other methods and in a reasonable number of rule nodes.

[Table 2]

If EFuNNs use linear equations for calculating the activation of the rule nodes (instead of

Gaussian functions and exponential functions as it is in RAN) the EFuNN learning

procedure is much faster than the learning procedure in RAN and its modifications.
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EFuNN also produces a better on-line generalization, which is a result of a more accurate

node allocation during the learning process.

Software simulators as well as data sets used in the experiments above are available from:

http://divcom.otago.ac.nz/infosci/kel/CBIIS.html (-> software -> efunns).

Experiment 2: Spoken word classification

The task is recognition of speaker independent pronunciations of English digits from the

Otago Corpus database (http://kel.otago.ac.nz/hyspeech/corpus/) [75]. 17 speakers (12 males

and 5 females) are used for training and other 17 speakers (12 males and 5 females) are used

for off-line testing. Each speaker utters 30 instances of English digits during recording session

in a quiet room (clean data) for a total of 510 training and 510 testing utterances. Eight mel

frequency scale cepstrum coefficients (MFSCC) and log-energy are used as acoustic features.

In order to assess the performance of EFuNNs in this application, a comparison with Linear

Vector Quantisation (LVQ) is accomplished. Clean training speech is used to train both LVQ

and EFuNN. Office noise is introduced to the test speech data to evaluate the behaviour of the

recognition systems in a noisy environment, with a Signal-to-Noise Ratio of 10dB. The

classification off-line test accuracy for LVQ and EFuNN, and also the local on-line test

accuracy for EFuNN, are evaluated and presented in table 3. The LVQ model has the

following parameter values: code-book vectors – 396, training iterations 500 on the whole

training set. The EFuNN has the following parameter values: 1 training iteration; 3 MFs, 157

rule nodes, initial S=0.9, E=0.1, Rmax=0.2, number of examples for aggregation nagg=100.

The results show that the EFuNN with off-line learning and testing on new data

performs much better than the LVQ method (Table 3). As EFuNN allows for continuous

training on new data, further testing and also training of the EFuNN on the test data in an on-

line mode leads to a significant improvement of the accuracy.
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[Table 3]

EFuNNs in an on-line learning mode can be used as building blocks for creating adaptive

speech recognition systems that are based on the ECOS framework (fig.2). Such systems

would be able to adapt to new speakers and new accents, and add new words to their

dictionaries at any time of their operation.

4.2. EFuNNs, Evolutionary Computation (EC) and Case-Based Reasoning (CBR)

methods

EC is concerned with population-based search and optimisation of an individual

system through generations of populations of systems [23]. EC is applied to the

optimisation of different structures and processes, one of them being the connectionist

structures and connectionist learning processes [13,78,79]. EC, and the genetic algorithms

(GA) in particular, include in principal a stage of development of each individual system,

so that a system develops, evolves through interaction with the environment that is also

based on the genetic material embodied in the system.  This process of development has

been in many cases ignored or neglected as insignificant from the point of view of the

long process of generating hundreds of generations each of them containing hundreds of

individuals. EFuNNs deal with the process of interactive, on-line adaptive learning of a

single system that evolves from incoming data or through interaction with the

environment. The system can either have its parameters (genes) pre-defined, or self-

adjusted during the learning process starting from some initial values. There are several

ways in which EC and EFuNNs can be inter-linked. For example, it is possible to use EC

to optimise the parameters of an EFuNN (or an ECOS) at a certain time of its operation, or

to use EFuNNs for the development of the individual systems (individuals) as part of the

global EC process.



32

EFuNNs and case-based reasoning methods [12] are similar in the sense that they store

exemplars and measure similarities, but an EFuNN has a more flexible inference

mechanism and it is connectionist based that brings all the advantages of the NN methods.

5.  Conclusions and directions for further research

This paper presents evolving fuzzy neural network systems EFuNNs as a realisation of

one of the main modules in a framework of evolving connectionist systems ECOS. ECOS

and EFuNNs comprise methods and systems for general purpose on-line adaptive

learning. EFuNNs have features that address the seven major requirements to the

intelligent information systems presented in section one. A significant advantage of

EFuNNs is the local learning, which allows for a fast adaptive learning that is robust to

catastrophic forgetting. Only few connections and nodes are changed, or created after the

entry of a new data item. This is in contrast to the global learning algorithms where, for

each input vector, all connection weights change, thus making the system prone to

catastrophic forgetting when applied for adaptive, on-line learning tasks.

ECOS incorporate important AI features, such as: adaptive learning; non-monotonic

reasoning; knowledge manipulation in the presence of imprecision and uncertainties;

knowledge acquisition and explanation. ECOS and EFuNNs have features of knowledge-

based systems, logic systems, case-based reasoning systems, and adaptive connectionist-

based systems, all together. Through self-organisation and self-adaptation during the

learning process, they allow for solving difficult engineering tasks as well as for

simulation of emerging, evolving biological and cognitive processes to be attempted. The

life-long learning mode  (also implemented in EFuNN) is the natural learning mode of all

biological systems [14,44,73,82].
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The EFuNN methods and the ECOS can be implemented in software or/and in hardware

with the use of either conventional, or new computational techniques. EFuNN simulators

are available from: http://divcom.otago.ac.nz/infosci/kel/CBIIS.html. The EFuNN

applicability is broad and spans across several application areas of computer and

information science where systems, that learn from data and improve continuously, are

needed. That includes:

 computer systems that learn speech and language;

 adaptive process control;

 autonomous navigation of intelligent robots;

 intelligent agents on the WWW;

 intelligent decision support systems;

bioinformatics;

 domestic appliances and intelligent buildings;

 systems that learn and control brain-, and body states from a biofeedback.

Acknowledgements

This research is part of a research programme “Connectionist-based intelligent

information systems” funded by the New Zealand Foundation for Research Science and

Technology, contract UOOX0016. I would like to thank Irena Koprinska, Qun Song and

Georgi Iliev for their contribution to the implementation of the ECOS and EFuNN

simulators. I would like to thank he reviewers for their useful comments and suggestions

that helped me to improve the paper significantly from its initial version.



34

References

1. Albus, J.S., A new approach to manipulator control: The cerebellar model articulation

controller (CMAC), Trans. of the ASME: Journal of Dynamic Systems, Measurement,

and Control, pp.220:227, Sept. (1975)

2. Amari, S. and Kasabov, N. eds, “Brain-like Computing and Intelligent Information

Systems”, Springer Verlag,1998.

3. Amari, S., “Mathematical foundations of neuro-computing”, Proc. of IEEE, 78 (9),

Sept. (1990)

4. Arbib, M. (ed) The Handbook of Brain Theory and Neural Networks, The MIT Press,

1995.

5. Blanzieri, E., P.Katenkamp, “Learning radial basis function networks on-line”, in:

Proc. of Intern. Conf. On Machine Learning, 37-45 (1996)

6. Bottu and Vapnik, “Local learning computation”, Neural Computation, 4, 888-900

(1992)

7. Carpenter, G. and Grossberg S., Pattern recognition by self-organizing neural

networks , The MIT Press, Cambridge, Massachusetts (1991)

8. Carpenter, G. and S. Grossberg, “ART3: Hierarchical search using chemical

transmitters in self-organising pattern-recognition architectures”, Neural Networks,

3(2) 129-152(1990).

9. Carpenter, G. S. Grossberg, N. Markuzon, J.H. Reynolds, D.B. Rosen,

“FuzzyARTMAP: A neural network architecture for incremental supervised learning

of analog multi-dimensional maps,” IEEE Transactions of Neural Networks , vol.3,

No.5, 698-713 (1991).



IEEE Transactions of Systems, Man and Cybernetics, Part B – Cybernetics (2001), vol31,No.6,
December,2001

35

10. Cybenko, G., Approximation by super-positions of sigmoidal function, Mathematics

of Control, Signals and Systems, 2, 303-314 (1989)

11. DeGaris, H., “Circuits of Production Rule - GenNets – The genetic programming of

nervous systems”, in: Albrecht, R., Reeves, C. and Steele, N. (eds) Artificial Neural

Networks  and Genetic Algorithms, Springer Verlag (1993)

12. Doo-Il Choi and Sang-Hui Park, “Self creating and organizing neural networks”, IEEE

Trans. Neural Networks, vol.5 (4) pp.561-575, Jul.1994

13. Duda and Hart, “Pattern classification and scene analysis”, New York: Willey (1973)

14. Edelman, G., Neuronal Darwinism: The theory of neuronal group selection, Basic

Books (1992).

15. Fahlman, C., and C. Lebiere, "The Cascade- Correlation Learning Architecture", in:

Turetzky, D (ed) Advances in Neural Information Processing Systems, vol.2, Morgan

Kaufmann, 524-532 (1990).

16. Farmer, J.D., and Sidorowich, Predicting chaotic time series, Physical Review Letters,

59, 845 (1987)

17. Freeman, J., D. Saad, “On-line learning in radial basis function networks”, Neural

Computation vol. 9, No.7 (1997).

18. French, “Semi-destructive representations and catastrophic forgetting in connectionist

networks, Connection Science, 1, 365-377 (1992)

19. Fritzke, B. “A growing neural gas network learns topologies”, Advances in Neural

Information Processing Systems, vol.7 (1995).

20. Fukuda, T., Y. Komata, and T. Arakawa, "Recurrent Neural Networks with Self-

Adaptive GAs for Biped Locomotion Robot", In: Proceedings of the International

Conference on Neural Networks ICNN'97, IEEE Press (1997)



36

21. Furlanello, C., D.Giuliani, E.Trentin, “Connectionist speaker normalisation with

generalised resource allocation network,  in: Advances in NIPS 7 (eds D.Toretzky,

G.Tesauro, T.Lean) MIT Press, 1704-1707 (1995)

22. Gaussier, T., and S. Zrehen, “A topological neural map for on-line learning:

Emergence of obstacle avoidance in a mobile robot”, In: From Animals to Animats

No.3, 282-290, (1994).

23. Goldberg, D.E., Genetic Algorithms in Search, Optimisation and Machine Learning,

Addison-Wesley (1989)

24. Goodman, R., C.M. Higgins, J.W. Miller, P.Smyth, "Rule-based neural networks for

classification and probability estimation", Neural Computation, 14, 781-804 (1992).

25. Hashiyama, T., T. Furuhashi, Y Uchikawa,. “A Decision Making Model Using a

Fuzzy Neural Network”, in: Proceedings of the 2nd International Conference on Fuzzy

Logic & Neural Networks, Iizuka, Japan,  1057-1060, (1992).

26. Hassibi and Stork, “Second order derivatives for network pruning: Optimal Brain

Surgeon,” in: Advances in Neural Information Processing Systems, 4, 164-171,

(1992).

27. Hech-Nielsen, R. “Counter-propagation networks”, IEEE First int. conference on

neural networks, San Diego, vol.2, pp.19-31 (1987)

28. Heskes, T.M., B. Kappen, “On-line learning processes in artificial neural networks”,

in: Math. foundations of neural networks, Elsevier, Amsterdam, 199-233, (1993).

29. Ishikawa, M., "Structural Learning with Forgetting", Neural Networks 9, 501-521,

(1996).

30. Kasabov, N. "Adaptable connectionist production systems”.  Neurocomputing, 13 (2-

4) 95-117, (1996).



IEEE Transactions of Systems, Man and Cybernetics, Part B – Cybernetics (2001), vol31,No.6,
December,2001

37

31. Kasabov, N. The ECOS Framework and the ECO Learning Method for Evolving

Connectionist Systems, Journal of Advanced Computational Intelligence, 2 (6) 1998,

1-8

32. Kasabov, N., "Investigating the adaptation and forgetting in fuzzy neural networks by

using the method of training and zeroing", Proceedings of the International

Conference on Neural Networks ICNN'96, Plenary, Panel and Special Sessions

volume, 118-123 (1996).

33. Kasabov, N., "Learning fuzzy rules and approximate reasoning in fuzzy neural

networks and hybrid systems", Fuzzy Sets and Systems 82 (2) 2-20 (1996).

34. Kasabov, N., “A framework for intelligent conscious machines utilising fuzzy

neural networks and spatial temporal maps and a case study of multilingual speech

recognition", in: Amari, S. and Kasabov, N. (eds) Brain-like computing and

intelligent information systems, Springer Verlag, 106-126 (1998)

35. Kasabov, N., “ECOS: A framework for evolving connectionist systems and the

ECO learning paradigm”, Proc. of ICONIP'98, Kitakyushu, Japan, Oct. 1998,  IOS

Press, 1222-1235

36. Kasabov, N., “Evolving Fuzzy Neural Networks - Algorithms, Applications and

Biological Motivation”, in: Yamakawa and Matsumoto (eds), Methodologies for the

Conception, design and Application of Soft Computing, World Scientific, 1998, 271-

274

37. Kasabov, N., E. Postma, and J. Van den Herik, “AVIS: A Connectionist-based

Framework for Integrated Audio and Visual Information Processing”, in: Yamakawa

and Matsumoto (eds), Methodologies for the Conception, design and Application of

Soft Computing, World Scientific, 1998, 422-425



38

38. Kasabov, N., Foundations of Neural Networks, Fuzzy Systems and Knowledge

Engineering, The MIT Press, CA, MA, (1996).

39. Kasabov, N., J. S Kim, M. Watts, A. Gray, “FuNN/2- A Fuzzy Neural Network

Architecture for Adaptive Learning and Knowledge Acquisition”, Information

Sciences”, 101(3-4): 155-175  (1997)

40. Kasabov, N., M. Watts, “Genetic algorithms for structural optimisation, dynamic

adaptation and automated design of fuzzy neural networks”, in: Proceedings of the

International Conference on Neural Networks ICNN'97, IEEE Press, Houston (1997).

41. Kasabov, N., R. Kozma, R. Kilgour, M. Laws, J. Taylor, M. Watts, and A.  Gray, “A

Methodology for Speech Data Analysis and a Framework for Adaptive Speech

Recognition Using Fuzzy Neural Networks and Self Organising Maps”, in: Kasabov

and Kozma (eds) Neuro-fuzzy techniques for intelligent information systems, Physica

Verlag (Springer Verlag) 1999

42. Kasabov, N., Song, Q. “Dynamic, evolving neuro- fuzzy inference systems, IEEE

Transactions of Fuzzy Systems, accepted for publication (2001)

43. Kasabov, N., Watts, M. Spatial-temporal evolving fuzzy neural networks and

applications for adaptive phoneme recognition, TR 99/03 Department of Information

Science, University of Otago (1999)

44. Kasabov, N., Adaptive learning system and method, Patent, Reg.No. 503882, New

Zealand.

45. Kim, J.S. and Kasabov, N. HyFIS: adaptive neuro-fuzzy systems and their application

to non-linear dynamical systems, Neural Networks, 12 (9) 1301-1319 (1999)

46. Kawahara, S., Saito, T. “On a novel adaptive self-organising network”, Cellular

Neural Networks and Their Applications, 41-46 (1996)



IEEE Transactions of Systems, Man and Cybernetics, Part B – Cybernetics (2001), vol31,No.6,
December,2001

39

47. Kohonen, T., “The Self-Organizing Map”, Proceedings of the IEEE, vol.78, N-9,

pp.1464-1497, (1990).

48. Kohonen, T., Self-Organizing Maps, second edition, Springer Verlag, 1997

49. Krogh, A.,  and J.A. Hertz, “A simple weight decay can improve generalisation”,

Advances in Neural Information Processing Systems, 4  951-957, (1992).

50. Le Cun, Y., J.S. Denker and S.A. Solla, “Optimal Brain Damage”, in: Touretzky, D.S.,

ed., Advances in Neural Information Processing Systems, Morgan Kaufmann, 2, 598-

605 (1990).

51. Lin, C.T.  and C.S. G. Lee, Neuro Fuzzy Systems,  Prentice Hall (1996).

52. Maeda, M., Miyajima, H. and Murashima, S., “A self organising neural network with

creating and deleting methods, Non-linear Theory and its Applications, 1, 397-400

(1996)

53. Mandziuk, J., Shastri, L. “Incremental class learning approach and its application to

hand-written digit recognition, Proc. of the fifth int. conf. on neuro-information

processing, Kitakyushu, Japan, Oct. 21-23, 1998

54. Massaro, D., and M.Cohen, "Integration of visual and auditory information in speech

perception", Journal of Experimental Psychology: Human Perception and

Performance, Vol 9, pp.753-771, (1983).

55. McClelland, J., B.L. McNaughton, and R.C. Reilly "Why there are Complementary

Learning Systems in the Hippocampus and Neo-cortex: Insights from the Successes

and Failures of Connectionist Models of Learning and Memory", CMU TR

PDP.CNS.94.1, March, (1994).

56. Miller, D.J., Zurada and J.H. Lilly, "Pruning via Dynamic Adaptation of the

Forgetting Rate in Structural Learning," Proc. IEEE ICNN'96, Vol.1, p.448 (1996).

57. Mitchell, M.T., "Machine Learning", MacGraw-Hill (1997)



40

58. Moody, J., Darken, C., Fast learning in networks of locally-tuned processing units,

Neural Computation, 1(2), 281-294 (1989)

59. Mozer, M., and P. Smolensky, “A technique for trimming the fat from a network via

relevance assessment”, in: D. Touretzky (ed) Advances in Neural Information

Processing Systems, vol.2, Morgan Kaufmann, 598-605 (1989).

60. Murphy, P. and Aha, D. “UCI Repository of machine learning databases, Irvin, CA:

University of California, Department of Information and Computer Science (1994),

(http://www.ics.uci.edu/~mlearn/MLRepository.html)

61. Platt, J., “A resource allocating network for function interpolation, Neural

Computation, 3, 213-225 (1991)

62. Quartz, S.R., and T.J. Sejnowski, “The neural basis of cognitive development: a

constructivist manifesto”, Behaviour and  Brain Science, 1999

63. R. Jang, “ANFIS: adaptive network-based fuzzy inference system”, IEEE Trans. on

Syst., Man, Cybernetics, 23(3), May-June, 665-685, (1993).

64. Reed, R., “Pruning algorithms - a survey”, IEEE Trans. Neural Networks, 4 (5) 740-

747, (1993).

65. Robins, A. and Frean, M. “Local learning algorithms for sequential learning tasks in

neural networks, Journal of Advanced Computational Intelligence, vol.2, 6 (1998)

66. Rosipal,R., M.Koska, I.Farkas, “Prediction of chaotic time-series with a resource-

allocating RBF network, Neural Processing Letters, 10:26 (1997)

67. Rummery, G.A., and M. Niranjan, “On-line Q-learning using connectionist systems”,

Cambridge University Engineering Department,  CUED/F-INENG/TR 166 (1994)

68. S.R.H. Joseph, “Theories of adaptive neural growth”, PhD Thesis, University of

Edinburgh, 1998

69. Saad, D. (ed) On-line learning in neural networks, Cambridge University Press, 1999



IEEE Transactions of Systems, Man and Cybernetics, Part B – Cybernetics (2001), vol31,No.6,
December,2001

41

70. Sankar, A., and R.J. Mammone, “Growing and pruning neural tree networks”, IEEE

Trans. Comput. 42(3) 291-299 (1993).

71. Schaal, S. and C. Atkeson, “Constructive incremental learning from only local

information, Neural Computation, 10, 2047-2084 (1998)

72. Segalowitz, S.J. Language functions and brain organization, Academic Press, 1983

73. Segev, R. and E.Ben-Jacob, From neurons to brain: Adaptive self-wiring of neurons,

TR /98 Faculty of Exact Sciences, Tel-Aviv University (1998)

74. Selverston, A. (ed) Model neural networks and behaviour, Plenum Press, 1985

75. Sinclair, S., and C. Watson, “The Development of the Otago Speech Database”, In

Kasabov, N. and Coghill, G. (Eds.), Proceedings of ANNES ’95, Los Alamitos, CA,

IEEE Computer Society Press (1995).

76. Towel, G., J. Shavlik, and M. Noordewier, "Refinement of approximate domain

theories by knowledge-based neural networks", Proc. of the 8th National Conf. on

Artificial Intelligence AAAI'90, Morgan Kaufmann, 861-866 (1990).

77. Thrun, S. and Mitchel, T.M. “Integrating inductive neural network learning and

explanation-based learning”, in: R.Bajcsy (ed) Proceedings of the 13th International

Joint Conference on Artificial Intelligence, Morgan-Kaufmann (1993)

78. Topchy, A., O.Lebedko, V.Miagkikh and N.Kasabov, “Adaptive training of radial

basis function networks based on co-operative evolution and evolutionary

programming”, in: Progress in connectionist-based information systems, N.Kasabov et

al (eds), Springer, 253-258 (1998)

79. Watts, M., and N. Kasabov, “Genetic algorithms for the design of fuzzy neural

networks”, in Proc. of ICONIP'98, Kitakyushu, Oct. 1998,  IOS Press, 793-796 (1998)

80. Widrow, B., and Hoff, M. Adaptive switching circuits, In 1960 IRE WESCON

Convention record, pp.96-104, IRE, New York (1960)



42

81. Woldrige, M., and N. Jennings, “Intelligent agents: Theory and practice”, The

Knowledge Engineering review (10) 1995.

82. Wong, R.O. “Use, disuse, and growth of the brain”, Proc. Nat. Acad. Sci. USA, 92 (6)

1797-99, (1995).

83. Yamakawa, T., H. Kusanagi, E. Uchino and T. Miki, "A new Effective Algorithm for

Neo Fuzzy Neuron Model", in: Proceedings of Fifth IFSA World Congress,  1017-

1020, (1993).

84. Wang, J.H. and W.D.Sun, “On-line learning vector quantization: a harmonic

competition approach based on conservation network”, IEEE Trans. Systems, Man,

and Cybernetics, vol.29, part B, No.5, 642-653 (1999)



IEEE Transactions of Systems, Man and Cybernetics, Part B – Cybernetics (2001), vol31,No.6,
December,2001

43

Fig.1

              Environment

ECOS



44

Fig.2

Knowl

edge-

based

A
ct

io
n 

M
od

ul
es

• 
• 

• 

Action

Part

Decisi

on
Feature

Selection

Part

Representation

(memory)

Part

Inputs

New

Inputs

Environ

ment

Hi

ghe

r

Le

vel

Adaptati

N

N

N

Result



IEEE Transactions of Systems, Man and Cybernetics, Part B – Cybernetics (2001), vol31,No.6,
December,2001

45

Fig.3a.

Fig.3 b

W

W

W

W

rm

rmax
(

A

A

W

Outputs

Fuzzy

Rule

Fuzzy

input
Input

Inpu

input out

rule(c

ase)



46

Fig.4 µ

d1f   =  (0, 0, 1, 0,

0, 0)

R=
The localµ (membership

x

D(d1,d2) = D(d1,d3) = D(d1,d5)



IEEE Transactions of Systems, Man and Cybernetics, Part B – Cybernetics (2001), vol31,No.6,
December,2001

47
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Fig.10a,b,c,d
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Fig.11a,b
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Fig.12a,b
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Table 1

Rule 1: if [x1 is (3 0.658) AND [x2 is (4 0.884)] AND [x3 is

(4 0.822)] AND

           [x4 is (4 0.722)] [Radius of the receptive field

R1 = 0.086]

        then  [y is (4 0.747)[accommodated training examples

Nex(r1)= 6]

Rule 2: if [x1 is (3 0.511)] AND [x2 is (4 0.774)] AND [x3

is (4 0.852)] AND

           [x4 is (4 0.825)] [Radius of the receptive field

R2 = 0.179]

        then  [y is (3 0.913)][accommodated training

examples Nex(r2)=2]

……………….

Rule 16: if [x1 is (2 0.532)]AND [x2 is (2 0.810)] AND [x3

is (3 0.783)] AND

            [x4 is(4 0.928)] [Radius of the receptive field

R16 = 0.073)

         then  [y is (5 0.516)] [accommodated training

examples Nex(r16)=12]
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Notation: The fuzzy values are denoted with numbers as follows: 1- very small, 2- small,

3-medium, 4 – large, 5 – very large; the antecedent and the consequent weights are

rounded to the third digit after the decimal point; smaller values than 0.5 are ignored as

0.5 is used as a threshold T1=T2 for rule extraction)
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Table 2.

Model Parameter

values

Number of

centers  (rule

nodes in

EFuNN)

On-line LNDEI after learning

3000 examples

RAN [61] ε = 0.02     113

0.

3

7

3

RAN-GRD [

66 ]

ε = 0.01      50

0.

1

6

5

RAN—P-

GQRD [66]

ε = 0.02      31   0.160

EFuNN-su E=0.05,Rma

x=0.2

     91   0.115
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EFuNN-dp E=0.05;Rm

ax=0.2

     93   0.113

EFuNN-gd E=

0.05;Rmax=

0.2

    102   0.103

Table 3.

Method \

Test

classifica

tion

accuracy

Size of the

model

Number of

training

iterations

 Global test

classification

accuracy

(off-line)

Local test

classification

accuracy

(on-line)

LVQ 386 reference

vectors

    500         57%        N/A

EFuNN-

s/u

175 rule

nodes

      1        77%         86.6%

.
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Captions of figures

Figure 1. ECOS learn through interaction with the environment

Fig.2. A block diagram of the ECOS framework

Fig.3. Evolving fuzzy neural network EFuNN: (a) an example of a standard feed-forward

EFuNN system; (b) an example of an EFuNN with a short- term memory and a feedback

connection

Fig.4. Triangular membership functions (MF) and the local, normalised, fuzzy distance

measure

Fig.5. Adaptive learning in EFuNN: (a) a rule node represents an association of two hyper

spheres from the fuzzy input space and the fuzzy output space; the rule node “moves”

when a new fuzzy vector pair (xf,yf) is accommodated; (b) accommodating  4 points in a

rule node rj; (c) two-pass learning of four points that fall in the receptive and the reactive

fields of the rule node rj.

Fig.6. The process of creation of temporal connections from consecutive frames taken

from a pronounced word “eight” data. The three rule nodes represent the three major parts

of the speech signal, namely: /silence/,/ei/,/t/.

Fig.7a. Aggregation of rule nodes in an EFuNN - an example of an evolved EFuNN

structure; (b) The process of aggregation of three rule nodes r1,r2 and r3 into one cluster
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node ragg.; (c)   The resulting node  ragg from the aggregation of the three rules has a

receptive field radius Ragg less than a pre-defined (as a system parameter) value Rmax.

Figure 8. Aggregation of rule nodes with the use of “guard” nodes. Rule nodes

(presented as circles, the radius of which defining their receptive fields) are

projected in the input space with the class that the nodes support denoted as the

color of the circle: (a) before aggregation; (b) after aggregation – note that the

receptive field of the new rule nodes have changed, but the receptive fields of the

unchanged nodes, the ‘guard’ nodes, are unchanged; (c) and (d) – the process of

aggregation as in (a) and (b) but here presented in one-dimensional space of the

ordered rule nodes where spatial allocation of nodes is applied.

Fig.9. On-line membership function modification: (a) new MF are inserted without

modifying the existing ones; (b) 5 new MF are created that substitute the old 3 MF.

Fig.10a,b,c,d. Experiments for on-line evolving of an EFuNN from the Mackey Glass chaotic time-series data. An

EFuNN is evolved on 1,000 data examples from the Mackey-Glass time series (4 inputs: x(t), x(t-6), x(t-12) and x(t-18),

and one output x(t+6), from the CMU data: http://legend.gwydion.cs.cmu/neural-bench/benchmarks/mackey-

glass.html). (a) the desired versus the predicted six steps ahead value through one-pass on-line learning;  (b) the

absolute, the local on-line RMSE and the local on-line NDEI  errors over time; (c) the process of creation and

aggregation of rule nodes over time; (d) the input data vectors (circles) and the rule node co-ordinates (W1 connection

weights) (crosses) projected in the two dimensional input space of the first two input variables x(t) and x(t-6).  Some of

the extracted rules are shown in tabl.1.

Fig.11. (a) An EFuNN is evolved on 500 data examples from the Mackey-Glass time series (4 inputs: x(t), x(t-6), x(t-12)

and x(t-18), and one output x(t+6); the figure shows the desired versus the predicted on–line values of the time series;

(b) after the EFuNN is evolved, it is tested for a global generalisation on 500 future data; the figure shows the desired

versus the predicted by the EFuNN values in an off-line, batch mode.
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Fig.12. Experimental results with the unsupervised learning EFuNN method on a

single pronunciation data of the word “eight”. From top to bottom: (a) the two

dimensional input space of the first two mel scale coefficients of all data frames (each

of them is a 78 element vector representing 26 mel scale coefficient in three time lags

of 12 ms each with an overlap of 50%); each vector is represented as the consecutive

number of the corresponding frame from the speech sequence; the evolved rule

nodes after aggregation are denoted with their numbers (larger font); the emerged

rule nodes 1,2, and 3 represent each of the three phases of the signal: /silence/, /ei/,

/t/, /silence/; the data frames are numbered in the order they are presented to the

EFuNNun that shows the time of the frame; (b)  all the 78 element mel-vectors taken

from the speech signal of the pronounced word “eight” over time.
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Captions of tables

Table 1. Some of the fuzzy rules extracted from the evolved from the Mackey-Glass

data EFuNN.

Table 2.  Comparative analysis of different on-line learning models on the Mackey-

Glass time series. Each model is evolved on 3,000 data examples from the Mackey-

Glass time series (4 inputs: x(t), x(t-6), x(t-12) and x(t-18), and one output x(t+85),

from the CMU data: http://legend.gwydion.cs.cmu/neural-

bench/benchmarks/mackey-glass.html).

Table 3. The global test accuracy of an LVQ and an EFuNN models applied to the

recognition of spoken English digit words, and the local test accuracy for EFuNN (similar to

the local RMSE). The LVQ model has the following parameter values: code-book vectors –

396, training iterations – 500, while the EFuNN evolved 157 rule nodes and used 1 iteration

for each data example.


