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Abstract—Epilepsy is the most diffuse brain disorder that can
affect people’s lives even on its early stage. In this paper, we used
for the first time the spiking neural networks (SNN) framework
called NeuCube for the analysis of electroencephalography (EEG)
data recorded from a person affected by Absence Epileptic
(AE), using permutation entropy (PE) features. Our results
demonstrated that the methodology constitutes a valuable tool for
the analysis and understanding of functional changes in the brain
in term of its spiking activity and connectivity. Future applications
of the model aim at personalised modelling of epileptic data for
the analysis and the event prediction.

Keywords—Spiking Neural Networks, EEG, NeuCube, Epilepsy,
Childhood Absence Seizures.

I. INTRODUCTION

Epileptogenic processes are hyper-syncronization of the
electrical neural activity. It is still unknown the cause that
produces them, however, there is a hypothesis that they may
occur in different areas of the brain indiscriminately. The
critical area associated with the epileptogenetic event is called
epileptogenetic zone. This is responsible of recruiting other
areas until the brain triggers the seizure. This process can be
seen as a network-event rather than a local event. Thus, the
problem to localise and study the epileptogenetic zone is of
great interest to neuroscientists.
Spatio-temporal brain data (STBD) and especially EEG data is
widely used to record changes of brain activity during seizures
at a millisecond time scale. It allows us to obtain knowledge
about frequency, time and space of the epileptogenetic events.
When a subject experiences a seizure, he/she needs to undergo

recording of several EEGs. This implies inpatient or day-
hospital care and, if epilepsy is diagnosed, the patient must
undergo further several EEG recordings in order to assess
the evolution of the disease and to monitor the effects of the
treatment. Once the EEG has been recorded (which can last
for minutes to days) a careful review of the entire recording
is needed, in order to detect the presence of critical events
and to come up with a diagnosis. In clinical practice, while
reviewing the EEG, the neurologist manually scrolls through
the EEG and visually detects seizures (ictal states) and seizure-
free intervals (inter-ictal states), so that he/she can evaluate the
events locally in space, electrode per electrode. The neurologist
usually visualizes only 20 seconds at a glance, scrolling ahead
till the end of the recording. Thus working with EEG data
means handling “big data” and all the technologies that can
support the neurologist in dealing with this huge amount of
data, will certainly improve epileptic people’s quality of life
as well as facilitate the neurologist’s work.
Furthermore, many results reported in the literature suggest
that seizures are not completely random and unpredictable
events, which means that they are part of a more complex
network phenomenon, a sort of “epileptogenic process” that,
for unknown reasons, arises, evolves, and finally results in a
seizure. Based on such hypothesis, one should wonder when,
where and why abnormalities in the electrical activity arise in
the brain and how they evolve, recruiting other areas. So far, no
tool has been developed in order to monitor such mechanisms
which, if discovered and explored, would allow for a much
deeper understanding of the pathology that could lead to
novel therapeutic perspectives. The core of such a tool would
be an algorithm, meant for the extraction of mathematical



descriptors from EEG signals, which would be able to follow
the evolution of the dynamics of cerebral electrical activity
and to identify the transition from the inter-ictal stage to the
pre-critical stage, thus detecting possible impending seizures
(early seizure detection).
Aiming at this purpose, in this study we proposed a spatial-
temporal model to study the development of seizures, in order
to: automatically mark the critical events on the recording;
provide deep and novel diagnostic information about brain
networks (off-line utility); and to provide a warning tool in case
of high probability of an impending seizure (on-line utility).
In already published studies [1], [2], we analysed spatial-
temporal EEG signals based on ordinal measures of patterns
through PE. There, long EEG recordings (minutes to hours
before seizure onset) have been analysed in order to check
whether the epileptogenic process in absence seizures actu-
ally corresponds to the model of a “jump” transition of the
underlying dynamical system or a gradual transformation is
detectable in advance. PE was used to convert real EEG signals
into motifs neglecting amplitude of signals and excluding any
dependence on the effect of the reference electrode.
In this paper, we analysed the dynamics of the epileptic events
through the PE topographies by means of an evolving spatio-
temporal data machine (eSTDM) based on neuromorphic,
brain-like information processing principles. In particular, the
methodology is based on the NeuCube framework [3]. This
model utilises SNN as major processing modules. Data can
be classified and the SNN cube (SNNc) analysed in term of
connectivity and spiking activity generated during the learning
process. This helps us to study and reveal spatio-temporal
patterns retained in the data and to localise them in specific
areas of the brain.
The paper is constructed in the following way: section II
presents the problem and the data available; section III de-
scribes the NeuCube-based methodology used for the study;
section IV reports the results and the conclusions; and section
V proposes future work that we are currently undertaking.

II. EPILEPTIC EEG ANALYSIS WITH SNN

A. Absence Seizures

We based our study on Childhood Absence Epilepsy (CAE)
data, a common idiopathic generalized epilepsy syndrome [4],
[5]. CAE is usually present in children between age of 4 and 10
years, peaking at age 6-7 years. A strong genetic predisposition
is evident, with occurrence more often in girls than in boys.
The very frequent absences (several to hundreds a day) exert a
negative impact on an otherwise normal child. Untreated chil-
dren often exhibit learning and attention difficulties because of
their alterations of consciousness. The pediatric neurologists
main objective is to neutralize all absences as long as the side
effects.

B. EEG data Description

Standard EEG recording from a patient, diagnosed with
CAE, was used for training and testing. The patient was a
young girl and her age was 9. The EEG was acquired using
a 16-channel device (Fp1, Fp2, F3, F4, F7, F8, T3, T4, T5,
T6, C3, C4, P3, P4, O1, O2) according to the international
10/20 system with Cadwell Easy II (Cadwell Laboratories,
Inc., Kennewick, WA). All channels were filtered with a pass

band of 0.53-25 Hz, and digitised at a rate of 200 Hz. In total, 8
paroxysms longer than 2 seconds were identified by a board-
certified clinical neurophysiologist. In total, 15.8 minutes of
electroencephalogram data were recorded. All data analysis
was performed using MATLAB (The MathWorks, Inc., Natick,
MA).

C. Permutation Entropy

The n-channels EEG recording was processed by means of
sliding temporal windows. The EEG samples were buffered in
5 seconds non-overlapping windows (since the sampling rate
is 200Hz, a window includes N=1000 EEG samples), then PE
was estimated, channel by channel and window by window.
Each EEG time window includes n time series, where n is
the number of EEG channels. This window is stored in the
computer as a nxN matrix. Within each window, a sample of
PE per channel is computed and the n values are arranged in
a nx1 PE vector, therefore, a nxN EEG matrix corresponds to
a nx1 PE vector thus a compressed temporal representation of
the original time series is produced. In order to calculate PE,
each time series x was mapped into a m-dimensional space,
with m being the embedding dimension and L being the time
lag. Vectors Xt were constructed selecting m equally spaced
samples from x, starting from time point t:

Xt = [x(t), x(t+ L), ..., x(t+ (m− 1)L)]T (1)

The values of Xt are reshaped in an increasing order, the time
points are renamed yielding Xrt, a reshaped version of Xt:
Xrt = [x(t + (t1 − 1)L), x(t + (t2 − 1)L), ..., x(t + (tm −
1)L)]T Therefore, each vector Xt can be considered uniquely
mapped onto a symbol vector π = [t1, t2, ..., tm]. The vector
π is a sequence of time points, hence a symbol. The frequency
of occurrence of each possible π is indicated as p(π), which
represents the frequency of occurrence of the specific vector π
in the time series under analysis, normalized by N−(m−1)L
where N is the number of samples of the time series x. PE is
finally computed as:

H(m) = −
m!∑
i=1

p(πi)ln(p(πi)) (2)

Where log is the natural logarithm and m! is the number of
the possible permutations. Since H(m) can maximally reach
ln(m!), PE is generally normalized as:

Hn(m) = −
∑m!

i=1 p(πi)ln(p(πi))

ln(m!)
(3)

D. The NeuCube SNN Architecture

The eSTDM NeuCube was first introduced in [3], [6] and
then developed in [7], [8]. It is a multi-modular computer
systems designed to deal with large and fast spatio-/spectro-
temporal data. It is inspired by the main biological principles
that regulate learning and memory dynamics of spiking neu-
rons that make up its network. A block digram of the eSTDM
NeuCube is depicted in Fig. 1. It consists of the following
modules:

• Input information encoding module.

• Input mapping module.



• 3D SNN module (the SNNc).

• Output classification/regression module.

• Gene regulatory network (GRN) module (Optional).

• Parameter optimisation module.

• Visualisation and knowledge extraction module.

The input module transforms the raw data vectors into trains
of spikes. The encoded STBD is then presented to the main
module, the 3D SNNc, into certain areas of the cube that have
the same 3D coordinates as the data source locations during
collection.

Fig. 1. A general NeuCube architecture of eSTDM for STBD modelling with
its three main modules: input data encoding module; a 3D SNNc module;
an output evolving classification module [3]. An optional Gene Regulatory
Network (GRN) module can be incorporated if gene information is available.
The spiking neurons can be implemented as the simple leaky integrate and
fire model or probabilistic models (shown in the lower left section).

NeuCube has already demonstrated its ability to classify and
extract new knowledge from both EEG [9]–[11] and functional
magnetic resonance imaging (fMRI) [12] cognitive data and
to other type of spatio-temporal data for personalised disease
prognosis [13]. This paper contributes to the set of methods
related to the NeuCube with the introduction of a new method-
ology for the analysis of spiking activity and connectivity of
EEG data recorded from a CAE patient, using the information
available from the PE features.

III. THE PROPOSED NEUCUBE METHODOLOGY FOR THE
STUDY OF CAE PE DATA

The NeuCube-based methodology schematized in Fig. 2
consists of following procedures and parameters:

1) Every data vector was transformed into a spike train
using the address event representation (AER) algo-
rithm [14]–[16]. This is calculated as a bi-directional
threshold (AERthr), which is applied to the signal
x(t) as following:

AERthr = µ+ s σ (4)

where µ is the mean of the differential signal
with respect to time, x(t) = {xt2 − xt1 , xt3 −
xt2 , . . . , xtn − xtn−1

}, calculated by using all
samples; σ is its standard deviation; s is a scale
parameter of σ. The AERthr is used to generate
two types of spike sequences, a positive spike train
corresponding to the signal increment, which is

mapped to a specific input neuron in the SNNc;
a negative spike train, corresponding to the signal
decline, which is mapped into another input neuron
of the SNNc that is placed in the same position as
the positive one.

2) Then, the input spike sequences are presented to an
evolving brain-mapped network of spiking neurons
- the SNNc. Each of these neurons represented the
centre coordinates of a 1 cm3 area of a human
brain template known as the Talairach Atlas [17]–
[19]. Thus, the SNNc reflects the number of input
variables, the Brodmann area associated with them
and the size of the data available.

3) The neurons of the cube are initialised as a “small-
world” (SW) connected networks and their initial
connections weights are calculated as the product
of a random number [−0.1,+0.1] and the multi-
plicative inverse of the Euclidean distance d(i, j)
between a pre-synaptic i and a post-synaptic neuron
j (calculated according to their (x, y, z) coordinates).
20% of these weights are randomly selected to be
negative (inhibitory connections weights), while 80%
are positive (excitatory connections weights). The
d(i, j) also depends on a distance threshold Dthr

calculated as:

Dthr = max (d(i, j)) p (5)

where p is the SW connectivity parameter.

4) The neurons of the cube are modelled as leaky
integrate and fire (LIF) neurons [20]. If an initial
connection ci,j between two neurons is established,
then, the action potential vj of a neuron j increases
according to the time and the order of the incoming
spike Si from neuron i. The vj increases until a firing
threshold Θ, then, it resets and an output spike Sj is
emitted.

Si =

{
1 vj ≥ Θ
0 otherwise

(6)

The membrane potential will keep to zero for the
length of its refractory time (r). Between spikes, the
membrane potential leaks according to the potential
leak rate (l).

vj(t) =

{
vj(t− 1) + wj r = 0
vj(t− 1)− l otherwise

(7)

5) The SNNc is trained in an unsupervised mode using
the spike timing dependant plasticity (STDP) [21]
learning rule. This Hebbian rule describes the con-
nection between two neurons as stronger as their
activation persists and repeats. This is implemented
as following:

wj(t) =

{
wj(t− 1)± α/∆t tj 6= ti
wj(t− 1) tj = ti

(8)

where α is the STDP learning rate, ∆t is the time
elapsed since the last spike was emitted by neuron j.
If a neuron i fires before a neuron j then, its weight



wj,i increases, otherwise, it decreases.

6) The output classifier is trained in a supervised mode
using dynamic evolving SNN (deSNN) [22] algo-
rithm, which combines the rank-order (RO) learning
rule [23] and the STDP [21] rules. According to this
algorithm, every trained sample is associated to an
output neuron that is connected to every other neuron
of the cube. In case of the NeuCube model, the inputs
to the deSNN classifier are all neurons of the SNNc.
Initially, the connection weights wi,j between the
input neuron i and the output neuron j are all set to
zero. Then, according to the rank-order (RO) learning
rule, they are computed as following:

wi,j = modorder(i,j) (9)

where mod is a modulation factor and order(i, j) is
the order of the first incoming spike.
The new connection weights will be modified ac-
cording to the spike driven synaptic plasticity (SDSP)
learning rule. Implemented as:

wi,j(t) =

{
wi,j(t− 1) + drift Sj(t) = 1
wi,j(t− 1)− drift Sj(t) = 0

(10)

where drift is a parameter used to modify
the connection weights and Si(t) represents the
occurrence of the spikes arriving from neuron i at a
time t after the first one was emitted.

7) The classification results are evaluated using repeated
random sub-sampling validation (RRSV) or leave
one out cross validation (LOOCV).

8) Steps (3) to (7) are repeated using different parameter
values in order to optimize the classification output.
The best performing model can then be recorded for
further uses.

9) The trained SNNc is visualised, its connectivity and
the dynamic spiking activity are analysed for a better
understanding of the data and the brain processes that
generated it including changes of brain functionality
across conditions and subject groups.

Fig. 2. A graphical representation of the NeuCube-based methodology used
for PE data modelling and brain connectivity analysis.

IV. RESULTS AND DISCUSSION

For our experimental case study, data was first classified, to
establish the effectiveness of the PEs as classification features.

Then, the SNNc was visualised and analysed in a step-wise
mode to study the activity and connectivity generated during
learning.
As shown in Fig. 3, the 187 PE vectors calculated from the 16-
channel EEG data corresponded to 7 ictal (PE 2-5, 25, 34-41,
63-67, 95-99, 129-132 and 179-183) and 8 equivalent interictal
states. This data was propagated through the cube generating
a spiking activity according to the time and frequency of the
encoded spike trains. Thus, a trained NeuCube represented a
persons dynamic model of epileptic event progression over a
short period of time.

Fig. 3. Sequence of PE obtained from the 16-channel EEG data. In grey
colour are the PE corresponding to the ictal state, while the other PE are
associated to the interictal states.



A. Classification

For the classification experiments, the 187 PE levels were
divided into the two respective classes. Excluding the samples
containing just one of the PE topography, we obtained 6
samples for class 1 (ictal state) and 7 samples for class 2
(interictal state).
The encoded spike trains, obtained from the 187 PE vectors,
were entered into a 3D grid of 1471 LIF neurons by entering
them to the 16 corresponding brain-mapped input neurons.
Data was first learnt in the SNNc in an unsupervised way
and then classified via supervised learning method in a trained
deSNN classifier. The classification results were evaluated
using LOOCV and they are reported in table I.

TABLE I. NEUCUBE CLASSIFICATION RESULTS EXPRESSED AS
ACCURACY PERCENT.

NeuCube Classification Results

Ictal State 100
Interictal State 71
Overal Accuracy 86

The high classification accuracy (100% for class 1 and 71%
for class 2) obtained via the NeuCube methodology proved
the model ability to manifest this difference and also that the
two classes were in fact two distinguishable groups when using
PE values as features. Table II reports the NeuCube parameters
used to obtain these results.

TABLE II. PARAMETER SETTING USED TO OBTAINED THE RESULTS
REPORTED AS NEUCUBE CLASSIFICATION ACCURACY.

SNNc Parameter Setting

Threshold of Firing: 0.5 Potential Leak Rate: 0.002 STDP: 0.5
Refractory Time: 2.5 SW distance: 0.15 AER Threshold 0.003
deSNN mod: 0.4 deSNN drift: 0.25 Time to Train: 1

These parameters were found after running a grid search
in which 100 SNNc network configurations were evaluated
regarding their test accuracy using RRSV (50% of the data
was used for training and 50% for testing).

B. SNNc Analysis

In this case, the 187 PE sequences were used to train
a NeuCube model in a step-wise manner. We looked for
the first time at the dynamic of both spiking activity and
connectivity during learning using the information available
from the PE topographies. This threw more light on the
functional changes in the brain provoked by the epileptic event
and more importantly it helped to locate where these changes
took place.
To analyse and visualise the cube activity, we have used again a
3D SNNc of 1471 brain-mapped spiking neurons. The data was
learnt in the SNNc in an unsupervised way and then the SNNc
activity was analysed and interpreted for a better understanding
of the data and to identify differences between brain states.
Figure 4 show the NeuCube evolution over the 187 time
points obtained during STDP learning. Table III reports the
parameters settings used to obtain these results.
On the entire series of PE, we are interested in the spiking
activity and connectivity generated by each of the 6 ictal states
and the 7 relative interictal states. The first two sequences of

TABLE III. PARAMETERS SETTINGS USED FOR THE STEP-WISE SNNC
ANALYSIS.

SNNc Analysis Parameter Setting

Threshold of Firing: 0.5 Potential Leak Rate: 0.002 STDP: 1
Refractory Time: 2 Long Dist. Possibility: 0.01 Weight Threshold 0.08

PE topographies associated with a seizure (PE 2-5 and PE
25) do not show a particular change in terms of connectivity
or spiking activity. The third series of PE related to an
epileptic event (PE 34-41) represents the longest sequence of
PE topographies. Here, the F4 electrode appears to be the focal
point in term of enhanced connectivity. Also, new connections
are formed in the (right) frontal polar area, electrode Fp2. The
subsequent ictal state (PE 63-67) provokes the establishment
of new connections in the right hemisphere especially in
the anterior region of the frontal area, but also by the left
hemisphere, at F7, F3 and FP1 positions. By the next sequence
of ictal PE topographies (PE 95-99), the new connections
have now consolidated and also new are formed by the (right)
occipito-parietal area, channels O2 and P4. By the next ictal
section (PE 129-132), most of the connections generated by the
(right) frontal and occipito-parietal cortex and the (left) centro-
temporal area keep consolidating, while the central regions are
not affected. The last series of PEs associated with a seizure
(PE 179-183), clearly show that most of the connections in the
SNNc model are formed around the input neurons especially
in the right frontal portion of the brain, while no connections
are evolved in the central line at all.
Given a certain electrode and its PE level, we did not expect
high PE to be linked to high degree of connections, we only
expect PE to match the complexity degree of the electrical
activity of the cerebral region covered by that electrode. PE
levels can give us information that are local in space, depicting
the topography over the scalp. It is a way to see which elec-
trode showed similar PE levels, but we obtained information
about brain connectivity only through our proposed NeuCube
model.
Neurologists address the frontal-temporal regions as “critical”
in absence seizure patients and this seems to be in line with
our modelling results and in particular with the ictal states
associated to the PE 67, 99, 132, 183.

V. CONCLUSION AND FUTURE WORK

The goal of the proposed study has been to develop a
personalised model able to properly learn over time epileptic
events in terms of space and time, so that the information
can be dynamically visualised and analysed and possibly the
epileptogenetic event predicted.
Our results demonstrated that the methodology constitutes a
valuable tool for epileptic EEG data analysis and understand-
ing. However, more extensive evidence is needed to establish
the feasibility of a purely data driven diagnosis method for
CAE diagnosis. So far, our results are promising and NeuCube
is planned to be used for molecular and genetic analysis of
the disease and as a personalised model for the understanding
of functional changes in the brain and for the prediction of
epileptic events from new data.
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Fig. 4. Step-wise SNNc activity during STDP learning on the 187 PE topographies. The figure shows the evolution of connectivity of the 3D SNNc and
its 2D plane. The top image presents the SNNc connectivity obtained from the first PE associated to the initial interictal state (PE 1). The subsequent SNNc
images result from training the cube with one PE associated to the seven following ictal events (PE 5, 25, 41, 67, 99, 132 and 183). (left) Blue lines are positive
connections (excitatory synapses), while red lines are negative connections (inhibitory synapses). The input neurons are identified by their labels corresponding
to the 16 EEG channels. (right) The active spiking neurons are identified in red, while in blue the inactive neurons. Also, in magenta are the positive spiking
input neurons and in cyan the negative spiking inputs. Yellow identifies the absence of a spike in the input neurons.



NEUROGENETIC NEUCUBE FOR THE ANALYSIS OF
NEURORECEPTOR ACTIVITY RELATED TO CAE

A neurogenetic model of a neuron is proposed and studied
in [24], [25]. It utilises information about how the main
neuroreceptors, and the genes that expressed them, affect the
spiking activities of a neuron. This model can be also optimised
using a Gene/Protein Regulatory Network (GRN), controlling
the dynamic interactions between genes/proteins over time,
which affects the post synaptic potential of the network’s
neurons.
In this work, we used Hebbian learning rules to adapt the
synapse amongst neurons, specifically the STDP as a way of
competition for control of the timing of postsynaptic action
potentials. However, the synapses adaptation can also be im-
plemented through dynamic mechanisms involving the growth
or decay of some neuroreceptors. They affect the spiking
activity of a neuron such as fast excitation, fast inhibition, slow
excitation, and slow inhibition. In turn, each neuroreceptor is
affected by other neuroreceptors, therefore, the contribution of
each neuroreceptor gr to a neuron synapse in a time t might
be computed as:

gr(t) = gr(t−1) +f(g1(t−1), g2(t−1), ..., gn(t−1)) (11)

where gi(t − 1) is the last state of an ith receptor, and the
function f is the positive/negative contribution to gr. Such that
the synaptic weight gwij

between a neuron ni and a neuron
nj is calculated as the difference of the sum of the excitatory
receptor gains ge and the sum of the inhibitory receptor gains
gh:

gwij =

n∑
i=1

ge −
n∑

i+1

gh (12)

This model, called Neurogenetic Neucube (NeuCubeNG), has
been proposed in [26]. It can automatically balance the synap-
tic strengths making postsynaptic firing irregular but sensitive
to presynaptic potentials such as the STDP like rules.
We plan to apply the NeuCubeNG to CAE data to study
how the regulation of GABA-mediated inhibitory mechanisms,
which are believed to be involved in the neural hyper-
syncronization responsible of type of epilepsy, can affect the
post synaptic potential of a neuron [27]. This type of mecha-
nisms are mediated by pharmacological treatments [28] and we
believe the NeuCubeNG could be of great help for clinicians
to analyse the possible changes in neural connectivity.

NEUCUBE FOR THE PREDICTION OF EPILEPTIC SEIZURES

NeuCube can be used also for dynamic predictive mod-
elling based on neuromorphic learning. The acquisition of
more CAE data and their comparison to healthy subjects can
be used to create such model that learns the progression of the
epileptic events of a person over time. The brain-like mapping
of the cube can be used to study the specific characteristics
of the epileptic events, the area of the brain where the event
occurs and eventually to predict future epileptogenetic events
based on the initial information.

ACKNOWLEDGMENT

The presented study was supported by the SRIF INTEL-
LECTE project of the Knowledge Engineering and Discov-
ery Research Institute (KEDRI, http://www.kedri.info) funded

by the Auckland University of Technology; the Neurolab
(www.neurolab.ing.unirc.it) of the University Mediterranea of
Reggio Calabria; and the National Council of Science and
Technology of Mexico (CONACYT) under the grant 348463.
Several people have contributed to the research that resulted
in this paper, especially: Y.Chen, J.Hu, E.Tu and L.Zhou. A
free for research and teaching version of the NeuCube can be
found from the KEDTI web site: http://www.kedri.aut.ac.nz.

REFERENCES

[1] N. Mammone, A. Lay-Ekuakille, F. Morabito, A. Massaro, S. Casciaro,
and A. Trabacca, “Analysis of absence seizure eeg via permutation en-
tropy spatio-temporal clustering,” in 2011 IEEE International Workshop
on Medical Measurements and Applications Proceedings (MeMeA),,
May 2011, pp. 532–535.

[2] N. Mammone, D. Labate, A. Lay-Ekuakille, and F. C. Morabito,
“Analysis of absence seizure generation using eeg spatial-temporal
regularity measures,” International Journal of Neural Systems, vol. 22,
no. 06, p. 1250024, 2012.

[3] N. K. Kasabov, “Neucube: A spiking neural network architecture for
mapping, learning and understanding of spatio-temporal brain data,”
Neural Networks, vol. 52, pp. 62–76, 2014.

[4] J. Duun-Henriksen, R. Madsen, L. Remvig, C. Thomsen, H. Sorensen,
and T. Kjaer, “Automatic detection of childhood absence epilepsy
seizures: toward a monitoring device,” Pediatr Neurol., vol. 46, no. 5,
pp. 287–292, 2012.

[5] J. Duun-Henriksen, T. Kjaer, R. Madsen, L. Remvig, C. Thomsen, and
H. Sorensen, “Channel selection for automatic seizure detection,” Clin
Neurophysiol., vol. 123, no. 1, pp. 84–92, 2012.

[6] N. Kasabov, “Neucube evospike architecture for spatio-temporal mod-
elling and pattern recognition of brain signals,” in Artificial Neural
Networks in Pattern Recognition, ser. Lecture Notes in Computer
Science, N. Mana, F. Schwenker, and E. Trentin, Eds. Springer Berlin
Heidelberg, 2012, vol. 7477, pp. 225–243.

[7] Y. Chen, J. Hu, N. Kasabov, Z.-G. Hou, and L. Cheng, “Neucuberehab:
A pilot study for eeg classification in rehabilitation practice based on
spiking neural networks,” Neural Information Processing, vol. 8228, pp.
70–77, 2013.

[8] E. Tu, N. Kasabov, M. Othman, Y. Li, S. Worner, J. Yang, and
Z. Jia, “Neucube(st) for spatio-temporal data predictive modelling with
a case study on ecological data,” in Neural Networks (IJCNN), 2014
International Joint Conference on, July 2014, pp. 638–645.

[9] N. Kasabov and E. Capecci, “Spiking neural network methodology
for modelling, recognition and understanding of eeg spatio-temporal
data measuring cognitive processes during mental tasks,” Information
Sciences, 2014.

[10] E. Capecci, F. Morabito, M. Campolo, N. Mammone, D. Labate, and
N. Kasabov, “A feasibility study of using the neucube spiking neural
network architecture for modelling alzheimer’s disease eeg data,” in
Smart Innovation, System and Technologies, Springer, Ed., May 2014,
(in press).

[11] E. Capecci, N. Kasabov, and G. Y. Wang, “Analysis of connectivity
in neucube spiking neural network models trained on eeg data for the
understanding of functional changes in the brain: A case study on opiate
dependence treatment,” Neural Networks, 2015, (accepted).

[12] M. G. Doborjeh, E. Capecci, and N. Kasabov, “Classification and
segmentation of fmri spatio-temporal brain data with a neucube evolving
spiking neural network model,” in Evolving and Autonomous Learning
Systems (EALS), 2014 IEEE Symposium on, Dec 2014, pp. 73–80.

[13] N. Kasabov, L. Liang, R. Krishnamurthi, V. Feigin, M. Othman, Z. Hou,
and P. Parmar, “Evolving spiking neural networks for personalised
modelling of spatio-temporal data and early prediction of events: A
case study on stroke,” Neurocomputing, 2014, accepted.

[14] T. Delbruck. (2007) jaer open source project. [April 14, 2014].
[Online]. Available: http://jaer.wiki.sourceforge.net

[15] K. Dhoble, N. Nuntalid, G. Indiveri, and N. Kasabov, “Online spatio-
temporal pattern recognition with evolving spiking neural networks
utilising address event representation, rank order, and temporal spike



learning,” in The 2012 International Joint Conference on Neural Net-
works (IJCNN), June 2012, pp. 1–7.

[16] V. Chan, S.-C. Liu, and A. Van Schaik, “Aer ear: A matched silicon
cochlea pair with address event representation interface,” Circuits and
Systems I: Regular Papers, IEEE Transactions on, vol. 54, no. 1, pp.
48–59, Jan 2007.

[17] J. Talairach and P. Tournoux, “Co-planar stereotaxic atlas of the human
brain. 3-dimensional proportional system: an approach to cerebral
imaging,” Thieme, 1988.

[18] J. L. Lancaster, M. G. Woldorff, L. M. Parsons, M. Liotti, C. S. Freitas,
L. Rainey, P. V. Kochunov, D. Nickerson, S. A. Mikiten, and P. T. Fox,
“Automated talairach atlas labels for functional brain mapping,” Human
brain mapping, vol. 10, no. 3, pp. 120–131, 2000.

[19] L. Koessler, L. Maillard, A. Benhadid, J. Vignal, J. Felblinger,
H. Vespignani, and M. Braun, “Automated cortical projection of eeg
sensors: Anatomical correlation via the international 10-10 system,”
NeuroImage, vol. 46, no. 1, pp. 64 – 72, 2009.

[20] W. Gerstner, Plausible Neural Networks for Biological Modelling,
H. Mastebroek and H. Vos, Eds. Dordrecht: Kluwer Academic
Publishers, 2001, vol. What’s different with spiking neurons?

[21] S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian
learning through spike-timing-dependent synaptic plasticity,” Nature
neuroscience, vol. 3, no. 9, pp. 919–926, 2000.

[22] N. Kasabov, K. Dhoble, N. Nuntalid, and G. Indiveri, “Dynamic evolv-
ing spiking neural networks for on-line spatio- and spectro-temporal
pattern recognition,” Neural Networks, vol. 41, pp. 188 – 201, 2013.

[23] S. Thorpe and J. Gautrais, “Rank order coding,” in Computational
Neuroscience. Springer, 1998, pp. 113–118.

[24] L. Benuskova and N. Kasabov, Computational Neurogenetic Modelling.
NY: Springer, 2007.

[25] N. Kasabov, “To spike or not to spike: A probabilistic spiking neuron
model,” Neural Networks, vol. 23, no. 1, pp. 16–19, 2010.

[26] J. I. Espinosa-Ramos, E. Capecci, and N. Kasabov, “Neuroreceptors
dependent plasticity (nrdp) learning rule for spiking neural networks,”
Neural Networks, 2015, (submitted).

[27] V. Crunelli and N. Leresche, “Childhood absence epilepsy: Genes,
channels, neurons and networks,” Nature Review Neuroscience, vol. 3,
no. 5, pp. 371–382, May 2002.

[28] J.-P. A. Manning, D. A. Richards, and N. G. Bowery, “Pharmacology of
absence epilepsy,” Trends in Pharmacological Sciences, vol. 24, no. 10,
pp. 542 – 549, 2003.


