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a b s t r a c t

This study introduces a quantum-inspired spiking neural network (QiSNN) as an integrated connectionist
system, in which the features and parameters of an evolving spiking neural network are optimized
together with the use of a quantum-inspired evolutionary algorithm. We propose here a novel
optimization method that uses different representations to explore the two search spaces: A binary
representation for optimizing feature subsets and a continuous representation for evolving appropriate
real-valued configurations of the spiking network. The properties and characteristics of the improved
framework are studied on twodifferent synthetic benchmark datasets. Results are compared to traditional
methods, namely a multi-layer-perceptron and a naïve Bayesian classifier (NBC). A previously used real
world ecological dataset on invasive species establishment prediction is revisited and new results are
obtained and analyzed by an ecological expert. The proposedmethod results in amuch faster convergence
to an optimal solution (or a close to it), in a better accuracy, and in a more informative set of features
selected.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Recently spiking neural networks (SNN) (Gerstner & Kistler,
2002; Izhikevich, 2003) have been developed as biologically plau-
sible connectionist models, which use trains of spikes for in-
ternal information representation. It was argued that SNN have
at least similar computational power than the traditional Multi-
Layer-Perceptronderivates (Maass, 1999). Nowadaysmany studies
attempt to use Spiking Neural Networks (SNN) for practical ap-
plications, some of them demonstrating very promising results
on solving complex real world problems. Substantial progress
has been made in areas like speech recognition (Verstraeten,
Schrauwen, & Stroobandt, 2005), learning rules (Bohte, Kok, &
Poutré, 2002), associative memory (Knoblauch, 2005), and func-
tion approximation (Iannella & Kindermann, 2005), just to name
a few. Based on Kasabov (2007) an evolving spiking neural net-
work was proposed and applied to audio-visual pattern recogni-
tion (Wysoski, Benuskova, & Kasabov, 2006, 2008). A similar type
of network was later used in the context of a taste recognition
task (Soltic, Wysoski, & Kasabov, 2008).
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With encouraging results, spiking neural networks were pre-
sented in the context of a feature selection problem (Schliebs,
Defoin-Platel, & Kasabov, 2009). In this work a binary state-
of-art optimization algorithm, namely the Versatile Quantum-
inspired Evolutionary Algorithm (vQEA) (Defoin-Platel, Schliebs, &
Kasabov, 2007), was combined with an Evolving Spiking Neural
Networks(eSNN) (Wysoski et al., 2006). Through implementing
quantum principles, vQEA evolves in parallel a number of
independent probability vectors, that may interact at certain
intervals with each other, forming a multi-model Estimation of
Distribution Algorithm (EDA) (Defoin-Platel, Schliebs, & Kasabov,
2009).
Following the wrapper approach, vQEA was used to identify

relevant feature subsets and simultaneously evolve an optimal
eSNN parameter setting. This extended architecture was referred
to as the Quantum-inspired SNN (QiSNN) framework. Applied
to carefully designed benchmark data, containing irrelevant and
redundant features of varying information quality, the QiSNN-
based feature selection led to excellent classification results and
an accurate detection of relevant information in the dataset.
The QiSNN framework was used on a case study of ecological

modeling (Schliebs, Defoin-Platel, Worner, & Kasabov, 2009).
Meteorological data, such as monthly and seasonal temperature,
rain fall and soil moisture recordings for different geographical
sites, were compiled from published results, and each global
site was labeled according to the presence or absence of the
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Mediterranean fruit-fly (a serious fruit pest). The study aimed
towards the identification of important features relevant for
predicting the presence/absence of this insect species. Results have
been compared to the classical Naïve Bayesian Classifier (NBC) and
obtained feature subsets were verified by an ecological expert.
In this study we want to extend the work presented in Schliebs

et al. (2009) by studying the QiSNN framework on two benchmark
and one real world problem. We will start our analysis by
introducing a novel combined optimization algorithm, which
allows us to explore heterogeneous search spaces simultaneously.
The method uses a binary representation for optimizing feature
subsets and a continuous representation for evolving appropriate
real-valued configurations of a spiking network. Altogether four
methods are here experimentally compared to each other:
QiSNN as presented in Schliebs et al. (2009), the enhanced
QiSNN using the combined optimization algorithm, a multi-layer
perceptron and a classical NBC. A comprehensive analysis of the
results obtained from the benchmarks experiments in terms of
consistency of selected feature subsets, classification accuracy,
computational complexity and evolution of parameters in the
QiSNN framework is presented. Furthermore, we will point out
some significant differences between QiSNN and its enhanced
version. Finally we revisit the ecological dataset used in Schliebs
et al. (2009) and new results are obtained and analyzed by an
ecological expert.
In the following sections first the QiSNN framework is sum-

marized. The novel continuous optimization method is introduced
and the simultaneous exploration of a binary and a continuous
search space is discussed. QiSNN is then experimentally studied,
followed by an analysis and discussion of the obtained results.

2. Framework and implementation of QiSNN

Based on our previous results on eSNN and quantum inspired
evolutionary algorithms (Benuskova & Kasabov, 2007; Defoin-
Platel et al., 2009; Kasabov, 2007; Wysoski et al., 2008), here
we propose and explore an integrative quantum inspired feature
selection using the eSNN architecture, tightly coupled with the
learning environment (the data).

2.1. The eSNN architecture

The eSNN architecture uses a computationally very simple and
efficient spiking neural model, in which early spikes, received by
a neuron, are more strongly weighted than later ones. The model
was inspired by the neural processing of the human eye, which
performs a very fast image processing. Experiments have shown
that a primate only needs several hundreds of milliseconds to
make reliable decisions about images that were presented in a test
scenario (VanRullen & Thorpe, 2001). Since it is known that neural
image recognition involves several succeeding layers of neurons,
these experiments suggested that only very few spikes could
be involved in the neural chain of image processing. In Thorpe
(1997) a mathematical definition of these neurons was proposed
and tested on some face recognition tasks, reporting encouraging
experimental results. The samemodel was later extended to eSNN
and used in Wysoski et al. (2006) and Wysoski (2008) to perform
audio-visual face recognition.
Similar to other SNN approaches, a specific neural model, a

learning method, a network architecture and an encoding from
real values into spike trains need to be defined in an eSNN model.
The neural model is given by the dynamics of the post-synaptic
potential ui(t) of a neuron i:

ui(t) =

0 if fired∑
j|f (j)<t

wji m
order(j)
i else (1)
Fig. 1. Evolution of the post-synaptic potential (PSP) of a neural model used in
QiSNN for a given input stimulus. If the potential reaches threshold θ a spike is
triggered and the PSP set to 0 for the rest of the simulation, even if the neuron is
still stimulated by incoming spike trains.

Algorithm 1 Training an Evolving Spiking Neural Network
Require: ml ∈ (0, 1), sl ∈ (0, 1), cl ∈ (0, 1), l ∈ L
1: initialize neuron repository Rl = {}
2: for all samples X (i) belonging to class l do
3: w

(i)
j ← (ml)order(j),
∀ j | j pre-synaptic neuron of i

4: u(i)max ←
∑
jw

(i)
j (ml)

order(j)

5: θ (i) ← clu
(i)
max

6: if min(d(w(i), w(n))) > sl, w(n) ∈ Rl then
7: w(n) ← mergew(i)andw(n)
8: θ (n) ← merge θ (i)and θ (n)
9: else
10: Rl ← Rl ∪ {w(i)}
11: end if
12: end for

where wji is the weight of a pre-synaptic neuron j, f (j) the firing
time of j, and mi ∈ (0, 1) a parameter of the model, namely
the modulation factor. Function order(j) represents the rank of
the spike emitted by neuron j. For example, a rank order(j) = 0
would be assigned, if neuron j is the first among all pre-synaptic
neurons that emits a spike. In a similar fashion the spikes of all pre-
synaptic neurons are ranked and then used in the computation of
ui. A neuron i fires a spike when its potential has reached a certain
threshold θ . After emitting a spike, the potential is reset to ui = 0.
Each neuron is allowed to emit only a single spike at most. The
threshold θ = c umax is set to a fraction c ∈ (0, 1) of themaximum
potential umax possible by a neuron. In Fig. 1 the change of the post-
synaptic potential for this neuralmodel is presented, when a series
of input spikes (stimuli) are presented to the different synapses of
this neuron.
An evolving neural network architecture using the above

model along with a learning algorithm was proposed in Wysoski
et al. (2006, 2008). The method successively creates a repository
of trained output neurons during the presentation of training
samples. For each training sample a new neuron is trained and
then compared to the ones already stored in the repository. If
a trained neuron is considered to be too similar (in terms of
its weight vector) to the ones in the repository (according to a
specified similarity threshold s), the neuron will be merged with
themost similar one. Otherwise, the trained neuron is added to the
repository as a new output neuron. Themerging is implemented as
the (running) average of the connectionweights, and the (running)
average of the two firing threshold. Because of the incremental
evolution of output neurons it is possible to accumulate knowledge
as it becomes available. Hence a trained network is able to learn
new data without the need of re-training already learned samples.
The procedure is described in detail in Algorithm 1.
The encoding of input values seems to be a critical factor in

all SNN approaches. Several encoding mechanisms for SNN have
been proposed, such as frequency mappings, Poisson processes
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and rank order encoding. Another approach is the population
encoding which distributes a single input value to multiple
neurons and hence may cause the excitation and firing of several
responding neurons. Our implementation is based on arrays of
receptive fields as described in Bohte et al. (2002). Receptive fields
allow the encoding of continuous values by using a collection of
neurons with overlapping sensitivity profiles. Each input variable
is encoded independently by a group of M one dimensional
receptive fields. For a variable n an interval [Inmin, I

n
max] is defined.

The Gaussian receptive field of neuron i is given by its center
µi = Inmin + (2i − 3)/2 ∗ (Inmax − I

n
min)/(M − 2) and width

σ = 1/β(Inmax − I
n
min)/(M − 2), with 1 ≤ β ≤ 2. Parameter β

directly controls the width of each Gaussian receptive field.

2.2. Wrapper approach

The eSNNmay be used to address feature subset selection (FSS)
problems following the well known wrapper approach. A wrapper
contains a general optimization algorithm interacting with an
induction method (classifier), also cf. Fig. 2. The optimization
task consists in a proper identification of an optimal feature
subset, which maximizes the classification accuracy determined
by the inductor. An eSNN operates here as the induction method,
while, due to its interesting properties in terms of solution
quality and convergence speed, the previously proposed Versatile
Quantum-inspired Evolutionary Algorithm (vQEA) (Defoin-Platel
et al., 2007) was used as the optimization algorithm. A vQEA
evolves in parallel a number of independent probability vectors,
which interact at certain intervals with each other, forming a
multi-model Estimation of Distribution Algorithm (EDA) (Defoin-
Platel et al., 2009). The binary nature of vQEA fitswell to the feature
selection problem we want to apply it on.

2.3. Integrated feature and parameter optimization

Manual fine-tuning the neuronal parameters can quickly be-
come a challenging task (Wysoski, 2008). An alternative proposed
in Valko, Marques, and Castelani (2005), is to optimize both the set
of features and the neuronal parameters, in a simultaneous way.
The selection of the fitness function was identified to be a crucial
step for the successful application of such an embedded approach.
In the early phase of the optimization the parameters are selected
randomly. As a result it is very likely that a setting is selected for
which the classifier is unable to respond to any input presented,
which corresponds to flat areas in the fitness landscape. Hence
a configuration that will allow the network to fire (even if not
correctly) represents a huge (local) attractor in the search space,
which could be difficult to escape in later iterations of the search.
In Valko et al. (2005) a linear combination of several sub-criteria
was used to avoid a too rugged fitness landscape. Nevertheless
we can not confirm that the use of much simpler fitness functions
led to any problems in our experiments. Using the classification
accuracy on testing samples seemed to workwell as it is presented
in this and previous papers. All parameters, namely modulation
factor ml, similarity threshold sl, potential fraction cl, ∀l ∈ L
of eSNN were included in the search space of the optimization
method.
Due to its binary nature, vQEA required the conversion of

bit strings into real values. It was experimentally shown that a
small number of Gray-coded bits seemed sufficient to approxi-
mate meaningful parameter configurations of the eSNN method.
Nevertheless the use of a binary optimizer for a real-valued search
space appears unsatisfactory. Each real-valued parameter needs to
be encoded by a number of bits. For the mapping of bit strings
into a real value additional computational resources are necessary.
Furthermore a granularity is introduced into the search interval.
Fig. 2. The QiSNN framework of tightly coupled feature selection and parameter
optimization of eSNN, integrated with the data.

Since a single continuous variable is represented by many bits, a
binary optimization method has to operate on more variables,
compared to a continuous optimizer. Thus scaling problems can
be expected for binary optimization, especially in the context of
high-dimensional problems, that need a precise optimization of
real-valued search variables. Furthermore neighboring solutions in
the continuous domainmight not be neighbors in their binary rep-
resentation. Exploring the local neighborhood of a solutionmay re-
quire the optimizer to flip many bits at the same time, which will
encourage premature convergence and promote the phenomenon
of hitch-hiking. Hence we will extend vQEA in this study towards
continuous search spaces and use a combined representation for
the simultaneous exploration of a binary landscape and the con-
tinuous landscape.
The complete QiSNN framework used in this study is summa-

rized in Fig. 2.

3. Extending vQEA for continuous optimization

Based on the vQEA (Defoin-Platel et al., 2007), we propose here
an extension of the algorithm to allow exploration of continuous
search spaces. vQEA has been developed as a binary optimization
method, which employs some quantum computing principles
to enhance classical evolutionary algorithms. The method was
studied in Defoin-Platel et al. (2009) and it was shown that
vQEA belongs to the class of Estimation of Distribution Algorithms
(EDA). The study revealed that the core of vQEA maintains
a multiple probabilistic model, which is quite in contrast to
other typical EDA, like e.g. Probabilistic Incremental Learning
(PBIL), Univariate Marginal Distribution Algorithm (UMDA), and
compact Genetic Algorithm (cGA), see Lozano, Larra naga, Inza,
and Bengoetxea (2006) for an excellent overview of these
algorithms. In these methods only a single probabilistic model
is evolved during the optimization process. In vQEA each model
explores the search space independently, but it may exchange
information at pre-defined intervals with the other models. The
algorithm is population based and each individualmanages its own
probabilistic model. The individuals itself are organized in groups,
hence introducing an important structure into the population.
Several advantages of this multi-model and the structured

population have been identified. vQEA uses an implicit adaptive
learning rate, whichmakes it robust to its parameter configuration.
It was shown that a certain parameter setting is suitable for a
variety of problem classes and sizes. Furthermore, themulti-model
approach allows a finite number of decision errors, which makes
vQEA robust against fitness noise. It was demonstrated that vQEA
performs better in terms of speed and solution quality than other
first-level EDA, especially when links are introduced between



626 S. Schliebs et al. / Neural Networks 22 (2009) 623–632
variables (epistasis). The method was compared to a number of
EvolutionaryAlgorithms on several different benchmark problems.
Finally, using several probabilistic models allows a more diverse
exploration of the search space than just using a single one.
In the following section we extend the binary multi-model

EDA (i.e. vQEA) towards the area of continuous search spaces.
Since all key characteristics of vQEA will be still present in
the proposed algorithm, we expect similar advantages of this
method in comparison to other evolutionary methods, such as
Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and
Differential Evolution (D/E).

3.1. Continuous-value multi-model EDA

The probabilistic model in vQEA is based on a Bernoulli random
variable for each bit, which is referred to as a qbit according
to the used quantum computing metaphor. Sampling from such
a string of qbits results in the creation of a bit string, which
in turn can be evaluated by the corresponding fitness function.
Since we want to consider continuous search spaces now, we
have to replace the Bernoulli distribution by a continuous one,
such that it becomes possible to sample real values instead
of discrete ones. A number of approaches concerning how to
employ such distributions and how to model them have been
studied in literature. Generally they are based on Gaussian
distributions (Bosman & Thierens, 2000; Gallagher & Frean, 2005;
Gallagher, Frean, & Downs, 1999; Mininno, Cupertino, & Naso,
2008; Yuan & Gallagher, 2003), histograms (Yuan & Gallagher,
2003), or interval representations (Servet, Travé-Massuyès, &
Stern, 1998).
We consider a continuous EDA based on Gaussian distributions

here. For each dimension j of the continuous search space and for
each probabilistic model i, a random variable following a Gaussian
distribution is evolved. Therefore the distribution is fully described
by two parameters: The meanµ(j)i and the standard deviation σ

(j)
i .

In each generation samples are drawn forming real-valued vectors,
whose quality can be evaluated by the fitness measure. An update
rule is then applied to update µ(j)i and σ

(j)
i to move the search

towards promising areas in the search space,making higher quality
solutionsmore likely to be sampled in the next generation.Wewill
first describe the basic structure of algorithm in detail, followed by
the presentation of the chosen update rule.
The overall structure of the proposed extension is almost identi-

cal to vQEA. Like vQEA also the continuous version is a population-
based search method. Its behavior can be decomposed in three
different interacting levels: Individual, group and population level.
Individuals. The lowest level corresponds to individuals. An
individual i at generation t contains a probabilistic model Pi(t)
and two real-valued strings Ci(t) and Ai(t). More precisely Pi
corresponds to a string of N pairs of values (µ(j)i , σ

(j)
i ):

Pi = P1i . . . P
N
i =

[
µ
(1)
i . . . µ

(N)
i

σ
(1)
i . . . σ

(N)
i

]
. (2)

The pair (µ(j)i , σ
(j)
i ) corresponds to the parameters of the

distribution of the jth variable of the ith probabilistic model. Each
variable in Pi is sampled according to µ

(j)
i and σ

(j)
i , so that Ci

represents a configuration in the search space whose quality can
be determined using a fitness function f . In most continuous
optimization problems, the variables have a specific domain of
definition. Without loss of generality we assume each c(j)i ∈

Ci to be defined in to the interval [−1, 1]. As a consequence,
each c(j)i ∈ Ci follows a truncated normal distribution in the
range [−1, 1]. Truncated normals can be sampled using a simple
numerical procedure and the technique is widely adopted in
pseudo-random number generation, see e.g. Geweke (1991) for an
efficient implementation.
To each individual i a solution Ai is attached acting as an

attractor for Pi. Every generation Ci and Ai are compared in terms
of their fitness. If Ai is better than Ci (i.e. f (Ai) > f (Ci) assuming
a maximization problem), an update operation is applied on the
corresponding model Pi. The update will move the mean values
of the probabilistic model Pi slightly towards the attractor Ai. The
choice of a suitable model update operation is critical for the
working of the algorithm. We will elaborate the details of the
model update in Section 3.1.1.
The update policy of an attractor Ai can follow two distinctive

strategies. In the original QEA (Han & Kim, 2002) an elitist update
strategy was used, in which the attractor Ai is replaced by Ci
only if Ci is better than Ai in terms of fitness. In a non-elitist
update strategy (firstly introduced in Defoin-Platel et al. (2007))
Ci replaces Ai at every generation. The choice of the update policy
has great consequences for the algorithm and changes its behavior
completely. To emphasize the importance of the update rule the
non-elitist version of QEA has been proposed as Versatile QEA
(vQEA) as the attractors are able to change every generation and
therefore demonstrate a very high volatility. Since no experimental
condition could be identified that favored the elitist attractor
update policy,wewill concentrate on thenon-elitist versionduring
the course of this paper.

Groups. The second level corresponds to groups. The population
is divided into g groups each containing k individuals having the
ability of synchronizing their attractors. For that purpose, the best
attractor (in terms of fitness) of a group, noted Bgroup, is stored
at every generation and is periodically distributed to the group
attractors. A parameter Slocal is introduced, which controls the
phase of local synchronization, i.e. a local synchronization event
is triggered in every Slocal-th generation.

Population. The set of all p = g × k individuals forms the
population and defines the topmost level of the multi-model
approach. As for the groups, the individuals of the population
can synchronize their attractors, too. For that purpose, the best
attractor (in terms of fitness) among all groups, noted Bglobal, is
stored every generation and is periodically distributed to the group
attractors. A parameter Sglobal is introduced, which controls the
phase of global synchronization, i.e. a global synchronization event
is triggered in every Sglobal-th generation.

3.1.1. Model update
The update of the probabilisticmodel is particularly interesting,

since it governs how the search space is explored by the algorithm.
Several continuous EDA have been proposed in literature (Bosman
& Thierens, 2000; Mininno et al., 2008; Mühlenbein, Mahnig, &
Rodriguez, 1999; Sebag & Ducoulombier, 1998; Yuan & Gallagher,
2003), alongwith a number of different update rules, e.g.Gallagher
and Frean (2005) and Yuan and Gallagher (2003). The common
principle of all these continuous EDA is based on the sampling of
a population. In vQEA (and thus also its extension) the situation
is very different, since only a single solution (for each probabilistic
model) is sampled in every iteration. Hence the model update can
not rely on the density of a population, but has to use a single
attractor instead to perform the desired update.
We formulate here an appropriate update rule for the

probabilistic models. Updating the mean µ(j) in the Gaussian
variable j appears to be straight-forward. We adopt a mean shift
towards the value of the current attractor a(j) at location j, which
is quite similar to the mean update used in methods mentioned
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(a) Update operation for distant attractors. (b) Update operation for close attractors.

Fig. 3. The figure presents the update operation for a single Gaussian random variable. For each update the distance d = a(t)−µ(t) between the attractor a(t) and themean
µ(t) of the Gaussian is computed at generation t . (a) If d ≥ σ(t) the attractor is considered distant. We interpret that situation by assuming that µ(t) does not represent a
promising area in the search space. In this case the mean µ(t) is strongly shifted towards the attractor, while at the same time the standard deviation σ(t) is increased to
allow a wider search in the fitness landscape. (b) On the other hand, if the attractor is inside the boundaries defined by σ(t), i.e. d < σ(t), we assumed that µ(t) is already
in a promising area of the search space. The algorithm starts to localize the search by shiftingµ(t) only slightly towards the direction of the attractor, while decreasing σ(t)
at the same time.
above. Depending on the distance d = a(j) − µ(j), a shift ∆µ(j) is
computed at generation t:

∆µ(j)(t) =
2

1+ e−5d
− 1 (3)

which is then used to perform the update:

µ(j)(t + 1) = µ(j)(t)+ θµ∆µ(j)(t). (4)
In Eq. (4) a parameter θµ is introduced, which we will refer to as
the learning rate of the mean. We note that θµ corresponds to the
maximummean shift in a single generation.
For the update of the standard deviation σ (j) we will exploit

the idea that σ (j) should decrease whenever µ(j) represents a
‘‘promising’’ area in the fitness landscape. We assume µ(j) to be
‘‘fit’’ when |d| < σ (j). Thus, if the attractor a(j) is close to µ(j)
(within the boundaries defined by σ (j)), the standard deviation σ (j)
is decreased. It is noteworthy that solutions fulfilling this condition
are more likely to be sampled, than other solutions, which means
that on average σ (j) will decrease. Attractors that are more distant
to µ(j) and thus |d| ≥ σ (j), will cause an increase of σ (j), since
it can be assumed that µ(j) does not represent a promising area
in the landscape. We define the standard deviation shift ∆σ (j) at
generation t as:

∆σ (j)(t) =
1

1+ e−10(σ (j)(t)−0.5)
(5)

and then use it to perform the update:

σ (j)(t + 1) =
{
σ (j)(t)− θσ∆σ (j)(t) if |d| < σ (j)

σ (j)(t)+ θσ∆σ (j)(t) otherwise.
(6)

In Eq. (6) a parameter θσ is used, which we will refer to as the
learning rate of the standard deviation. Again wewant to note that
θσ corresponds to themaximumstandard deviation shift in a single
generation. In order to avoid divergent behavior of the algorithm,
i.e. σ (j) increases indefinitely, we restrict the domain of σ (j) by
defining upper and lower bounds, such that σmin ≤ σ (j) ≤ σmax.
In Fig. 3 the principle of the update rule is summarized. Distant

attractors (relative to the current mean of the PDF) result in a
large mean shift, while at the same time the standard deviation
is increased, cf. Fig. 3(a). For close attractors the mean shift is small
and the standard deviation is decreased, cf. Fig. 3(b).
It is important to note, that the probabilistic update operator

described above, is similar to the rotation gate used in QEA. As
shown in Defoin-Platel et al. (2009) the size of an update step using
the rotation gate depends on the convergence of the probabilistic
model. This phenomenon was described as a form of deceleration
of the algorithm before convergence. The sigmoid shape of the
standard deviation update adopts a similar strategy, since also here
the size of the shift∆σ (j) decreaseswith increasing convergence of
the algorithm.
3.2. Combined search spaces

Many real-world problems require the exploration of combined
search spaces: a binary and a continuous space. An example is
the parallel evolution of the topology and the weight matrix of
a neural network. Here the topology is encoded as a bit string,
where ‘‘1’’ represents a present connection between two neurons
and ‘‘0’’ encodes its absence. Another example is thewrapper based
feature selection, where the presence/absence of a feature requires
a binary search space, while appropriate configurations for the
classification method may correspond to a continuous landscape.
It is now possible to employ vQEA on combined search spaces

with two types of representation. Each representation uses its
corresponding update operator to drive the probabilistic model
towards promising areas in the search space. In every generation
the models are sampled and then evaluated by a single fitness
measure. The fitness evaluation uses the sampled binary and
continuous solution part to determine the quality of the combined
solution. According to the fitness of the obtained solution the
models are updated. This extended vQEA allows us to enhance the
original QiSNN.
We emphasize that the extended vQEA is similar to a collabora-

tive coevolutionary algorithm (Potter & Jong, 2000). The evolution
of the two representations proceeds more or less independently
from each other. Both use their own solution representations and
update operators andmay explore their search spacewith different
learning rates. Despite their independent evolution, both represen-
tations share a single fitness function. The binary and continuous
sub-solutions are the components of a combined solution, and both
parts need to collaborate in order to maximize their fitness.

4. Experiments

We study the enhanced version of QiSNN on two benchmark
problems. The first benchmark is referred to as the two-spiral-
problem, on which the original QiSNN was investigated before,
cf. Schliebs et al. (2009). This problem is composed of two-
dimensional data forming two intertwined spirals and was firstly
introduced in Lang and Witbrock (1988). It requires learning of
a highly non-linear separation of the input space. The data was
frequently used as a benchmark for neural networks, including the
analysis of the eSNN method itself (Schliebs et al., 2009; Wysoski,
2008). Since the data contains only two relevant dimensions it
was extended by adding redundant and random information.
The importance of the redundant features was varied: Features
range from mere copies of the original two spirals to completely
random ones. The inherent information of a feature decreases
when stronger noise is applied. A detailed description of the data
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generation can be found in Schliebs et al. (2009). The dataset
contains seven redundant two-dimensional spiral points x′i, y

′

i ,
for each point a different noise strength is used, totalling in 14
redundant features. Additionally four random features r1, . . . , r4
were included. Together with the two relevant features of the
spirals (x and y) the dataset contained 20 features in 400 samples.
The second benchmark is the uniform hypercube dataset, to our

best knowledge firstly introduced in Estevez, Tesmer, Perez, and
Zurada (2009). The problem consists of two classes of 400 samples.
For each sample a five-dimensional vector (r1, . . . , r5) is drawn
from a uniform distribution. A given pattern belongs to class 1 if
ri < γ i−1 ∗ α for i = 1, . . . , 5 and to class 2 otherwise. The
parameters were chosen to be γ = 0.8 and α = 0.5. The entire
dataset consists of 40 features, five relevant, 30 random and five
redundant ones. The latter are linear combinations of the relevant
features perturbated by additive Gaussian noise of increasing level.
The dataset was balanced. A more detailed explanation of the data
generation can be found in Estevez et al. (2009).

4.1. Setup

For the combined optimization method we chose a population
structure of ten individuals organized in a single group, which is
globally synchronized every generation. This setting was reported
to be generally superior for a number of different benchmark
problems (Defoin-Platel et al., 2009). In the case of the spiral
dataset the learning rate for the binary rotation gate was set to
θ = π/50. For the rate of the mean and standard deviation shift
we chose θµ = 0.1 and θσ = 0.1 respectively. The algorithm was
allowed to evolve over a total number of 400 generations. Due to
its larger problem size 1000 generations were computed for the
hypercube problem, using once more θ = π/50 for the binary
learning rate and θµ = 0.1 and θσ = 0.05 for the continuous
update operator.
In order to allow a fair comparison between the classification

methods used in this study, one has to decide for an appropriate
parameter configurations for each classifier. In contrast to the
other classifiers, NBC does not require the tuning of any
parameters. To setup theMLPwehave experimented on a subset of
the datasets containing the relevant features only. By changing the
number of hidden neurons, the learning rate, and the momentum
term a satisfying configuration, in terms of classification accuracy,
was experimentally obtained by systematic trial and error. The
results of the parameter study for the MLP on the spiral dataset
are presented in Fig. 4. The finally chosen setting is based on a
tradeoff between computational cost and classification accuracy.
The additional cost of more hidden neurons is not worth the
slight increase of accuracy reported in Fig. 4. Using 10-fold cross-
validation the chosen configuration of MLP achieved a satisfying
accuracy of 0.849 (standard deviation 0.0634) on the spiral dataset
containing the two relevant features only. When applied to the full
dataset using all 20 features, the same configuration resulted in
an accuracy of 0.611 (0.0608). Thus, appropriate feature selection
does improve the performance of MLP, which is the key principle
exploited in the wrapper approach. Finding an appropriate setting
for the spiral problem appeared to be more difficult, in contrast
to the other benchmark. For the latter problem changes in the
configuration did not seem to impact the performance of the
classifier too much. Thus we decided to use the same parameter
setting for both problems. The common error back-propagation
learning algorithm was used to train the network, connection
weights were initialized with small uniform random numbers in
the range [−0.25, 0.25].
Most of the parameters of QiSNN are optimized during the

evolutionary process. For each class l ∈ L three parameters
exist: The modulation factor ml, the similarity threshold sl, and
Fig. 4. The figure shows the accuracy levels achieved by 32 different configurations
of a multi-layer perceptron on the two-spiral dataset. Each point represents
the average of the accuracies obtained in a 10-fold cross-validation experiment,
error bars indicate the standard deviation. All configurations use neurons with
sigmoid transfer functions, trained in 500 epochs. The lower curve (green triangles)
represents the accuracy of theMLPwhen all 20 features are included in the dataset,
the upper curve (black squares) the accuracy when only the relevant features are
used. The circles (red) indicate the finally chosen configuration for the experiments
performed in this study, which is a satisfying compromise between computational
cost and classification quality.

the proportion factor cl. Since both problems contain two classes,
six parameters are involved in the QiSNN framework used here.
In terms of the population encoding we found especially that the
number of receptive fields needs careful consideration, since it
affects the resolution for distinguishing between different input
variables. After some preliminary experiments we decided for 20
receptive fields in case of the spiral data and five receptive fields for
the hypercube. The Gaussian centers were uniformly distributed
over the search interval and the variance was set to β = 1.5.
In order to guarantee statistical relevance, 30 independent runs

for each investigated classification method were performed. In
every generation all samples of the datasetwere randomly shuffled
and divided into training and testing samples, according to a
ratio of 0.75. For the computation of the classification error we
determined the ratio between correctly classified samples and the
total number of testing samples.

4.2. Results

We discuss the results on the two-spiral problem first, cf.
Fig. 5. Fig. 5(a)–(d) present the evolution of the average best
feature subset in every generation using the enhanced and original
QiSNN, MLP and NBC respectively. The color of a point in these
diagrams reflects how often a specific feature was selected at
a certain generation: The lighter the color the more often the
corresponding feature was selected. It can clearly be seen that
independent of the used algorithm a large number of features has
been discarded during the evolutionary process. Furthermore all
algorithms clearly identify the features x and y to be relevant.
All methods except the enhanced QiSNN select some redundant
and/or irrelevant features, too.
Particularly interesting is the order in which the features have

been discarded by each algorithm. Both QiSNN (Fig. 5(a) and
(d)) rejected the four random features r1, . . . , r4 containing no
information almost immediately in less than 20 generations. The
redundant features x′i , y

′

i were then rejected one after the other,
according to the strength of the inherent noise: The higher the
noise, the earlier a feature is identified as irrelevant. We note the
improved performance of the enhanced QiSNN, which is clearly
able to reject all redundant features in most of the runs. Fig. 5(e)
compares the evolution of the number of selected features during
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(a) Enhanced QiSNN. (b) MLP. (c) NBC.

(d) Original QiSNN. (e) Evolution of feature number. (f) Evolution of accuracy.

(g) Enhanced QiSNN. (h) MLP. (i) NBC.

(j) Parameter evolution for the enhanced QiSNN. (k) Parameter evolution for the original QiSNN.

Fig. 5. Results on the two-spiral dataset (see the text for explanation).
each generation. While both QiSNN based methods clearly select
less features than their classical competitors at any stage of the
optimization, the original QiSNN is outperformed by the proposed
enhanced version.
It is also interesting to compare the evolution of the classifica-
tion error for each algorithm, cf. Fig. 5(f). The gradient in the fitness
landscape defined by eSNN appears to be much steeper compared
to all other algorithms, ranging from completely unfit solutions at
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(a) Enhanced QiSNN. (b) Evolution of feature number.

Fig. 6. Results on the hypercube dataset (see the text for explanation).
the beginning of the evolutionary run, towards high quality solu-
tions in later generations. MLP and NBC display a more flat fitness
evolution. We believe that fitness gradient is partially responsi-
ble for turning eSNN in a very good quality measure for feature
subsets.
According to the presented results on the QiSNN, a strong

correlation between classification accuracy and feature number
appears advantageous in the context of a feature selection task.
Fig. 5(g)–(i) present this dependence for the investigated induction
methods. Each point in the diagram corresponds to a tuple
(accuracy, feature number) obtained from the generational best
individual of every generation. The color indicates the generation
itself, the lighter the color the later the generation in which a
given tuple was obtained. In the case of QiSNN (cf. Fig. 5(g)) a
strong relationship between feature number and accuracy can
be observed.1 Even for small decreases of the feature number
significant accuracy improvements are reported. The strong
correlation between feature number and classification accuracy
introduces a gradient and partially reduces neutrality in the fitness
landscape. Removing a redundant or irrelevant feature from the
selected subset corresponds to a fitness gain for QiSNN, whichmay
not necessarily be true for the other two tested methods. If the
feature removal does not lead to a certain fitness gain and thus two
solutions may have the same fitness value, the fitness landscape
has a neutral dimension at the corresponding parameter. Due to
genetic drift the neutral parameter will converge randomly, which
means a random selection or non-selection of the encoded feature.
In the fitness landscape defined by eSNN neutral dimensions are
replaced by a fitness gradient, which allows the identification
and exclusion of low quality features from the current subset.
As a result the fitness landscape can be easily climbed by the
optimization algorithm, leading to faster and more consistent
convergence towards the optimal feature subset.
Fig. 5(j) and (k) present the evolution of the eSNN parameters

for the two versions of QiSNN. Although both methods have
evolved similar final parameter configurations, the continuous
exploration is much smoother compared to the binary one and
allowed a finer parameter tuning. Due to the balanced nature of
the dataset the parameter setting for the two classes have evolved
to be approximately identical, i.e. c1 ≈ c2,m1 ≈ m2 and s1 ≈ s2.
A similar analysis was done for the second benchmark dataset.

We want to note that this dataset was very easy to solve by
any of the tested algorithms. Even without feature selection MLP
and NBC reported a very high classification accuracy. Nevertheless

1 Both versions of QiSNN show a similar behavior here, thus we have chosen to
present the enhanced QiSNN as a representative of the two.
we have decided to present these results here, since they show
the proper functioning of all tested methods on an additional
independent benchmark problem. Fig. 6 summarizes the results on
the hypercube problem. In Fig. 6(a) the evolution of the average
selected feature subset is shown. We have included the diagram
for the enhanced QiSNN only, since the other methods report
very similar results. Thus QiSNN was chosen as a representative
of all tested algorithms. Similar to the figures presented on
the spiral data above, different gray levels reflect how often
a specific feature was selected at a certain generation. In this
diagram the first five features correspond to the relevant features,
followed by 30 irrelevant and finally five redundant features.
All methods clearly identify the five relevant variables. QiSNN
was capable of decreasing the feature number faster than NBC
and MLP, cf. Fig. 6(b). NBC reports optimal classification accuracy
without removing all irrelevant and redundant features. Without
the presence of any selective pressure some features converge
randomly due to genetic drift, which has resulted in the selection
of some irrelevant features in case of NBC.
We also want to discuss the computational complexity for each

of the presented algorithmshere. The fitness evaluation of a feature
subset is clearly the most costly part in the wrapper. Depending
on the dataset an MLP requires the construction of a rather large
neural network, followed by the training of each data sample for
500 epochs using a costly back-propagation procedure and is thus
by far the most complex method in this study. The eSNN classifier
implements a fast one-pass learning, but additional overhead is
required for transforming each data sample into a spike sequence
and computing the spike propagation in the network. Due to the
simple topology of the network an efficient spike simulation is
possible. The NBC requires the lowest computational resources,
each training sample is investigated only once and only minimal
overhead is necessary, allowing very fast classification.

5. Ecological modeling revisited

In Schliebs et al. (2009) the original QiSNN framework was
applied on an ecological modeling problem. Because of the
promising results obtained from the benchmark studies before,
we wanted to revisit the ecological data using the enhanced
QiSNN for feature selection. For many invertebrate species, little
is known about their response to environmental variables over
large spatial scales. That knowledge is important in order to predict
the establishment of a species, that has the potential to cause
great environmental harm. The usual approach to determine the
importance of a range of environmental variables, that explain the
global distribution of a species, is to train or fit amodel to its known
distribution using environmental parameters measured in areas
where the species is present and where it is absent. In this study,
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Fig. 7. Results on the ecological data set averaged over 30 independent runs. The lighter the color of a point in the diagram, the more often a specific feature was selected
at the given generation.
meteorological data that comprised 68 monthly and seasonal
temperature, rainfall and soil moisture variables for 206 global
geographic sites were compiled from published records (CABI,
2003). These variables were correlated to global locations where
the Mediterranean fruit-fly (Ceratitis capitata), a serious invasive
species and fruit pest, were recorded at the time of the study,
as either present or absent. The dataset is balanced having equal
number of samples for each of the two classes. Previous use of MLP
on the data results in a classification accuracy of approximately
71% (Watts & Worner, 2006).
The experimental setup defined in Schliebs et al. (2009) was

keptmostly unchanged here to allow some comparison to previous
results: Ten individuals are allowed to evolve in 4000 generations,
statistical relevance is guaranteed by performing 30 independent
runs and averaging the results. The additional parameters for the
mean and standard deviation shift were set to θµ = 0.1 and
θσ = 0.01 respectively, the learning rate of the binary model was
θ = π/100.
Fig. 7 presents the results of the revisited experiment. Similar

to the figures before the evolution of the average best feature
subset is shown, where the color reflects how often a specific
feature was selected at a certain generation. The comparison
between NBC and the original QiSNN was discussed in great
detail in Schliebs et al. (2009), thus we will concentrate on the
discussion of the performance of the two QiSNN only. Fig. 8
clearly shows the similarity of the feature subsets obtained by
both QiSNN. Nevertheless the enhanced version reports greater
consistency in the feature rejection. Also the enhanced QiSNN
selected significantly less features than the original QiSNN, cf.
Fig. 8: On average 14 features were selected using QiSNN, 9 in case
of the enhanced QiSNN and 18 using NBC. Compared to the original
QiSNN the enhanced version additionally rejected the following
features: temp1, temp3, TAut2, TSpr1, Tannual, rain10, RSumR2,
PEAnnual. The overall classification accuracy was similar between
all tested algorithms.
From an ecological point of view the evolved feature subsets

are coherent with the current knowledge in this area. Winter
temperatures, autumn rainfall and the degree-days (DD5 and
DD15) were particularly strong features. Degree-days are the
accumulated number of degrees of temperature above a threshold
Fig. 8. In all algorithms the number of features decreases with increasing
generations, the enhanced QiSNN being noticeably faster than the original QiSNN
and NBC. All classifiers report a similar accuracy after the evolution of 4000
generations.

temperature (5◦ and 15◦ in this case) over time (in this dataset over
the whole year). It would be expected that the latter two variables
would be closely correlated. These results correspond to other
analysis wheremore conventional statistical andmachine learning
methods were used to identify the contribution of environmental
variables to C. capitata presence or absence (Worner, Leday, &
Ikeda, 2008). While there is no indication from this analysis
whether the features have a negative or positive effect on the
distribution of the species, it is known that C. capitata is limited
by the severity of temperatures in the winter and extremes of wet
or dry conditions in the summer and autumn (Vera, Rodriguez,
Segura, Cladera, & Sutherst, 2002).

6. Conclusions and future directions

In this study we have presented an enhanced QiSNN frame-
work by proposing an extension for the used optimizationmethod.
The optimizer simultaneously evolves a feature subset along with
an parameter configuration for a spiking network by using two
separate probabilistic representations: A binary representation for
optimizing the feature search space and a continuous one for ex-
ploring the parameter space. We have pointed out the similarity to
coevolutionary algorithms. The enhanced QiSNN was studied on
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two benchmark datasets and an ecological data modeling problem
was revisited. Results have been compared to the traditional NBC,
an MLP and also to the original version of QiSNN. The enhanced
QiSNNwas shown to be faster,more consistent and reliable than its
predecessor. It also compared well to the classical methods tested
here. Further development of theQiSNN is plannedwhere the pres-
ence/absence of spikes at a given time in a QiSNN will also be rep-
resented stochastically as suggested in Kasabov (2008a, 2009).
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