
NeuCube v1.3 User Manual

 1

NeuCube

Neurocomputing Software/Hardware Development

Environment for Spiking Neural Network

Applications in Data Mining, Pattern Recognition,

and Predictive Data Modelling

Knowledge Engineering and Discovery Research Institute

(http://www.kedri.aut.ac.nz)

Auckland University of Technology,

Auckland, New Zealand

June 2016

http://www.kedri.aut.ac.nz/

NeuCube v1.3 User Manual

 2

Disclaimer

NeuCube is a modular development system that helps graduate students, researchers,

and practitioners to create new, more efficient solutions to problems of data mining,

pattern recognition, event prediction, and decision support when dealing with complex

and large data, especially temporal or/and spatio-/spectro-temporal data (SSTD) across

domain applications. NeuCube uses the third generation of neural networks – the spiking

neural networks (SNN) and the available neuromorphic hardware.

NeuCube is being developed and owned by the Knowledge Engineering and Discovery

Research Institute (KEDRI, www.kedri.aut.ac.nz) and funded by the Auckland University

of Technology Strategic Research Investment Fund (SRIF).

Using NeuCube for teaching and research will require a licence and a small charge

depending on the version, to recover the costs of its development and to allow the

developers to further improve it.

Commercial use will require a special licence as NeuCube is patent protected.

Communication for obtaining any licence should be done through the person in charge

(see the NeuCube web page: http://www.kedri.aut.ac.nz/neucube).

http://www.kedri.aut.ac.nz/
http://www.kedri.aut.ac.nz/

NeuCube v1.3 User Manual

 3

CONTENTS
1. Introduction .. 4

2. NeuCube Installation ... 8

3. NeuCube User Interface .. 9

4. Data and Information Exchange... 10

5. Prorotype Model Design and Testing, Illustrated with a Demo Problem 11

Dataset description .. 11

Loading a dataset .. 12

Data encoding ... 13

Cube initialisation ... 14

Training of the SNN cube ... 16

Dynamic visualisation of learning ... 17

Analysis of the cube .. 17

Training classifier ... 26

Verify classifier .. 27

Output layer visualisation ... 27

Cross validation and parameter optimisation .. 32

Exporting statistics and results .. 36

6. Example of Regression Analysis .. 37

7. Recall ... 39

8. References ... 40

9. Developer Team and Contact Persons ... 42

10. Acknowledgements ... 43

NeuCube v1.3 User Manual

 4

1. INTRODUCTION
NeuCube is a software/hardware development environment for spiking neural network (SNN)

prototype systems for data mining, pattern recognition, and predictive data modelling with

complex and large data, especially temporal or/and spatio-/spectro-temporal data (SSTD). An

application system created with the use of NeuCube has the architecture of a spatio- temporal

data machine (STDM). In this respect, NeuCube is not a ‘magic bullet’ that can easily solve any of

the above problems. Instead, it is a sophisticated framework of methods that facilitates the design
and the implementation of efficient solutions to these problems through careful and precise

selection and testing of most suitable methods and parameters for an STDM. This process can be

slow, but the results can be very impressive in both accuracy and data understanding.

An STDM has three parts:

 an input part to encode input data into spiking sequences

 an SNNcube that learns the input data in an unsupervised mode to capture spatio-

temporal patterns, and

 an evolving output part for classification or regression tasks that is trained in an

incremental, adaptive way in a supervised or in a semi-supervised mode to classify

(calculate) the SNNcube patterns into output classes (or regression values).

Additional modules can be added, such as a dynamic parameter model (e.g. a gene-regulatory

network), or a module for personalised modelling.

STDMs are based on the principles of evolving connectionist systems (ECOS) and neuromorphic

computations. This architecture was first proposed in (Kasabov, 2014), initially for brain data

modelling as shown in Figure 1. NeuCube is PCT patent protected (Kasabov et al, PCT patent,

2013).

Figure 1: A functional diagram of the first NeuCube architecture introduced in (Kasabov, 2014; PCT 2013)

The above architecture was developed further as a multi-modular software/hardware

development system for wider applications (Kasabov et al, 2015):

NeuCube v1.3 User Manual

 5

• Brain data modelling: EEG, fMRI, EMG, DTI, neurogenetic data, integrated brain data.

• Brain-Computer Interfaces.

• Robot control (e.g. neuro-rehabilitation robots with China Academy of Sciences).

• Prediction of neurodegenerative disease progression (e.g. Alzheimer’s disease data).

• Personalised event prediction (e.g. stroke occurrence; CVD).

• Ecological event prediction from temporal climate data.

• Audio/Visual data processing.

• Moving object recognition.

• Hazardous environmental event prediction (e.g. risk of earthquakes).

• Radio astronomy data modelling (Pulsar detection) – SKA.

• Bioinformatics (e.g. spatio-temporal protein folding and functions).

• Financial and business data modelling and prediction.

• Others

Figure 2 presents an example of a multi-modular NeuCube development system, where different

modules perform different tasks, but all of them are integrated through a common

communication protocol. A brief description of the modules from Figure 2 is given below.

Module M1 is a generic prototyping and testing module, where an SNN application system (called

here Prototype Descriptor) can be developed for data mining, pattern recognition, and event

prediction from temporal or spatio-/spectro-temporal data (SSTD, or as it is called here Data)

After creating and testing a prototype descriptor in M1, it is saved in the I/O module (M5) and

can be used by the other modules.

Module M2 is a simulator for small and large-scale applications written in the PyNN

programming language. It can read the Data created and tested in M1 or in other NeuCube

modules and process it very fast. While this module can run independently, the use of the PyNN

programming language also allows to run a Prototype Descriptor on specialised neuromorphic

hardware (e.g. SpiNNaker; the INI ETH chip etc.), which is indicated in Figure 2 as Module M3.

Module M3 makes it possible to execute a NeuCube Prototype Descriptor using parallel

computing for fast on-line and real time applications.

Module M4 is a program written in Java for the 3D visualisation of a NeuCube Prototype

Descriptor. It provides a virtual navigation through the 3D structure of a NeuCube model. It can

also be used for visualisation through the specialised Oculus VR ‘goggles’. Dynamic visualisation

is possible when the SNN model is observed in action.

Module M5 is for the input/output of data and for interaction between all NeuCube modules.

Module M6 has all the functionality of module M1, but with specific additional functions for

prototyping and testing of neurogenetic data models. These models can include relevant genes

and proteins to study a problem in addition to only using brain data. This module is written in

Java.

NeuCube v1.3 User Manual

 6

Module M7 facilitates the creation and testing of a personalised SNN system. It has all

functionality of module M1, but also some special functions for personalised modelling (see

Kasabov and Hu, 2010; Kasabov, USA patent 2008).

Module M8 has all functionalities of module M1, but it also includes some specific functions that

support integrated brain data modelling, including EEG, fMRI, and DTI data analysis in

combination.

Module M9 is an optional module for data encoding optimisation and event detection. This

module includes state of the art data encoding techniques for mapping analogue signals to trains

of spikes. It is specifically designed to optimise the input of data into the NeuCube.

Module M10 provides additional features for online learning and for real time data analysis and

prediction, as it is commonly used in Brain-Computer Interface applications. Data can be added

into the NeuCube constantly and it will produce results in real-time.

In this manual the terms “NeuCube v1.3” and “NeuCube-M1” are used interchangeably. The

NeuCube v1.3 is an unrestricted version of the NeuCube Neurocomputing system and is a

successor of NeuCube v1.2.

Further detailed information on the NeuCube architecture and its applications are given in

(Kasabov et al, 2015). Various applications of NeuCube are published in the references provided

at the end of the User Manual.

Figure 2: An example of a multimodular NeuCube development system for SNN applications

An example configuration of a NeuCube development system is shown in Figure 3, where modules

M1, M2, M3 (a small SpiNNaker board), M4, and M10 are demonstrated.

NeuCube v1.3 User Manual

 7

Figure 3: An exemplar configuration of a NeuCube development system is shown, where modules M1, M2, M3
(a small SpiNNaker neuromorphic hardware board) and M4 are demonstrated

NeuCube v1.1 was a limited trial version containing only Module M1.It is distributed as a

windows executable file.

NeuCube v1.2 was an unrestricted version containing only Module M1 with some

additional functionality. The unrestricted version does not have any software restrictions

on the size of the data. It is distributed as a windows executable file, while NeuCube v1.3

and further versions (beyond 2016) will include additional functionalities.

NeuCube v1.3 is an unrestricted version containing Module M1. This module consists of

several bug fixes and a significantly faster implementation of the learning algorithms.

NeuCube v2.1 will contain the Modules M1 and M4, while NeuCube v2.2 and further versions will

have new functionalities added.

NeuCube v3.1 will contain the Modules M1, M4, M2 and M3 (optional), while NeuCube v3.2 and

further versions will have new functionalities added.

NeuCube v4.1 will contain all modules shown in Figure 2, while further versions of it will have

new functionalities added.

This manual briefly summarises the functionalities of the NeuCube-M1 module that constitutes

the NeuCube v1.3.

NeuCube v1.3 User Manual

 8

2. NEUCUBE INSTALLATION
The NeuCube-M1 distribution can be installed and run on a Windows 7/Windows 8/windows 10

Operating System. A minimum memory of 4 GB is recommended. An internet connection is

required for the installation.

NeuCube-M1 can be installed by running the NeuCube(v1.3)_installer.exe from the distribution

folder. Double clicking on NeuCube(v1.3)_installer.exe runs the installer. The steps are self-

explanatory and can be performed following the step by step procedure. If you do not have the

Matlab Compiler Runtime (8.2/2013b) already installed on your computer, the installer

automatically downloads and installs the Matlab Compiler Runtime (MCR). MCR is a large file

(approx. 486 MB), and it may take some time (depending on the internet connectivity) for the

installation procedure to be completed. Once the installation is completed, you can run the

NeuCube-M1 module by double-clicking NeuCube from the ‘Start’ menu or from your Desktop.

Note: In case you get an “Could not fiend version 8.2 of the CMR. Attempting to load

mclmcrrt8_2.dll. Please install the correct version of the MCR. Contact your vendor if you do not

have an installer for the MCR.” Error, please manually add the path of the Matlab compiler

runtime (traditionally located in C:\Program Files\MATLAB\MATLAB Compiler

Runtime\v82\runtime\win64) to your user or system path.

NeuCube v1.3 User Manual

 9

3. NEUCUBE USER INTERFACE

Figure 4: NeuCube-M1 module User interface and panel description

Figure 4 shows the user interface of the NeuCube-M1 module. It consists of seven different panels,

which are:

1. Menu bar: The menu bar consists of several options for intra- and inter-modular

information and data exchange, visualisation of the 3D reservoir, and the output layer.

2. Algorithm controls: Consists of controls to initiate the stepwise learning process in the

design and the testing of an STDM.

3. Information panel: It is used to display information during a NeuCube model

prototyping.

4. Dynamic visualisation controls: This panel consists of a set of UI controls which can be

used to visualise the learning of the SNNcube (shown in panel 6) in real time during the

‘train cube’ phase of the process.

5. Miscellaneous tools: This panel initiates different functionalities, such as the network

analysis toolbox, parameter optimisation, and cross validation.

6. Visualisation panel: This panel visualises the behaviour of the 3D SNNcube showing

connections and neuronal spiking activity.

7. Output layer visualisation panel: This panel is used to visualise the behaviour of the

output neurons created as a results of supervised training for classification or regression

tasks.

NeuCube v1.3 User Manual

 10

4. DATA AND INFORMATION EXCHANGE
NeuCube supports several data formats which are used for intra- and inter-modular data

exchange. Your choice of file format will influence the efficiency of NeuCube-M1.

The NeuCube-M1 interacts with the external environment using different data descriptors. The

NeuCube architecture defines four types of data descriptors:

1. Dataset descriptor: The Dataset descriptor consists of the data (and the metadata) that is

learned and analysed. In the majority of the cases, a dataset consists of a set of time series

samples and the output label/value for the sample set. It is also possible to add

miscellaneous information like ‘feature name’, ‘encoding method’ and other Meta

information in the dataset.

2. Cube descriptor: The Cube descriptor contains all information about the structure and

learning in NeuCube. Some of the most important information stored in this descriptor

are the spatial information of the input and reservoir neurons, structural information of

the SNNcube, and the state of the SNNcube during learning.

3. Parameter descriptor: The parameter descriptor stores all the user defined parameters

including hyper-parameters of data encoding algorithms, SNNcube training algorithms,

and classifier training algorithms.

4. Result descriptor: The Result descriptor stores information about the experimental

results produced by NeuCube.

Descriptor type: The supported
file formats are summarised in
Table 1.

mat JSON CSV

Dataset Yes Yes Yes

Cube Yes Yes No

Parameter Yes Yes No

Result Yes No Yes

Table 1: Supported file format for descriptors

NeuCube-M1 supports three different file formats, mat (binary), JSON (structured text) and CSV

(comma separated plain text). Table 1 shows the supported file formats for each of the descriptor

type. As a heuristic rule, the mat format is recommended for achieving fast I/O. The CSV files are

the recommended choice for the import/export of datasets and results. The JSON format is

recommended for inter modular communication. The Dataset, Cube, and Parameter files can be

imported or exported during the lifetime of the experiments run in NeuCube-M1.

http://au.mathworks.com/help/matlab/import_export/view-the-contents-of-a-mat-file.html
http://json.org/
https://en.wikipedia.org/wiki/Comma-separated_values

NeuCube v1.3 User Manual

 11

5. PROROTYPE MODEL DESIGN AND TESTING, ILLUSTRATED WITH A

DEMO PROBLEM
This section demonstrates the stepwise creation of a NeuCube prototype model design and

testing. The data files that are used in this demo can be found in the folder data →

wrist_movement_eeg.

Dataset description
The dataset used in this DEMO corresponds to a study participant moving their wrist either to the

left or to the right, or holding their hand straight. This task was performed on a single subject and

EEG data was sampled from 14 channels at a sampling rate of 128 Hz. 20 independent trials of 1

second duration were collected while the subject performed each movement task. The demo
dataset consists of the following files:

 Sample files (mandatory): Each sample file (sam1.csv, sam2.csv, sam3.csv … sam60.csv in

the example) contains data of one sample. Each sample corresponds to a data arranged in

a matrix. The rows correspond to ordered time points, and the columns represent the

features (in this case, EEG channels). Sample files in any user defined dataset should

follow the following naming convention:

o They should begin with the keyword ‘sam’ followed by a number which defines

the order of the samples.

o This can be followed by a __ character after which you can use any text.

o The file must have a csv extension.

 Target file (mandatory): The target file stores the class label of each sample in a column,

ordered in the same sequence as the numbers of the sample files. It should begin with the

keyword ‘tar’ and have a csv extension. In this demo, the target file is called

tar_class_labels.csv. A data folder should contain only one target file.

 SNNcube coordinate file (optional): This file describes the spatial coordinates of the

neurons in the SNNcube. Every row in the SNNcube coordinate file contains the x, y, and

z coordinates of a neuron. This file does not need a special name, but it has to be in csv

format. In this demo, the brain_coordinates.csv file defines the coordinates of the spiking

neurons according to the Talairach brain template; a template that makes it possible to

represent any person’s brain data in a standardised way. In this demo we use 1471

spiking neurons in the SNNcube representing 1cm3 spatial resolution.

 Input coordinate file (optional): This file describes the spatial location of the input
neurons (features). Just like the SNNcube coordinate file, every row in the input

coordinate file contains the x, y, and z coordinates of an input neuron. Again, it does not

have to follow any naming conventions except for being a csv file. However, it is important

to make sure that the input coordinates are a subset of the cube coordinates, so that they

can be located in the cube and assigned their special role as input neuron. In this demo,

the eeg_mapping.csv file is used as input coordinate file.

 Feature name file (optional): This file contains the names of the input features. In this

example, it would contain a list of EEG channel names. This file should be a simple txt file

with each line containing the feature name in the same order as they are used in the

sample files. That way, it is easier to identify the input features during later analysis

stages.

When creating your own set of files to use with the NeuCube, make sure they follow the same

general structure of the required files as described above. Only the sample files and the target file

have to be in the same folder, as they represent one dataset. The neuron coordinates and the

feature names can be saved in another location on your computer for use in other projects.

NeuCube v1.3 User Manual

 12

Loading a dataset
NeuCube uses a stepwise process that begins by loading data from the File menu. For this you can

choose between three options: classification, regression, or recall of an already trained model on

new data. As shown in Figure 5, data can be loaded from the menu bar by clicking file → load

dataset → classification/regression/recall.

Figure 5. Loading a dataset

This example is a classification task, hence we click on ‘classification’. This brings up the dialogue

box shown in Figure 6. Click the ‘browse’ button to browse to the data folder containing the

sample and target files. As described above, the data folder should contain one or more sample

files and one target file. Please select the ‘wrist_movement_eeg’ folder and press ‘OK’ to load the

sample into the NeuCube-M1 environment. Figure 7 shows how the metadata of the DEMO

dataset is displayed in the information panel after the data was loaded successfully.

Figure 6: dataset parameters

NeuCube v1.3 User Manual

 13

Figure 7. Information panel after data loading

In NeuCube v1.3 the size of each of the input data samples (the length of the temporal data points,

or the number rows in a sample file) is fixed. For example, in this demo each sample is 128 time

points long. However, in principle the NeuCube approach allows for samples of variable time

length, for a flexible number of input variables (features) used in each sample, and for missing

values. These additional options will be implemented in the next versions of the NeuCube v1.x.

Data encoding
The next step after data loading is to encode the real-value input data into trains of spikes, which

will be used by the learning algorithms to learn spike patterns in the SNNcube (unsupervised

learning), and after that also in the output module (classifier/regressor). Clicking the ‘Encode

Spike’ button generates a new UI panel as shown in Figure 8. This panel is used as follows:

1. Choose the encoding algorithm: NeuCube-M1 implements different encoding methods,

which can be chosen from the ‘Encoding Method’ dropdown menu. The hyper-parameters
like ‘Spike Threshold’, ’Window Size’ etc. can be tuned for the chosen algorithm.

2. Choose dataset split: This panel is also used to specify the random split of the dataset for

training and validation (Training Set Ratio). The ‘Training Time Length’ and ‘Validation

Time Length’ parameters define the percentage of the temporal length of the samples

used for training and validation correspondingly (e.g. 0.8 means 80%; 0.7 means 70%,

etc.). This option allows for a testing to be done on shorter temporal samples, when the

model is expected to predict an event, for example based only on 70% of new input data.

3. Encoding visualisation: This panel is used for specifying options for data encoding

visualisation. NeuCube v1.3 supports visualisation of raw and encoded data for one

feature and one sample.

In this demo, the default values can be used. Please press ‘OK’ to encode the data. After

completion, the data encoding is visualised in the visualisation panel as shown in Figure 9. The

graph on top shows the raw input data for the chosen sample and feature, and the bottom graph

shows the positive and negative spike trains generated from the raw data.

NeuCube v1.3 User Manual

 14

Figure 8. Encoding panel

Figure 9: Spike encoding visualisation

Cube initialisation
Once the data is encoded, the next step is to initialise the SNNcube, which can be done by clicking

the ‘Initialise Cube’ button. This evokes the cube initialisation panel as shown in Figure 10. The

subpanel highlighted in red is used to configure the properties of the neurons in the cube.

Coordinates of the neurons in the SNNcube can be defined automatically (using a graph method),

manually (by specifying how many neurons shall be created for x, y, and z coordinates), or by

NeuCube v1.3 User Manual

 15

loading the coordinates from a file (described above as SNNcube coordinate file). Select your

preferred option from the ‘Neuron coordinates’ dropdown menu. The subpanel highlighted in

blue shows the coordinates of the input neurons. These coordinates can be mapped automatically,

loaded from a file (described as Input coordinate file above), or defined manually by using the

‘given by’ dropdown menu.

The connection between the neurons in the SNNcube are initialised using the small-world

connectivity (SWC) approach, where a radius is defined as a parameter for connecting neurons

within this radius (SWC parameter), with small weight values attached to the connections which

are 80% positive. Another parameter, LDC (long distance connectivity), can be used to initialise

connections beyond the radius of SWC.

In this demo we load the mapping for the reservoir neurons using the ‘load from a file’ option and

choosing the file ‘brain_coordinates.csv’. Similarly, the input neuron mapping is chosen by loading

the file ‘eeg_mapping.csv’. Click ‘OK’ once the parameters are set for initialisation.

Once the initialisation is finished, the ‘3D visualisation’ panel shows the initialised cube as shown

in Figure 11. Clicking the ‘Show feature’ button shows the spatial location of the input neurons in

the 3D SNNcube.

Figure 10. SNNcube Initialisation and mapping panel

NeuCube v1.3 User Manual

 16

Figure 11. SNN cube after initialisation

Training of the SNN cube
The next step is the unsupervised training of the SNNcube that will create connections between

the neurons based on the input spikes. Clicking on ’Train Cube’ shows the UI for setting hyper-

parameters for the training as shown in Figure 12. The hyper-parameters have the following

meanings:

 Potential leak rate: This parameter defines the leak in membrane potential of a spiking

neuron when the neuron does not fire.

 Threshold of firing: This parameter defines the threshold membrane potential beyond

which the neuron fires a spike.

 Refractory time: This parameter defines the absolute time (in time units) during which

the neuron will not fire. This refractory period begins after a neuron has fired a spike.

 STDP rate: This parameter defines the learning rate of the STDP learning.

 Training round: Describes the number of iterations for unsupervised learning in the cube.

 LDC probability: Defines the probability of creating a long distance connection.

Once the hyper-parameters for the unsupervised learning are set, click ‘OK’ to start the

unsupervised learning. This step may take time based on the size of the dataset and the computer

platform used.

Figure 12. Training SNNcube panel

NeuCube v1.3 User Manual

 17

Dynamic visualisation of learning
The unsupervised learning process can be visualised dynamically while the system is learning, or

can be saved as a movie file for later usage and analysis by using the ‘dynamic visualisation’ panel

as shown in Figure 13. The visualisation can be displayed continuously or stepwise. The ‘visual

content’ dropdown list specifies the type of activity to be rendered, like ‘Neuron firing’, ‘Synaptic

evolution’, or ‘Weight changing’. The ‘Show Threshold’ option sets the minimum connection

weight for the connections to be shown.

Figure 13. Dynamic visualisation panel

Analysis of the cube
Once the unsupervised learning finishes, there are several options in NeuCube for connectivity

analysis and visualisation.

Analysis/visualisation of the SNNcube connectivity:

The final state of the cube at the end of learning can be analysed and visualised by clicking ‘View’

in the menu bar (Figure 14).

Figure 14. Module M1 visualisation menu

NeuCube v1.3 User Manual

 18

1. Clicking ‘Show Connection’ and choosing a threshold displays the connection above a

threshold value, as shown in Figure 15 for the demo dataset.

2. Clicking ‘Activation Level’ shows the membrane potential of the neurons. Figure 16 shows

the spike activation level of the neurons for the demo dataset. An explanation of the visual

elements used in each figure can be found in the information panel.

3. Clicking ‘Spikes Emitted’ shows a histogram of positive and negative spikes emitted by all

SNNcube neurons. Figure 17 shows the spike emission histogram generated for the demo

dataset.

4. The ‘Neuron Weight’ option allows the user to specifically choose a neuron ID and

visualise the connection weights of all neurons connected to the chosen neuron.

5. The ‘Spike Raster’ option plots a temporal raster plot of the training data. The raster plot

takes the sample number as input and generates the raster plot for the specific sample as

shown in Figure 18.

6. The ‘Spike Activity Playback’ option allows the user to dynamically visualise the spike

dynamics over time. Clicking on the ‘play’ button plays the spike activity from beginning

of the simulation till the end. The scrollbar can be used to see the spike activity in forward

or backward order in stepwise manner.

Figure 15. A snapshot of the connnections in the SNNcube after unsupervised learning. The connections
represent spatio-temporal relationships between input data variables over time.

NeuCube v1.3 User Manual

 19

Figure 16. Activation level of the neurons in the SNNcube after unsupervised learning. The brighter the
colour of a neuron, the higher its activation level is in terms of number of spikes emitted.

Figure 17: Positive and negative spike emission histogram for all the SNNcube neurons

NeuCube v1.3 User Manual

 20

Figure 18: Raster plot of sample 7 spike output by SNNcube

Figure 19: Spike playback panel.

NeuCube v1.3 User Manual

 21

Analysis through the ‘network analysis panel:

Analysis of the learned SNNcube network can be performed using the network analysis toolbox,

which is initiated by clicking the ‘Network Analysis’ button in the tools panel. Figure 20 shows

the UI for the network analysis panel. The network analysis toolbox offers several methods of

analysis, which are described in detail below:

Figure 20: Network analysis panel

 Neuron cluster analysis: This option is used to analyse clusters of neuron-surrounding
input neurons. The clustering of the neurons can be done by two methods.

o Connection weight: This is the synaptic weight between a pair of neurons. It is

adjusted during unsupervised learning to reflect the interaction between the

neurons. Figure 21 shows the clustering by connection weights for the learned

cube with the demo dataset.

NeuCube v1.3 User Manual

 22

Figure 21. Clustering by connection weights for each input variable that represents a cluster centre.

o Spike communications: This is the spike amount communicated between a pair of

neurons. Figure 22 shows the clustering by spike communications for the learned

cube with the demo dataset.

NeuCube v1.3 User Manual

 23

Figure 22. Clustering by spike communication

Another analysis option is to show the interactions between the neurons by choosing from the

‘analysis content’ dropdown and clicking the ‘Interaction’ button. Interactions are analysed using

the following metrics:

 Input interaction (total): Shows the total interaction between the input neuron clusters

given by the cluster analysis (connection weight/spike communication) as explained

previously.

 Input interaction (average): Shows the average interaction between the input neuron
clusters given by the cluster analysis (connection weight/spike communication) as

explained previously.

 Neuron proportion: Shows the percentage of neurons in the cube which belong to an input
neuron cluster.

Figure 23 shows the average one-to-one interaction between the input neurons based on average

input interaction for the demo dataset. Thicker lines indicate more interaction.

NeuCube v1.3 User Manual

 24

Figure 23. Spike interaction based on 'average input interaction'

Information route analysis: This option is used for analysing the information propagation route

of the spikes. This analysis is based on the concept of a rooted tree structure. A rooted tree is

defined as a directed tree having a single root node (neuron). Figure 24 shows an example of a

rooted tree. The neuron in yellow is the root neuron. A neuron’s ‘parent neuron’ is defined as a

neuron which is one step higher in hierarchy and lying on the same branch. For example, the

parent neuron of any green neuron is the red neuron to which it is connected. Similarly a ‘child

neuron’ is defined as a neuron which is one step lower in hierarchy and lying on the same branch.

For example, the child neuron of any red neuron is the green neuron to which it is connected.

Figure 24: Rooted tree structure

The type of information to be shown can be chosen by selecting an option from the ‘trace with’

dropdown menu. Different methods of analysis are available:

 Max spike gradient: This visualisation shows a tree rooted by the input neuron, where a

child neuron is chosen to be connected to a parent neuron if it receives spike from its

parents.

 Spreading level: This visualisation shows a tree from the input neuron to its
neighbourhood which reflects the spreading of the spikes. The ‘level number’ parameter

NeuCube v1.3 User Manual

 25

defines the neighbourhood of spread. For example, setting this parameter to 2 will show

the spike distribution from the input neuron to two layers of neighbouring connected

neurons. Figure 25 shows an example of spreading visualisation for input neuron/feature

3 with a spread up to level 3.

Figure 25. Information route analysis traced by 'spreading level' for input neuron number 3

 Information amount: This visualisation shows a tree rooted by the input neuron where a
child neuron is chosen to be part of the tree only if it receives a minimum percentage of

spikes from its parent neuron. The percentage is specified as decimal value (0.1 means a

minimum of 10% spikes). Figure 26 shows a neuronal cluster from input neuron number

5, where every child neuron has received at least 10% of spikes from the parent neuron.

NeuCube v1.3 User Manual

 26

Figure 26. Information amount cluster for input neuron 5.

Training classifier
This step trains a model that takes the output spikes of the trained SNN cube as input and

performs supervised learning to perform classification and regression. The UI for training

classifier is started by clicking the ‘Train Classifier’ button. Figure 27 shows the train classifier

panel in which the classification algorithm and corresponding hyper-parameters can be defined.

For this demo the default parameter set is kept. Click ‘OK’ to start supervised learning. As for the

unsupervised training of the cube, this step can be dynamically visualised (see page 17).

Figure 27. Classifier/regressor training panel

NeuCube v1.3 User Manual

 27

Verify classifier
This step is used to verify the accuracy of the model built by deSNN learning. Clicking on ‘Verify

Classifier’ begins the verification procedure. At the end of verification the output result is

visualised graphically as shown in Figure 28. The 2D plot shows the sample ID against the class

label, and the legend describes the actual and predicted class labels. The ‘result information’ table

lists these labels for each sample. Overall and class-wise accuracies are shown at the end. The

true and predicted class labels can be exported to a csv file by clicking ‘Export Results’.

Figure 28. Output classification result panel for the verification of the classifier on the testing data.

Output layer visualisation
This option can be accessed through the menu item ‘Classifier’ as shown in Figure 29. It offers five

methods for analysis as described below: The ‘output layer visualisation’ panel can be controlled

NeuCube v1.3 User Manual

 28

from the ‘classifier’ tab from the menu bar as shown in Figure 29. Each option under ‘classifier’

tab is described below:

Figure 29. Output layer visualisation control

 True label: This option displays the true

(actual) label of each sample by using a

different colour for each class. The samples

are ordered by their number (see description

of Sample files) from bottom to top. Figure 30

shows the true labels for the demo dataset.

The first sample corresponds to the first blue

neuron at the bottom, and the last sample

corresponds to the top red neuron. A red dot

represents class 1, a green dot class 2, and a

blue dot class 3.

Figure 30. True labels shown in output layer

NeuCube v1.3 User Manual

 29

 Predicted label: This option displays the
predicted label of each sample from the

test/validation data set in the same way as for

the true labels. Figure 31 shows the predicted

labels for the demo dataset, where red is

predicted class 1, green is predicted class 2, and

blue is predicted class 3. In the demo we used

50% of the data (30 samples, 10 of each class)

for training and 50% for testing (This was

selected in the initialisation menu – Train Set

Ratio parameter). In the example, two test

samples that belong to class 1 (red) are

wrongly classified into class 2 (green).

Figure 31. Classification output results after
testing the trained classifier.

NeuCube v1.3 User Manual

 30

 deSNN potential: This displays the
membrane potential of the output neuron

per sample. As shown in Figure 32, a brighter

neuron signifies higher potential.

Figure 32. deSNN membrane potential of each
output neuron in the output layer after supervised

training

 Connection strength: This option enables the user to visualise the strength of connections

between the SNNcube neurons for every output neuron (sample). As shown in Figure 33,

clicking on one of the neurons in the output layer shows the connection strength of the

neurons in the cube for that particular output neuron. Brighter neurons are more strongly

connected than darker neurons.

NeuCube v1.3 User Manual

 31

Figure 33: Connection strength for the fourth sample (highlighted by the big neuron in the output layer)

 First spike order: This option enables the user to visualise the spiking order of the neurons

in the SNNcube for each output neuron (sample). As shown in Figure 34, clicking on one

of the neurons in the output layer shows the firing order of the neurons in the cube for

that particular output neuron. Brighter neurons fire earlier than darker neurons.

NeuCube v1.3 User Manual

 32

Figure 34. Firing order for the second sample (highlighted by the big neuron in the output layer)

Cross validation and parameter optimisation
Cross validation is a function that is wrapped around the unsupervised and supervised learning.

At every fold the cube is initialised, trained unsupervised, and trained supervised with different

combinations of data. Cross validation can be performed by clicking on the ‘Cross Validation

button’ in the tools panel. This shows the popup window in Figure 35. The fold number parameter

defines the number of iterations of training and validation cycles.

Figure 35. Cross validation UI

Parameter optimisation can be used to search for an optimal set of hyper-parameters that

minimises the test accuracy of the model (either for classification or for regression). The

computational time for parameter optimisation depends on the number of parameters to be

NeuCube v1.3 User Manual

 33

optimised and the size of the NeuCube model. Clicking on ‘Param Optimisation’ initialises the UI

for parameter optimisation (Figure 36).

Figure 36. Parameter optimisation panel

Parameter optimisation in NeuCube M1 can be performed using various methods, such as grid

search, Genetic Algorithms, Differential Evolution, Quantum Inspired Evolutionary Algorithms,

PSO, etc. In NeuCube v1.3, two methods (grid search and Genetic Algorithms) are implemented

and can be chosen from ‘Optimisation Tool’ dropdown menu. NeuCube v1.3 offers five

parameters for optimisation; however the later release will include more parameters for

optimisation.

1. Exhaustive grid search: This is an exhaustive search method using a grid-based

combination of parameters. The ‘Optimisation parameters’ subpanel can be used to

specify the parameters to be optimised by enabling the checkboxes. For example, in

Figure 36 the three parameters STDP Rate, Mod, and Drift were chosen to be optimised.

Each parameter is searched within a range, specified by the ‘Minimum’ and ‘Maximum’

values. The ‘step number’ specifies the number of steps to be used for moving from

minimum to maximum. Once these parameters are set, clicking ‘Start’ begins the

parameter optimisation by grid search.

2. Genetic algorithm (GA): This is a nature inspired algorithm that employs the workings

of genetic recombination in living beings as they happen in nature. Choosing this option

enables the parameters for genetic algorithms at the bottom of the window. Similar to

exhaustive grid search, the parameters can be chosen by checking the checkboxes, and

bounds of the parameters can be set by using ‘maximum’ and ‘minimum’ values. Contrary

to exhaustive search, though, GA is not a fixed-step approach and it does not require the

NeuCube v1.3 User Manual

 34

step number to be specified. The following parameters can be used to modify the

behaviour of the GA:

 Crossover function: specifies how the genetic algorithm combines two

individuals, or ‘parents’, to form a crossover ‘child’ for the next generation. An

individual represents the set of parameters (called here genes) of a NeuCube

model (called ‘chromosome’).

o Scattered: creates a random binary vector and selects the parameters

(genes) where the vector is a 1 from the first parent, and the genes where

the vector is a 0 from the second parent, and combines the genes to form

a child’s chromosome.

o Single point: chooses a random integer n between 1 and the number of

variables and then

 Selects vector entries numbered less than or equal to n from the

first parent.

 Selects vector entries numbered greater than n from the second

parent.

 Concatenates these entries to form a child’s chromosome vector.

o Double point: chooses a random integer n between 1 and the number of

parameters and then:

 Selects vector entries numbered less than or equal to n from the

first parent.

 Selects vector entries numbered greater than n from the second

parent.
 Concatenates these entries to form a child vector.

 Selection function: specifies how the genetic algorithm chooses parents for the
next generation.

o Stochastic uniform: lays out a line in which each parent corresponds to a

section of the line of length proportional to its scaled value. The algorithm

moves along the line in steps of equal size. At each step, the algorithm

allocates a parent from the section it lands on. The first step is a uniform

random number less than the step size.

o Remainder: Remainder selection assigns parents deterministically from the

integer part of each individual's scaled value and then uses roulette selection

on the remaining fractional part.

o Uniform: Uniform selection chooses parents using their evaluated fitness

value (i.e., the classification accuracy of the NeuCube model). Uniform

selection is useful for debugging and testing, but is not a very effective search

strategy.

o Roulette: Roulette selection chooses parents by simulating a roulette wheel

in which the area of the section of the wheel corresponding to an individual

is proportional to the individual's expectation. The algorithm uses a random

number to select one of the sections with a probability equal to its area.

o Tournament: Tournament selection chooses each parent by choosing

Tournament size players at random and then choosing the best individual out

of that set to be a parent.

 Population size: specifies how many individuals (NeuCube models) will be
created and tested for fitness at each generation. With a large population size, the

genetic algorithm searches the solution space more thoroughly, thereby reducing

the chance that the algorithm returns a local minimum that is not a global

NeuCube v1.3 User Manual

 35

minimum. However, a large population size also causes the algorithm to run for

longer.

 Generation number: specifies the maximum number of generations for the genetic

algorithm to run.

 Crossover fraction: specifies the fraction of the next generation, other than elite
children, that are produced by crossover.

 Elite count: specifies the number of individuals that are guaranteed to survive to
the next generation. Set Elite count to be a positive integer less than or equal to

the population size.

Figure 37 shows an example plot of fitness value (error) vs number of generations. It can be

clearly seen how the model accuracy increases over time (generation).

Once the optimisation method and parameters are chosen, clicking ‘Start’ runs the parameter

optimisation. During this process the running time and estimated time remaining for the

optimisation can be visualised in information panel as shown in Figure 38. This is dynamically

updated periodically. At the end of parameter optimisation, the best parameters (stored as a

Matlab file) and the log file (stored as a text file) inside your current directory of execution (If you

are executing NeuCube from desktop it will be saved on desktop). The matlab parameter file can

be used and loaded into the NeuCub-M1 environment later. Optionally, you can also use the log

file to capture the best parameters.

Figure 37. Example of parameter optimisation of a NeuCube model for classification using a GA optimiser.
The classification error of the model (related to fitness) is decreasing with every generation of the GA where

different parameter values are selected for the model.

NeuCube v1.3 User Manual

 36

Figure 38: Example of parameter optimisation running in NeuCube-M1. The information panel shows the
total time elapsed and estimated remaining time for the optimisation

Exporting statistics and results
It is possible to export some information as numbers for further analysis by clicking ‘Statistics’ in

the menu bar as shown in Figure 39. It is possible to download SNNcube connection weights,

output connection weights, SNNcube neuron activation levels, and spike emission statistics by

clicking ‘Cube Weight’, ‘Outlayer Weight’, ‘Activation Level’ and ‘Spike Emitted’, respectively. The

statistics are exported as csv files to a location specified by the user.

Figure 39: Statistics options

NeuCube v1.3 User Manual

 37

6. EXAMPLE OF REGRESSION ANALYSIS
A demo dataset for regression analysis can be found in the folder data → share_price. This dataset

consists of 50 samples. Each sample consists of 100 timed sequences of daily closing prices for

six different shares (Apple Inc., Google, Intel Corp, Microsoft, Yahoo, and NASDAQ). The target

values representing the closing price of NASDAQ at the next day are arranged in a column in the

target file. For dataset like this financial dataset that does not have any natural spatial ordering,

NeuCube automatically assigns spatial location based on a graph matching algorithm. Hence, this
dataset does not require any additional coordinate files. Data can be loaded from File → Load data

→ Regression by choosing the financial_dataset folder. Once the data is loaded, the steps of the

algorithm can be performed as discussed in section 5. For initialisation of the SNNcube, choose

the options ‘Automatically’ and ‘Graph matching’ from the dropdown menus ‘Neuron

Coordinates’ and ‘Given By’, as shown in Figure 40.

Figure 40: Initialisation options for regression DEMO

Figure 41 shows the regression result produced by NeuCube-M1 on the demo regression dataset.

The graph plots the true and predicted value of the validation samples. It also provides the Mean

Squared Error (MSE) and Root Mean Squared Error (RMSE) as measures of performance on the

validation set.

NeuCube v1.3 User Manual

 38

Figure 41: Regression result panel

NeuCube v1.3 User Manual

 39

7. RECALL
The NeuCube-M1 module can be used to perform recall on new samples. For the purpose of recall,

the following resources are necessary:

1. Data Folder: A dataset for recall should only have a set of samples in one folder. If a target

file is present in the folder, the software ignores it.

2. Cube file: Recall requires a cube file. The cube file contains the description of the NeuCube

model. A cube file can be exported from the File menu → save NeuCube after the classifier

has been trained.

3. Parameter file: Recall requires the parameter file used during training of the model. A

parameter file can be exported from the File menu → save Parameter after the classifier

has been trained.

A recall operation can be performed in following steps:

1. Load the recall data from the File menu → Load Data → Recall.

2. Once the dataset is successfully loaded, perform the spike encoding step by clicking

‘Encode Spike’.

3. Load the cube and the parameter file saved previously from the File menu using the

entries ‘Load NeuCube’ and ‘Load Parameter’, respectively.

4. Click on ‘Verify Classifier’ to predict the output on the recall samples.

NeuCube v1.3 User Manual

 40

8. REFERENCES
1. N. Kasabov et al, Design methodology and selected applications of evolving spatio- temporal data

machines in the NeuCube neuromorphic framework, Neural Networks, 2015
2. Kasabov, N. Evolving connectionist systems for adaptive learning and knowledge discovery:

Trends and Directions, Knowledge Based Systems, 2015, (2015),
http://dx.doi.org/10.1016/j.knosys.2014.12.032.

3. Elisa Capecci, Grace Y. Wang , Nikola Kasabov, Analysis of connectivity in a NeuCube spiking
neural network trained on EEG data for the understanding and prediction of functional changes
in the brain: A case study on opiate dependence treatment, Neural Networks, (2015),
http://dx.doi.org/10.1016/j.neunet.2015.03.009.

4. Maryam Gholami Doborjeh, Grace Y. Wang, Nikola Kasabov, A Neucube Spiking Neural Network
Model for the Study of Dynamic Brain Activities during a GO/NO_GO Task: A Case Study on Using
EEG Data of Healthy Vs Addiction Treated Subjects, IEEE Trans. NNLS, submitted, 2015.

5. Nikola Kasabov, Maryam Gholami Doborjeh, Spatio-Temporal Brain Data Mining with a NeuCube
Evolving Spiking Neural Network Model on the fMRI Case study, IEEE Transactions of Neural
Networks and Learning Systems, submitted 2015.

6. Enmei Tu, Nikola Kasabov, and Jie Yang, Mapping Temporal Variables into the NeuCube Spiking
Neural Network Architecture for Improved Pattern Recognition, Predictive Modelling and
Understanding of Stream Data, IEEE Transactions of Neural Networks and Learning Systems,
submitted, 2014Kasabov, N., E.Capecci, Spiking neural network methodology for modelling,
classification and understanding of EEG spatio-temporal data measuring cognitive processes,
Information Sciences, 294, 565-575, 2015, DOI: 10.1016/j.ins.2014.06.028, 2014..

8. Kasabov, N. NeuCube: A Spiking Neural Network Architecture for Mapping, Learning and
Understanding of Spatio-Temporal Brain Data, Neural Networks vol.52 (2014), pp. 62-76,
http://dx.doi.org/10.1016/j.neunet.2014.01.006

9. Tu, E., Cao, L., Yang, J., & Kasabov, N. (2014). A novel graph-based k-means for nonlinear
manifold clustering and representative selection. Neurocomputing.
doi:10.1016/j.neucom.2014.05.067

10. Kasabov, N., Feigin, V., Hou, Z. -G., Chen, Y., Liang, L., Krishnamurthi, R., Parmar, P. (2014).
Evolving spiking neural networks for personalised modelling, classification and prediction of
spatio-temporal patterns with a case study on stroke. Neurocomputing, 134, 269-279.
doi:10.1016/j.neucom.2013.09.049

11. N. Murli, N. Kasabov, and B. Handaga, Classification of fMRI Data in the NeuCube Evolving
Spiking Neural Network Architecture, Proc. ICONIP 2014, Springer LNCS, 2014..

12. M. G. Doborjeh, E. Capecci and N. Kasabov, Classification and Segmentation of fMRI Spatio-
Temporal Brain Data with a NeuCube Evolving Spiking Neural Network Model, Proc. SSCI, IEEE
Press, 2014.

13. E. Tu, N. Kasabov, M.Othman, Y. Li, S.Worner, J.Yang and Z. Jia, NeuCube(ST) for Spatio-
Temporal Data Predictive Modelling with a Case Study on Ecological Data, Proc. WCCI 2014,
Beijing, 7-13 July 2014, IEEE Press.

14. D. Taylor, N.Scott, N. Kasabov, E.Capecci, E. Tu, N. Saywell, Y. Chen, J.Hu and Z.Hou, Feasibility
of NeuCube SNN architecture for detecting motor execution and motor intention for use in BCI
applications, Proc. WCCI 2014, Beijing, 7-13 July 2014, IEEE Press.

15. M. Othman, N.Kasabov, E.Tu, V. Feigin, R.Krishnamurthi, Z.Hou, Y. Chen and J.Hu, Improved
Predictive Personalized Modelling with the use of Spiking Neural Network System and a Case
Study on Stroke Occurrences Data, Proc. WCCI 2014, Beijing, 7-13 July 2014, IEEE Press.

16. Hu, J., Hou, Z., Chen, Y., Kasabov, N., & Scott, N. (2014). EEG-Based Classification of Upper-Limb
ADL Using SNN for Active Robotic Rehabilitation. In 2014 5th IEEE RAS & EMBS International
Conference on Biomedical Robotics and Biomechatronics (pp. 409-414). Sao Paolo, Brazil:
IEEE. doi:10.1109/BIOROB.2014.6913811

17. N. Kasabov, J.Hu, Y. Chen, N.Scott, and Y. Turkova, Spatio-temporal EEG data classification in
the NeuCube 3D SNN Environment: Methodology and Examples, Proc. ICONIP 2013, Springer
LNCS, vol.8228, pp.63-69.

http://dx.doi.org/10.1016/j.neunet.2015.03.009
http://dx.doi.org/10.1016/j.neunet.2014.01.006
http://dx.doi.org/10.1016/j.neucom.2014.05.067
http://dx.doi.org/10.1016/j.neucom.2013.09.049
http://dx.doi.org/10.1109/BIOROB.2014.6913811

NeuCube v1.3 User Manual

 41

18. Y.Chen, J.Hu, N.Kasabov, Z. Hou and L.Cheng, NeuroCubeRehab: A Pilot Study for EEG
Classification in Rehabilitation Practice Based on Spiking Neural Networks, Proc. ICONIP 2013,
Springer LNCS, vol.8228, pp.70-77.

19. N. Scott, N. Kasabov, and G.Indiveri, NeuCube Neuromorphic Framework for Spatio-Temporal

Brain Data and Its Python Implementation, Proc. ICONIP 2013, Springer LNCS, vol.8228, pp.78-

84..

20. N.Kasabov, V.Feigin, Z.Hou, Y.Chen, Improved method and system for predicting outcomes

based on spatio/spectro-temporal data, PCT patent, WO2015/030606 A2, priority date:

26.08.2013.

21. N.Kasabov, Data Analysis and Predictive Systems and Related Methodologies – Personalised

Trait Modelling System, PCT/NZ2009/000222, NZ Patent, USA Patent 13/088,306, Filed: April

15, 2011, Priority: Sept.2008.

22. Kasabov, N., & Hu, Y. (2010, December). Integrated optimisation method for personalised

modelling and case studies for medical decision support. International Journal of Functional

Informatics and Personalised Medicine, 3(3), 236-256. doi:10.1504/IJFIPM.2010.039123

http://dx.doi.org/10.1504/IJFIPM.2010.039123

NeuCube v1.3 User Manual

 42

9. DEVELOPER TEAM AND CONTACT PERSONS

Prof. Nik Kasabov, Director KEDRI – overall design of the NeuCube architecture.

Dr. Enmei Tu, Research Fellow – developer of the main NeuCube-M1 module.

Neelava Sengupta (nsengupt@aut.ac.nz) – contact person to report errors in the NeuCube

software and the Manual and also developer of module M1, M8 and M9.

Nathan Scott – developer of modules M2 and M3 for neuromorphic implementation.

Dr. Stefan Marks – developer of module M4 for 3D dynamic visualisation in a VR scenario.

Israel Espinosa Ramos – developer of module M6 for neurogenetic modelling.

Elisa Capecci – Co-developer of module M6 for neurogenetic modelling.

Vivienne Breen – Co-developer of module M7 for personalised modelling.

Maryam Gholami Doborjeh (mgholami@aut.ac.nz) – contact person for tutoring on NeuCube and

for EEG and fMRI data modelling.

Akshay Raj Gollahalli – Co-developer of Module M10.

Reggio Hartono – Co-developer of Module M10.

Joyce D’Mello (jdmello@aut.ac.nz) – KEDRI Admin Manager

Dr. Enrico Tronchin (etronchin@aut.ac.nz) – AUT Commercialisation Manager

Address for correspondence:

2 Wakefield Street, AUT Tower, 7th floor, KEDRI

Phone: +64 9 9219504;

Website: http://www.kedri.aut.ac.nz/neucube

mailto:nsengupt@aut.ac.nz
mailto:mgholami@aut.ac.nz
mailto:jdmello@aut.ac.nz
mailto:etronchin@aut.ac.nz
http://www.kedri.aut.ac.nz/neucube

NeuCube v1.3 User Manual

 43

10. ACKNOWLEDGEMENTS
The NeuCube development system is funded by the Auckland University of Technology SRIF fund

and partially by the MBIE of New Zealand for strategic alliances with China. The intellectual

property of NeuCube is owned by AUT. Other researchers who took part in the early development

of NeuCube and its pilot applications are: Nelson Chen, James Hu, Professors Z. Hou, J. Yang, V.

Feigin, D. Taylor, Dr. G. Wang, Anne Wendt, M. Othman, N. Murli, F. Alvi, M. Fanghella, W.

Bhattacharjee, L. Zhou, J. Weclawski and C. McNabb.

