On-Line Expansion of Output Space in Evolving Fuzzy Neural
Networks

Akbar Ghobakhlou, Michael Watts, Nikola Kasabov

Department of Information Science
University of Otago, PO Box 56,

Dunedin, New Zealand

E-mail: Akbar,mjwatts,nkasabov@infoscience.otago.ac.nz
Web: http://kel.otago.ac.nz/

Abstract

The paper presents a methodology for expand-
ing the number of classes an Evolving Fuzzy Neu-
ral Network(EFuNN) is able to classify. This is a
useful trait for such applications as adaptive speech
recognition systems, and strongly complements the
ability of EFuNNs to adapt to new examples of
known classes. Ezxperiments with isolated word
recognition demonstrate the efficacy of EFuNNs in
this problem domain, while further experiments ex-
pand these networks with new words, demonstrat-
ing the methodology that is the cruzx of this work.
The experimental results show that the suggested
methodology ts a promising approach to the prob-
lem of expanding adaptive connectionist classifica-
tion systems to accommodate new classes.

1 Introduction

The central tenet of online, adaptive systems
is that they are able to modify themselves to ac-
count for new data. Several paradigms have been
suggested that are useful for this task, including
Resource Allocation Networks (RAN) [8], Nearest-
Neighbour MLPs (NN-MLP) [9], and Evolving
Connectionist Systems (ECoS) [2]. While all of
these are able to modify parts of their structures
to accommodate new examples presented to them,
none are able to adapt to the requirement to iden-
tify new classes when they appear on-line, during
the system operation. For some applications, such
as adaptive speech recognition systems, this is ab-
solutely vital, as such systems are far less useful if
they cannot learn to add and recognise new words
during their operation.

Evolving Fuzzy Neural Networks (EFuNNs) [3]
are a fusion of the ECoS principles and the prin-
ciples of Fuzzy Neural Networks. Although they
are quite capable of adapting to accommodate new
examples, they are still unable to accommodate
in their output space new classes when these are
presented to them. While EFuNNs are useful for
speech recognition systems, they still require the

ability to adapt to new classes to maximise their
usefulness in this application area.

This paper describes an attempt at fulfilling
this requirement. It describes a methodology for
adding new output nodes, corresponding to new
data classes, to an EFuNN, allowing it to adapt
to new classes while retaining all of its previously
learned knowledge. The methodology is illustrated
on the task of isolated spoken word recognition.

2 The Evolving Connectionist Sys-
tem (ECoS) Paradigm

The Evolving Connectionist System (ECoS)
paradigm was suggested by Kasabov in [2]. It
was developed in order to address several per-
ceived problems with traditional, static connection-
ist paradigms, and is based upon the following prin-
ciples:

e rapid, one pass training

e structural adaptation through environmental
interaction

e resistance to catastrophic forgetting

e capability for both memorisation of data and
generalisation

o discovery of spatial relationships

o knowledge is stored in exemplar nodes within
the structure

e ECoS networks may be reduced in size without
significant loss of knowledge, through aggrega-
tion of exemplar nodes.

ECoS are similar in concept to the Resource Al-
location Network (RAN) suggested by Platt [8], and
also to the Nearest-Neighbour MLP (NN-MLP) in-
vestigated by Zhao [9]. Where ECoS differ from
the other paradigms is in the extreme flexibility of
their structure, their ability to learn in both super-
vised and unsupervised modes, and in their ability
to identify spatial similarities between examples.

3 Evolving Fuzzy Neural Networks

The Evolving Fuzzy Neural Network (EFulNN)
[3] is a five neuron layer network with four lay-
ers of connections. It is derived from a fusion of
the Fuzzy Neural Network FuNN [6] and the ECoS
principles. The structure of an EFulNN is as follows:
The first, input, neuron layer represents crisp input
variables. The second, condition, layer represents
the fuzzy membership functions attached to each
input. Shouldered triangular membership functions
are used, with the bounds of each MF being equal to
the centres of the neighbouring MF. Thus, it is pos-
sible to represent each MF with a single parameter,
represented in EFuNN by the connection weights in
the input to condition connection layer. The third,
or rule, layer represents the associations between
the fuzzy inputs and outputs, i.e. it represents the
system’s fuzzy rules. The fourth, or action, layer
represents the output membership functions while
the final layer represents the crisp output value.
The action to output connection layer is of the same
form as the input to condition layer, i.e. connection
weights within this layer represent the centres of
the output MF. An idealised EFuNN, with three
inputs and two outputs, is shown in Figure 1

The activation of an EFuNN rule node is deter-
mined by the normalised fuzzy difference between
the condition node activations (the fuzzified input
values) and the connection weights incoming to that
node. Thus, activation of an EFuNN rule node is
proportional to the distance between the fuzzified
input values and the previously seen examples as
represented by the connection weights. The acti-
vations of the rule layer nodes are propagated ac-
cording to two different strategies: “One of N”, and
“Many of N”. With “One of N” recall, only the most
highly activated node has it’s activation node prop-
agated to the following layers. With “Many of N”
recall, up to M of those nodes that are activated
above a specified level (known as the Activation
Threshold) have their activation values propagated
onwards. The rule and action layer both have sat-
urated linear activation functions, while the activa-
tion functions of the condition and output layers are
constructed to appropriately handle the fuzzifica-
tion and defuzzification respectively. EFulNNs allow
for IF-Then rule extraction and there are special al-
gorithms developed for this purpose. However, we
do not use this option as the aim of this paper is to
explore the concept of output expansion.

4 The EFuNN Training Algorithm

The EFuNN learning algorithm is not an evolu-
tionary, but an evolving algorithm that is based on
continues learning and structural adaptation. The
EFuNN learning algorithm is as follows [4]:

e propagate the current input vector I through
the network

Input Candition Rule
Layer Layer Layer Layer
Figure 1: A simplified and exemplified (3 inputs, 2
output) diagram of an EFuNN.

e find the highest activated rule node (the win-
ner)

e IF the maximum activation a,,,, is less than
the sensitivity threshold Sy,

— add a node
o ELSE

— evaluate the error between the compo-
nents of the calculated output vector O,
and the desired output vector Oy

— IF the error over the desired output is
greater than the error threshold Eyj,. OR
the desired output node is not the most
highly activated

* add a node
— ELSE

x update the connections to the win-
ning hidden node

e repeat for each training vector.

When a node is added, it’s incoming connection
weight vector is set to the fuzzified input vector I,
and it’s outgoing weight vector is set to the fuzzified
desired output vector Oy.

The incoming weights to the winning node j are
modified according to equation 1, where Wlt’ ; 18 the
connection weight from input i to j at time ¢, szl
is the connection weight from input ¢ to j at time
t+ 1, 1 is the learning rate one parameter, and I;
is the ith component of the input vector I.

Action Output
Layer

The objective of this function is to decrease the
distance between I and Wj.

The outgoing weights from node j are modified
according to equation 2, where W}’o is the connec-
tion weight from j to output o at time ¢, W;’ng is
the connection weight from j to o at time ¢t +1, A;
is the activation of j, and FE, is the error at 0. The
objective of this function is to decrease the error
over the outputs.

Wit =Wi; +m (L - W) (1)

WSt = Wi, +ma(A; x Bo) 2)

4.1 The EFuNN Aggregation Algo-

rithm

Aggregation of rule nodes [7] can be employed
to control the size of the evolving layer (i.e. the rule
layer) during the learning process. The principle
of aggregation is to merge those nodes which are
spatially close into one node. Aggregation can be
applied for every (or after every n) training exam-
ples. It will generally improve the generalisation
capability of EFuNN. The aggregation algorithm
is as follows:

FOR each rule node rj, j =1:n,

where n is the number of rule nodes and
W1 is the connection weights matrix be-
tween the condition and rule layers and
W2 is the connection weights matrix be-
tween the rule and action layers.

e find a subset R of rule nodes for which the nor-
malized Euclidean distances D(W1,,,W1,,)
and D(W2,,,W2,,) rj,rq € R are below the
thresholds w1T hr and w2T hr respectively.

e merge all rule nodes from the subset R into a
new rule node 7., and update W1 and
W2 using the following formulae:

Tnew

Tnew

W]. = ZT@ER (WlT“)
Tnew m

W2 = ZT@ER WQT“)
Tnew m

where m denotes the number of rule nodes
in the subset R.

e delete the rule nodes r, € R

5 On-Line Expansion of the Output
Space in EFuNN

It is highly desirable in some application areas,
such as speech recognition systems to be able to
expand the vocabulary of the recognition system
without having to start again from scratch. EFuNN
is suitable for this task because it uses local learning
which tunes only the connection weights of the local
node, so anything the rule nodes have captured as
knowledge will be local and only covering a “patch”
of the input-output space.Thus, adding new classes
or new inputs does not require re-training of the
whole system on the new and the old data as it is
in the traditional NN.

The task is to introduce an idea for on-line ex-
pansion of the output layer in EFuNN in order to
accommodate new classes. As described in section
3 the EFuNN is a five neuron layer network with
four layers of connections. Each node in the output
layer represents a particular class in the problem
domain.

To add a new node to the output layer, the struc-
ture of the existing EFuNN first needs to be modi-
fied to encompass the new output node. This mod-
ification affects both the output and action layers
and the connections between the action and rule
layers. The graphical representation of this process
is shown in Figure 2. The connection weights be-
tween the action and rule layer are initialised to
the fuzzification of crisp output zero. In this man-
ner the new output node is set by default to clas-
sify all previously seen classes as negative. Once
the internal structure of the EFulNN is modified to
accommodate the new output class, the EFulNN is
further trained on both the new and old class data.
As a result of the training process new rule nodes
are created to represent the new class data.

Inprut Leayer

Cordiim Layer

Fuk Layer

uctint, Lagrer

Chipatt Layer

Figure 2: A simplified and exemplified diagram of
an expanded EFuNN. The dotted lines represent
the initial connections of the new class output node.

5.1 The EFulNN Output Expansion Al-
gorithm

The process of adding new output nodes to
EFuNN is carried out in a supervised manner.
Thus, for a given input vector, a new output node
will be added only if the user indicates that the
given input vector is a new class. The output

expansion algorithm is as follows:

FOR every new output class,
e ingert a new node into the output layer.

e ingert a set of fuzzy nodes according to number
of MF into the action layer.

FOR every rule node r;, i =1:n,

where n is the number of rule nodes.

e modify W2 the outgoing connection weights
from rule nodes to action nodes by expanding
W2;, with fuzzified set of zero to reflect the
zero output.

6 Experimental Procedure and Re-
sults

The motivation behind designing this experi-
ment was to allow for the on-line vocabulary expan-
sion of a small connectionist-based speech recogni-
tion system. This work is based on the ROKEL
project[1]. ROKEL is an intelligent voice controlled
system installed on a Pioneer DX mobile robot plat-
form. An Evolving connectionist system is em-
ployed for spoken command recognition with an on-
line speaker adaptation feature.

The experiments were carried out in two distinct
phases. Two sets of data (one for training and one
for validation) were prepared to conduct the experi-
ments in each phase. In the first phase, speech data,
was prepared for the English digits from “zero”
to “nine” as commands to adjust the setting of
ROKEL’s linear and rotational velocity. The data
used in this phase was taken from 31 native speak-
ers (22 male and 9 female) of New Zealand En-
glish. In the second phase, speech data was pre-
pared for 5 additional commands (Go, Left, Return,
Right, Stop) for controlling the basic movements of
ROKEL. The data used in this phase was taken
from 11 native speakers (8 male and 3 female) of
New Zealand English.

Each speaker uttered each word three times.
There were a total of 750 training and 240 testing
utterances in the first phase and a total of 240 train-
ing and 40 testing utterances in the second phase.
The testing sets were obtained from new utterances
from the same speakers used for training the net-
work. The speech was sampled at 22.05 kHz and
quantised to a 16 bit sighed number.

Spectral analysis of the speech signal was per-
formed over 30 msec with Hamming window and
50% overlap, in order to extract Mel Scaled Cep-
strum Coefficients (MSCC) as acoustic features [5].
A fixed-size input vector consisting of 20 x d units
was used, where d is the dimensionality of the fea-
ture space. Since nine MSCCs were taken as acous-
tic features, the Discrete Cosine Transformation
(DCT) was applied over each acoustic observation
and the first twenty coefficients were retained for
each input vector.

An EFuNN was initialised with 180 nodes in the
input layer and 10 nodes in the output layer (one
for each word). Each input and output was fuzzified
into 3 membership functions. These fuzzy values
are the representation of the crisp values from the
input and output layers in the condition and action
layers respectively.

In phase one of the experiments the EFulNN was
trained on the training data with the parameters
shown in Table 1. The rule nodes were aggregated
during the learning process.

Table 1: EFuNN’s Training and Aggregation Parameters

Sensetivity Threshold 0.8
Error Threshold 0.1
Learning Rate One 0.2
Learning Rate Two 0.2

Aggregation W1 Threshold 0.18
Aggregation W2 Threshold 0.18
Number of Examples Before Aggregation 40

There were 214 rule nodes created during the
training period. The trained EFuNN was then
tested on both training and testing data sets. Ta-
ble 2 shows the performance of the EFuNN on its
training and testing sets.

Table 2: performance of EFuNN on NZ English digits

Training Set Testing Set

[Positive | Negative Positive | Negative

| Words || Accuracy | Accuracy | Accuracy | Accuracy
Zero 98.67 100.00 95.83 100.00
One 96.00 99.70 83.33 97.69
Two 100.00 99.11 100.00 93.06
Three 98.67 100.00 66.67 100.00
Four 98.67 99.26 91.67 97.69
Five 96.00 99.26 79.17 99.54
Six 100.00 100.00 100.00 99.07
Seven 97.33 100.00 79.17 99.07
Eight 93.33 99.85 87.50 99.54
Nine 98.67 100.00 83.33 99.54

[Total || 9773 | 9975 | 86.67 | 9852 |

This network was then expanded to recognise 5
additional words as described in section 5. The
EFulNN was trained on the new data with the same
set of parameters as before. There were 114 ad-
ditional rule nodes created during the learning pe-
riod. The performance of the expanded EFuNN on
both digits and the additional words is illustrated

in Table 3.

Table 3: performance of the expanded EFuNN on both digits

and additional words
Training Set Testing Set
Positive Negative Positive Negative
‘Words Accuracy | Accuracy | Accuracy | Accuracy
Zero 98.67 100.00 95.83 99.64
One 92.00 99.77 79.17 98.21
Two 100.00 99.20 100.00 95.00
Three 97.33 100.00 62.50 100.00
Four 98.67 99.66 91.67 98.93
Five 93.33 99.32 75.00 99.64
Six 100.00 100.00 100.00 99.29
Seven 97.33 100.00 79.17 99.29
Eight 86.67 99.89 87.50 99.64
Nine 97.33 99.89 87.50 99.64
Go 96.97 99.89 100.00 99.66
Left 98.11 98.67 100.00 98.60
Return 96.97 100.00 88.89 100.00
Right 94.00 99.78 94.44 100.00
Stop 100.00 100.00 100.00 99.66
[Total]| 9632 | 9974 | 88.16 | 9953 |

7 Discussion

The recognition rate in the first phase of the ex-
periment are illustrated in the Table 2. An overall
positive accuracy of 86.67% and overall negative ac-
curacy of 98.52% on the testing set was achieved.
Generalisation capability of the EFuNN is clearly
illustrated on its unseen testing set. Further more,
as shown in Table 3, this was also the case when
the EFuNN was expanded to allow for recognition
of an additional 5 words.

Table 3 also shows the performance of the ex-
panded EFuNN on digits. As it can be seen from
these results, the expanded EFulNN has successfully
clagsified the additional words while maintaining
the knowledge learnt during the first phase (i.e. En-
glish digits) of the experiment.

Although, the performance of the expanded
EFuNN on its training set and the testing set was
very good, its performance on the testing set, es-
pecially on the recognition of the word “three” and
“five” , slightly degraded. This could be caused
by the small size of the training set and unevenly
distributed training and testing sets.

8 Conclusions and Future Research

This paper describes the structure of the
EFuNN as an evolving system employing the ECoS
paradigm. An application of EFuNN for isolated
word recognition along with a novel idea for ex-
panding its vocabulary, was successfully imple-
mented. It was clearly demonstrated that EFuNN
is capable of adding and identifying a new class
output with training only on examples of the new
class. It was also shown that EFuNN can learn and
adapt to new classes while maintaining its previ-
ously learned knowledge.

Further investigation into optimisation of the ag-
gregation and its relevance to the output expansion

algorithm is currently being conducted. Further re-
search is also planned on other applications of the
presented herein methodology mainly in the area of
adaptive speech recognition.

9 Acknowledgments

We would like to acknowledge the contribution
to this paper of Dr Georgi Iliev for his assis-
tance with the data processing algorithm. The
ECoS methodology was developed under the
FRST grants UOO808 and UOOxod6, Univer-
sity of Otago. Simulators can be found on the
http://divcom.otago.ac.nz/infosci/kel/CBIIS.html.

References

[1] A. Ghobakhlou, Q. Song and N. Kasabov,
“ROKEL: the interactively learning
and navigating robot of the knowl-
edge engineering laboratory at Otago,”
ICONIP/ANZIIS/ANNES’99 Work-

shop, Dunedin, New Zealand, November
22-24, 57-59, 1999.

[2] N. Kasabov, “The ECOS framework and the
ECO learning method for evolving connection-
ist systems,” Journal of Advanced Compu-
tational Intelligence, vol. 2, no. 6, pp. 195—
202, 1998.

[3] N. Kasabov, “Evolving Fuzzy Neural Networks
- Algorithms, Applications and Biological Mo-
tivation,” in T. Yamakawa and G. Matsumoto
(eds.), Methodologies for the Conception,
Design and Application of Soft Comput-
ing, World Scientific Publishing Co, 1998, pp.
271-274.

[4] N. Kasabov, “On-Line Learning, Reasoning,
Rule Extraction and Aggregation in Locally
Optimized Evolving Fuzzy Neural Networks,”
Neurocomputing, in press, 2000.

[5] N. Kasabov and G. Iliev, “Evolving fuzzy neu-
ral networks and adaptive filtering for robust
recognition of noisy speech,” TEEE Transac-
tions on Pattern Analysis and Machine
Intelligence, submitted, 2000.

[6] N. Kasabov, J. Kim, M. Watts and A. Gray,
“FuNN/2 - A Fuzzy Neural Network Architec-
ture for Adaptive Learning and Knowledge Ac-
quisition in Multi-modular Distributed Envi-
ronments,” Information Sciences - Appli-
cations, 1997.

[7] I. Koprinska and N. Kasabov, “An applica-
tion of evolving fuzzy neural network for video
parsing,” in N. Kasabov and K. Ko (eds.),
ICONIP/ANZIIS/ANNES’99 Workshop,
Dunedin, New Zealand, November 22-24,
1999, pp. 96-102.

8]

J. C. Platt and N. P. Matic, “A Constructive
RBF Network for Writer Adaptation,” in Ad-
vances in Neural Information Processing
Systems, 9, 1996.

Q. Zhao and H. Tatsuo, “Evolutionary Learn-
ing of Nearest-Neighbour MLP,” IEEE Trans-
actions on Neural Networks, vol. 7, no. 3,
pp. 762-767, 1996.

