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Al

Part of the interdisciplinary information sciences area that

develops and implements methods and systems that
manifest cognitive behaviour.

Main features of Al are: learning, adaptation,

generalisation, inductive and deductive reasoning,
human-like communication.

Some more features are currently being developed:

consciousness, self-assembly, self-reproduction, Al social
networks,....
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Overview

1. The evolution of Al methods: From early deductionism to
deep learning machines

2. The evolution of computing platforms to support Al
3. Applications of Al

4. Al in New Zealand

5. The future of Al

6. Selected references
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1. The evolution of Al methods:

From early deductionism to deep learning machines

Aristoteles (384-322 BC) was a pupil of Plato and teacher of Alexander the Great.
He is credited with the earliest study of formal logic. Aristotle introduced the theory of
deductive reasoning. :

Example:
All humans are mortal (i.e. IF human THEN mortal)
New fact: Socrates is a human

Deducted inference.: Socrates is mortal

Aristotle introduced epistermology which is based on the study of particular phenomena
which leads to the articulation of knowledge (rules, formulas) across sciences: botany,
zoology, physics, astronomy, chemistry, meteorology, psychology, etc. According to
Aristotle this knowledge was not supposed to change (becomes dogma)!

In places, Aristotle goes too far in deriving ‘general laws of the universe' from simple
observations and over-stretched the reasons and conclusions. Because he was perhaps
the philosopher most respected by European thinkers during and after the Renaissance,
these thinkers along with institutions often took Aristotle's erroneous positions, such
inferior roles of women, which held back science and social progress for a long time.
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The boom of symbolic Al:
Logic, rules and deductive reasoning
« Types of knowledge representation and reasoning systems:

— Relations and implications, e.g.:

« A-> (implies) B,
— Propositional (true/false) logic, e.g.:

« IF(Aand B) or CTHEN D
— Boolean logic (George Boole)
— Predicate logic: PROLOG
— Probabilistic logic:

» e.g. Bayes formula: p(A 'C))=p (C!TA).p(A)/p(C)
— Rule based systems
— EXxpert systems, e.g. MYCIN

Logic systems and rules are too rigid to represent the uncertainty in the
natural phenomena; they are difficult to articulate, and not adaptive to
change.
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Fuzzy Logic: Accounting for uncertainties in a human-like, linguistic form

. (L.Zadeh, 1965)

* Fuzzy logic represents information uncertainties
and tolerance in a linguistic form:

— fuzzy rules, containing fuzzy propositions;

— fuzzy inference

» Fuzzy propositions can have truth values between
true (1) and false (0), e.g. the proposition “washing
time is short” is true to a degree of 0.8 if the time is
4.9 min, where Shortis represented as a fuzzy set
with its membership function

* Fuzzy rules can be used to represent human
knowledge and reasoning, e.qg. “/F wash load is
small THEN washing time is short”. Fuzzy
inference systems: Calculate outputs based on
input data an a set of fuzzy rules

However, fuzzy rules need to be articulated in the first
instance, they need to change, adapt, evolve through
learning, to reflect the way human knowledge evolves.
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The Turing Test for Al

Can computers have general intelligence to communicate like humans?

Alan Turing (1912-1954) posed a question in
1950: Can machines think?

Then it was formulated as “Can machines play

imitation games?”, known now as the Turing

test for Al. It is a test of a machine's ability to
equivalent to, or A

indistinguishable from, that of a human,

evaluated by a human ( C on the diagram) .

The Turing test has been both highly influential and widely criticised. However,
it has become an important concept in the

The test though was too difficult to achieve without machine learning in an
adaptive, incremental way.
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Learning from data inspired by the human brain — the most sophisticated
product of the evolution as an information processing machine

Polyribosomes

Ribosomes
Golgi t (i
olgi appara us\ ]

M 4

< l

NI)J }. =

Membrane ~ / \
Microtubule 2SS
Bodrion } y

Smoéth ER < g

2
p /
I Synapse [
Axndendritic -

- Synaptic cleft -

Axonal terminal <~/

Node of Ranvier

N

- Myelin Shea (h

The brain (80bln neurons, 100 trillions of connections,
200 min years of evolution) is the ultimate
information processing machine

Three, mutually interacting, memory types:
- short term (membrane potential);

- long term (synaptic weights);

- genetic (genes in the nuclei).

Temporal data at different time scales:

- Nanoseconds: quantum processes;

- Milliseconds: spiking activity;

- Minutes: gene expressions;

- Hours: learning in synapses;

- Many years: evolution of genes.

A single neuron is a very sophisticated information
processing machine, e.g. time-; frequency-; phase-
information.

Can we make Al to learn from data like the brain?
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Early Artificial Neural Networks

« ANN are computational models that mimic the
nervous system in its main function of adaptive
learning and generalisation.

« ANN are universal computational models
« 1943, McCulloch and Pitts neuron
« 1962, Rosenblatt - Perceptron

« 1971- 1986, Amari, Rumelhart: Multilayer
perceptron

« Many engineering applications.

Input layer Hidden layer Output layer

« Early NN were ‘black boxes’ and also - once
trained, difficult to adapt to new data without
much ‘forgetting’.

O(n5)=0
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Adaptive neural networks for incremental learning and rule extraction
The neuro-fuzzy systems (no more the “black box curse”)

* As a general case, input and/or output variables
can be non-fuzzy (crisp) or fuzzy

* Fuzzy variables, e.g. Gaussian MF
rule(case)

A short Medium Tall ‘ nodes
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« Early works:

— Yamakawa (1992)
— EFuUNN, DENFIS, N. Kasabov, 2001/2002
* Incremental, supervised clustering

* Fuzzy rules can be extracted from a trained NN
and the rules can change (evolve) as further
training goes:

IF Input 1 is High and Input 2 is Low
THEN Output is Very High

nkasabov@aut.ac.nz




Example: Extracting adaptable fuzzy rules from medical data
(Mark Marshal, Song, Ma, McDonell and Kasabov, Kidney International, May 2005)

)| GER-ECOS DEMO, Mov. 2003 , KEDRI , AUT , NZ

File Function Help

GFR-ECOS: Evolving Medical Decision Support System
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Deep neural networks

Single depth slice
‘\ T "\'4‘,'\7'
/ 1. 0 E2ES:

000 4 0 BONSY 6

( )‘i)\__k‘jﬁ;-um- / -; : -

=~
>

T
\V

& @

nkasabov@aut.ac.nz




Deep convolutional NN in computer vision

Spatial features are represented (learned) in different layers of neurons
Fukushima's Cognitron (1975) and Neocognitron (1980) for image processing

Up
input
layer
(e:C;?rggtsi:)n ' edge recognition
extraction layer

Deep NN are excellent for vector-, frame-based data, but not much for temporal (or
spatio/spectro temporal data). There is no fime of asynchronous events learned in the
model; difficult to adapt to new data and the structures are not flexible. How deep
should they be? Who decides? (See Lecture 3 by Marcus Freen)
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Spiking Neural Networks can learn temporal patterns

Information processing principles in neurons

Ttlzg@t;? | and neural networks:
‘/N']  Spie — Trains of spikes
i === I L‘;’: refractory period - Tme, frec.|uerllcy and space s
i B — Synchronisation and stochasticity
| | O LL—p Binary events — Evolvability...

Spiking neural networks (SNN)
— Leaky Integrate-and-fire
- =—u (t) + RI (t) — Probabilistic model
— Neurogenetic model
They offer the potential for:
— Spatio-temporal data processing

— Bridging higher level functions and
“lower” level genetics

— Integration of modalities

SNN opened the field of brain-inspired
(cognitive, neuromorphic) computing.
“The goal of brain-inspired computing is to deliver a
scalable neural network substrate while approaching
fundamental limits of time, space, and energy,” IBM Fellow
Dharmendra Modha, chief scientist of Brain-inspired
Computing at IBM Research,

b
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The deep learning brain-like (neuromorphic, cognitive) spatio-temporal data

machine NeuCube

N.Kasabov et al, Improved method and system for predicting outcomes based on spatio/spectro-temporal data, PCT patent,
W02015/030606 A2, priority date: 26.08.2013; Kasabov, Neural Networks, vol.52, 2014, 62-76;
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How deep is the deep learning in the NeuCube brain-like architecture?

Creation of
deep neuronal
connections
during learning
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NeuCube as application development environment for deep learning of spatio-
spectro temporal data
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Machine learning inspired by Nurture (the brain)
and by Nature (Evolution)

Evolutionary computation: Learning through
evolution

« Species learn to adapt through genetic
evolution (e.g. crossover and mutation of
genes) in populations over generations.

« Genes are carrier of information: stability vs
plasticity
« Aset of chromosomes define an individual

e Survival of the fittest individuals within a
population

« Evolutionary computation (EC) as part of Al
IS population/generation based optimisation
method.

EC can be used to optimise parameters (genes)
of learning systems.

LR/
"a
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2. The evolution of computer platforms to support Al applications
From von Neumann to neuromorphic and quantum (inspired) architectures

- The von Neumann computer architecture
separates data and programmes (kept in the
memory unit) from the computation (ALU)
and the control. Using bits as stafic
information.

- Realised as:
General purpose computers;
Specialised fast computers: GPUs, TPUs
Cloud-based computing platforms
- A neuromorphic computational
architecture integrates data, programs
and computation in a SNN structure,
similar to how the brain works.

MEMORY HOI
BOTH DATA AND Pi

- A quantum (inspired) architecture uses
quantum bits, which are in a quantum
superposition between 1 and 0.

(c) www.teach-ict.com

Al models can be simulated using any of the
architectures (if available) but with various
efficiency.
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Cloud-based platforms for machine learning and Al application

development
They make it possible to rapidly build cognitive, cloud-based exploration applications
based on data. Such systems have been released by competing rivals for world
domination: Google, Facebook, Microsoft, IBM, Baidu, Amazon.
Example: The IBM Watson Discovery services
https://www.ibm.com/watson/developercloud/doc/discovery/index.html
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Useful, but limited set of methods, mainly for off-line data analysis.
Not suitable for processing streaming data.
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Neuromorphic hardware systems
Hodgin- Huxley model (1952)

Carver Mead (1989): A hardware model of an IF neuron;
Misha Mahowald (1963-1996): The first silicon retina

INI Zurich SNN chips (Giacomo Indivery, 2008 and 2012)

FPGA SNN realisations (McGinnity, UNT);

Silicon Retina

The IBM True North (D.Modha et al, 2016): 1mIn neurons — &
and 1 billion of synapses. I8 Neurons

The Stanford U. NeuroGrid (Kwabena Boahen et al), 1min :fnx';i;?t:’rryv

neurons on a board, 63 bln connections ; hybrid - analogue ; ;5 ¢ ¢ Silicon Cochlea
L 606000
/digital)

Silicon retina (the DVS) and silicon cochlea (ETH, Zurich)

Massive parallelism, high speed and low power
consumption.
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SpiNNaker

Furber, S., To Build a Brain, IEEE Spectrum, vol.49,
Number 8, 39-41, 2012.

« U. Manchester, Prof. Steve Furber

« General-purpose, scalable, multichip
multicore platform for the real-time
massively parallel simulation of large
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The next step in the Al evolution of methods, tools and platforms:

Quantum (inspired) computation?
Quantum information principles: superposition; entanglement, interference, parallelism
(M.Planck, A.Einstein, Niels Bohr, W.Heisenberg, E. Rutherford)

*  Quantum bits (qu-bits)

|'¥) =a|0)+ A1)

Quantum vectors (qu-vectors)

|:051 052‘... am:|
Al 2] | Pm

Quantum gates

of 414" =1

al (t+1) _|:COS(A6?) —sin(A0) | o/ (t)
Blt+1)| |sin(Ad) cos(A) || Bi(t)

Applications:

— Specific algorithms with polynomial time complexity for NP-complete problems (e.g.
factorising large numbers, Shor, 1997; cryptography)

— Search algorithms ( Grover, 1996), O(N'2) vs O(N) complexity)
— Quantum associative memories

Quantum inspired evolutionary algorithms and neural networks and quantum inspired
optimisation of deep learning machines are still in their infancies. Quantum computers — not
available yet.
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Applications of Al
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Al applications in medicine
Modelling and understanding the brain

Methodology
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Modelling brain fMRI data

A case study on a person’s data related to cognitive tasks.
A trained model reveals spatio-temporal functional connectivity that can be
analysed for a better understanding of brain cognitive functions.

Initial SNNc Seeing a Picture Reading a Sentence
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EEG and MEG data acquisition and modelling

(the 10-20 system of electrode placement)

Frontal lobe

Left hemisphere
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Predictive modelling of brain changes over time using EEG datra

Predicting progression of MCI to AD (in months) Predicting micro-sleeps (in seconds)
(with Morabito, Reggio di Calabria) (with R.Jones, U Canterbury)

(b) EEG sienal collected at #1. b)SNNcube connectivity based on pre-micro sleep event
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Brain Computer Interfaces (BCI)

BCls are interfaces that allow humans to communicate directly with computers or
external devices through their brains (e.g. EEG signals)

}7" N N
:(\(\"-\ L (WIS SR
\ il
; \

http://computer.howstuffworks.com 95% 125mSec (Kronegg ,2007)

nkasabov@aut.ac.nz www.kedri.info


mailto:nkasabov@aut.ac.nz
http://www.kedri.info/

BCI for robot control and neurorehabilitation
(D.Taylor, CASIA China)




BCI for interactive assistive devices and cognitive games

A  prototype  virtual A virtual environment to A virtual environment
environment of a hand control a quadrotor using  (3D) using Oculus rift DK2
attempting to grasp a  EEG signals. to move in an
glass controlled with environment using EEG
EEG signals. il e signals.




Al for recognition of emotional face expression
(with H.Kawano KIT Japan, Z.Doborjeh, ICONIP, Kyoto, 2016)

94.3 %
14ch EEG

14ch EEG
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Emotional (affective) computing

- Computer systems that can learn and express attitude/emotions.

- A motivation for the research is the ability to simulate . The machine
should interpret the emotional state of humans and adapt its behaviour to them,
giving an appropriate response for those emotions.

- Computer systems with a human face as an interface.

- Mark Sagar — ABI/UOA, uses a baby face - the Baby X
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Precision medicine and precision health
Building an optimal individual model from personal data and data from many persons to best predict outcome

for the person

Input STBD spike trains 30 Brain.like

v

for training

Personal static data vectors of all subjects

SNNcube

deSNN
classifier

Personal static data vector of xi

NeuCube Personalised Modelling Module Recall new STBD of Xi -
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Mobile devices to predict individual risk of events
(Stroke risk prediction from 1 to 11 days ahead, KEDRI and NISAN)

(N.Kasabov, M. Othman, V.Feigin, R.Krishnamurti, Z Hou et al - Neurocomputing 2014)

METHODS SVYM MLP KNN WKNN | NEUCUBE®

| day 55 30 40 50 95
earlier (%) | (70.40) (50,10) (50.30) | (70.30) | (90,100)

6 days 50 25 40 40 70
earlier (%) | (70,30) (20,30) (60,20) | (60,20) (70,70) | |
11 days 50 25 45 45 70
earlier (%) | (50.50) (30, 20) (60.30) | (60.30) (70,70)

BHIHPOIRL (2%
VNG 2 oLAR(11%)

TEMPDRY(13%)

03(26%) .
* SNN achieve better accuracy
 SNN predict stroke much earlier
than other methods
* New information found about the
TEMPMIN(25%) NO2(5%) e . .
pressURSZI™) predictive relationship of
() Neuron proportion based on spike fransmission variables
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Understanding human decision making
Modelling brain activities in Neuromarketing: Familiar (a) vs unfamiliar (b) object perception

Mapping

Brain processe

EEG data is recorded over time

Wl 11111

Spaike Trains

SNN cube ——deSNN Classifier — —oOutput—
|
. —)
: — == -
—% = s ' .
{ —, ‘ - b
=t === ) - .
A . -
: s s
% -
IS N

n=number of samples
ke number of classes
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Al in Bioinformatics: Detecting gene expression patterns

 DNA, gene and protein data
analysis:

- large data bases;

- data always being added
and modified;

- different sources of
Information

« Extracting patterns of gene

activity from data that

discriminate outcomes O T e —
« Cancer Ontology-Based DSS
« Markers and drug discoveries

 PEBL:



http://www.peblnz.com/

Computational Neurogenetic Modelling
Modelling dynamics of genes as part a brain computational model

CNGM as a SNN
GRN

By

@
/ GRN related to AD

M1/M3-mR; nR
p75NTR
B-amyloid \
inergic’ " / Inflammation/
Cholinergic' ,q.c)“¢ _
system IL-18 TNFa Cytokines

IL-1
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Al for audio-/visual information processing
Frame-based or spike-based approaches

Moving . Vision Sensor | Data Representation / | Computational

Transmission Model

Object / Entity

1
]
'
i
I
I
I
Camera i Frames
'
I
i
I
i
)
i
)

time

Spikes

il

Artificial Retina

i
!
|
|
|
!
i
|
S
I
i
I
i
]
!
|

Silicon Retina

Network of
I&F Neurons

@ Excitatory
@ Inhibitory

£2 S O CF Q)
O O O ® -— @
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Fast moving object recognition
- Autonomous vehicles
- Surveillance systems
- Cybersecurity
- Military applications

DVS Simulator (Python)
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Enhancing human prosthetics
Example: Enhancing visual prosthesis with description of obstacles and environment

recognised through the NeuCube SNN Al
(Chenjie Ge, N.Kasabov, Jie Yang — Shanghai JiaoTong U, Information Sciences, 2017)

Input Visual Prothesis ST Features NeuCube Architecture

W

nkasabov@aut.ac.nz
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Autonomous robots
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Driver assistance

» MSN.com - Hotmall, Outlo., * = s [BM Watson - Build Your C... * |/ # Conversation Service Demo x\v“ﬁu'r‘N'emork’seNlces' x | + lglw
{ 6 ) G) @  https)//conversation-demo.mybluemix.net C | Q Search ﬁ E e - L =

What can | ask?

like restaurants, gas stations and
restrooms,

stop at a gas station

| There are gas stations nearby.
Which one would you like to
drive to?

® |

assistan

-~

and
driver




Al In Finance

Automated trading systems (autonomous robots on the Internet)

Each sample consists of 100
timed sequences of daily closing
price of 6 different stocks
(Appel, Google, Intel; Microsoft,
Yahoo, NASDAQ)

The target values are the
closing price of NASDAQ at the
next day.

See demo on;

nkasabov@aut.ac.nz

|
|
|

14 7000
14 B792

14.8200
14 8018

Truth
Prediction

« [ )
FPrediction accuracy

MSE=0 01
RMSE=0.08

www.kedri.aut.ac.nz/neucube/
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Al for ecological data modelling and event prediction
Example: Predicting the establishment of harmful species based on temporal climate
data streams and SNN (with U Lincoln)

] ]
Phase |: Data Collection and Preprocessing > l Phase II: Encoding > I Phase lIl: Network Generation an,
N
(o]
s £y ANE
Temp Min WM’-WWI il | 1 J1ii 3
—_— o | 1 1 ~N
, , ki ety SN oL UMY 11111 1) Rersimani| 18
{Worldwide BcologlealDBth] . " gty e | [ @ @ T )
T s Al Pressure I s e i s e W e g i e = = . 2
Humisity PP %, i o It e, 1 T a, ° ~ . a »
—— SOIN RAG WA A b s’ W st At N P S 0 ] s * 1 1 ™ W »
DAy LONGUN b st et St s e » 1 1 3 L h . L4
T e Wind Spted Faemmrer s ot A N e N p ° ,. . .( Ly
Wind Dre;lM“‘“"""'-v.‘-.~..~~.-M""'\""'-w~,4 ol Ll LUl iy % L \
{ o . N/
Time Time . » gro—
\_ lin days) 5, (i ) d = . K
i N\ \ 'y »
Y A J
SNN Response Pattern SO
=1 = : == »
Species: Cevatitls capitats ¥ g T =13 . . . -
—— Spohlnvasian Risk: 87% R 1 g et o s oa . 2 2 >
—_— odinvasion fisk: 34% -—2 Eore il e g J il e 3!
Ainvasion Risk: 94% | e T (@ Vb VAT R
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Gt N Wl e 2% < .
imiasion Risk, 12% | g ) 5
Invasion Risk: 23% § 8
Expert | : ~ | €
Verification Knowledge Discovery Tme HPC Software 5
o N8 Implementation | =
L ! ~ v, g
Phase VI: Verification and Validation ] Phase V; Learning < Phase IV~
|
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Al for environmental multisensory streaming data modelling and event prediction
(Air pollution modelling, with UoA D.Williams and team)

v
’

NeuCube 3D spiking neural network map of southwestern British Columbia showing the Lower Fraser Valley network
of monitors with regional and government fixed monitors (dark green circles). Spatio-temporal relationships (lines)
and activity (light green circles) of ozone (05) (left cube) and carbon monoxide (CO) (right cube) concentrations can
be analysed simultaneously.
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Al for predictive modelling on streaming data in telecommunication, energy

and primary sectors
(a) Mobile calls prediction (TELECOM)
(b) Milk volume prediction (FONTERRA)
(c ) Wind energy prediction (project with DIT Ireland)

7000

Season 1
Season 2
Season 3 ||
Season 4

6000 -

5000
4000 - | IV
3000 [~ |

2000 '\

1000 J \

0 50 100 150 200 250
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Al for seismic data modelling. Can we predict earthquakes?
(with GNS M.Gerstenberger)

New Zealand National Seismograp‘h Network
i | |
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Predicting risk for earthquakes, tsunami, land slides, floods — how early and how accurate?
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4. Al in New Zealand: Research

* Rule based systems and associative memories for robotics:

— John Andrea (1927-)
— PURR-PUSS (Purposeful Unprimed Real-world Robot with Predictors Using Short Segments)
J. Andreae: Thinking with the Teachable Machine, Academic Press, 1977; also Imper. College Press,1998.

 Human-computer interfaces
— Mark Apperley (Massey and Waikato Universities)

* Neural networks, fuzzy systems and knowledge engineering
— N Kasabov Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, MIT Press, 1996
— N.Kasabov, Evolving connectionist systems, Springer 2003 and 2007

* Machine learning software (WEKA):

— lan Witten et al at Waikato
M Hall, | Witten, E Frank, , Kaufmann, 2011.

« Computer vision (AUT, Massey)

« Natural language processing (Otago)
« Evolutionary computation (Victoria)
 Robotics (UoA, AUT, Massey)

« Emotional computing (ABI/UoA)

» Distributed Al: UoA.

* General computer and information sciences: B.Cox and P.Sallis (Otago), B.Doran
(Auckland), T.Clear (AUT) and many others.
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Al in New Zealand: Some Applications

Brain data imaging and modelling: CBR/UoA (R.Faull), Otago.

Medical devices: ABI/UoA (P.Hunter).

Bioinformatics: Otago, UoA.

Neuroinformatics: AUT.

Cancer diagnostics: PEBL/Otago.

Healthcare - Personalised health risk prediction: Orion Health, AUT.
Weather forecast: NIWA, MetOceanSolutions.

Transportation and logistics: TRANZIT, Auckland Transport, RushDigital.
Precision agriculture — using drones: Massey, AUT, AgResearch.
Primary industry — milk volume prediction and transportation: Fonterra.
Finance - automated trading systems: EverEdge.

Neuromarketing — brick and mortar stores: AUT, UoA, Warehouse.
The Internet of Things: UoA, AUT.

Home robotics: UoA, Massey, AUT.

Neurorehabilitation — exoskeletons: RexBionix, ExSurgo Rehab, AUT.
Environmental hazards - predicting earthquakes: GNS, AUT.
Ecological hazards - predicting establishment of harmful species: Lincoln.
Autonomous vehicles: Canterbury, AUT.

Air quality modelling: UoA, BECA, Opus, Qrious, AeroQual, Air Quality.
Horticulture — fruit ripeness and market prediction: Zespri.
Aquaculture- fisheries: Aotearoa New Zealand, AUT, UoA.

Law: Goats Venture NZ.

Al Forum New Zealand. ’\J TOTLITT)
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INTERACT: Al for Big Data Technologies in New Zealand

* Cloud Computing

* Data Intensive
Platforms

* Internet of Things
Computing
Technologies

* Low Power
Processing

* Brain Interfaces
and Analytics

Health, Social
and Justice
System

* Hezlth Epidemiology

* Precision

Healthcare

* Social Data
Analytics

SELECTED APPLICATION —
DOMAIN PROJECTS ON BIG
DATA

*Iransdortatior

4" TECHNOLOGIESFORBIGDATA ™ ined

- DOMAIN SPECIFIC —— sunnort

Smart Cities,
; infrastructure

GENE“'%?‘R:';E;:?AO LOGIES “>S " and Business
* Deep learning/machine learning/adaptive
systems

*Neuro-computing

*Predictive modelling
* Real time processing

*Signal processing

*Image processing/computer vision

*Real time data stream processing
* Real time data stream analytics

*Real time data mining
* Data Visualisation

*Real time data visualisation

* HPC/distributed computing Geosciences and

* Precision

Agri-Tech

* Disaster
Forecasting and

Management

VIS Getem Environment
* Environmental
* Crime

Monitoring

informatics and
biosecurity and

evidence

2 conservation
efficacy
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5. The Future of Al

 Artificial General Intelligence?
— Machines that can perform any intellectual task that humans can do.
« Technological singularity?

— Machines become super intelligent that they take over from humans and develop on
their own, beyond which point the human societies collapse in their present forms,
which may ultimately lead to the perish of humanity.

« Or, a tremendous technological progress:
— Early disease diagnosis and disease prevention
— Robots for homes and for elderly (see Lecture 2 by Prof Hans Guesgen)
— Improved productivity
— Improved human intelligence and creativity

— Improved lives and longevity
« Stephen Hawking: “I believe there is no real difference between what can be achieved by a biological
brain and what can be achieved by a computer. Al will be able to redesign itself at an ever-increasing rate.

Humans, who are limited by slow biological evolution, couldn't compete and could be superseded by Al.
Al could be either the best or the worst thing ever to happen to humanity...”

The future is in the symbiosis between HI (Human Intelligence) and Al for the benefit
of the humanity, being at the same time aware of the potential risk for devastating
consequences if Al is misused (Ethics of Al, Lecture 4 by lan Watson)

o "
nkasabov@aut.ac.nz K1 )</



. and we can achieve this symbiosis through our Hl
Questions to address:

- Would improved Al help to improve our HI?

- Will reading books improve our |1Q? (Jim Flynn)
- Will mindfulness help?

- Will brain prosthetics help?

- Or we need to listen more often to Mozart’s music?

-
-
—

-

Why Mozart’s Music is
considered to stimulate
creativity? The answer may be
found through spectral analysis: xR o |

[fea— O Ao wmten | A0 WIE RSO - e b
B L R R I R B e R R o [ P e RO | e D L

W.Verrusio et al, The Mozart Effect: A
quantitative EEG study, Consciousness
and Cognition 35 (2015) 150-155

et | | O M Y PR e e ) e 0 T £ i oty | wege f sgee JE Canes
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The Knowledge Engineering and Discovery Research Institute (KEDRI)
Auckland University of Technology, New Zealand
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