
*Corresponding author. Tel.: #64-3-479-8319; fax: #64-3-479-8311.
E-mail address: nkasabov@otago.ac.nz (N.K. Kasabov).

Neurocomputing 00 (2001) 000}000

On-line learning, reasoning, rule extraction and aggregation
in locally optimized evolving fuzzy neural networks

Nikola K. Kasabov*
Department of Information Science, University of Otago, P.O. Box 56, Dunedin, New Zealand

Received 5 April 1999; accepted 15 April 2000

Abstract

A fuzzy neural networks are connectionist systems that facilitate learning from data, reason-
ing over fuzzy rules, rule insertion, rule extraction, and rule adaptation. The concept of
a particular class of fuzzy neural networks, called FuNNs, is further developed in this paper to
a new concept of evolving neuro-fuzzy systems (EFuNNs), with respective algorithms for
learning, aggregation, rule insertion, rule extraction. EFuNNs operate in an on-line mode and
learn incrementally through locally tuned elements. They grow as data arrive, and regularly
shrink through pruning of nodes, or through node aggregation. The aggregation procedure is
functionally equivalent to knowledge abstraction. EFuNNs are several orders of magnitude
faster than FuNNs and other traditional connectionist models. Their features are illustrated on
a bench-mark data set. EFuNNs are suitable for fast learning of on-line incoming data (e.g.,
"nancial time series, biological process control), adaptive learning of speech and video data,
incremental learning and knowledge discovery from large databases (e.g., in Bioinformatics),
on-line tracing processes over time, life-long learning. The paper includes also a short review of
the most common types of rules used in the knowledge-based neural networks. (2001
Elsevier Science B.V. All rights reserved.

Keywords: Neurocomputing; Evolving fuzzy neural networks; On-line learning; Adaptive sys-
tems; Time series prediction; Rule extraction

1. Introduction: adaptive learning and knowledge processing in connectionist-based
intelligent information systems

The complexity and the dynamics of many real-world problems, especially in
engineering and manufacturing, requires sophisticated methods and tools for building

NEUCOM 1207
pp. 1}21 (col.fig.: NIL)

PROD.TYPE: COM ED: CHANAKSHI

PAGN: NVS I SCAN: MONICA/MOULI

0925-2312/01/$ - see front matter (2001 Elsevier Science B.V. All rights reserved.
PII: S 0 9 2 5 - 2 3 1 2 (0 0) 0 0 3 4 6 - 5

intelligent information systems (IS). Such systems should be able to learn and deal
with di!erent types of data and knowledge through interaction with the environment
in an incremental way. Seven major requirements to the IS are listed below as
explained in [28]. An IS should be able to:

(1) learn fast from a large amount of data, e.g., through one-pass training;
(2) adapt in an on-line mode where new data is incrementally accommodated;
(3) have an `opena structure where new features (relevant to the task) can be

introduced at any stage of the system's operation, e.g., the system creates `on the
#ya new inputs, new outputs, new modules and connections;

(4) memorize data exemplars for a further re"nement, or for information retrieval;
(5) learn and improve through active interaction with other IS and with the environ-

ment in a multi-modular, hierarchical fashion;
(6) adequately represent space and time in their di!erent scales; have parameters that

represent short- and long-term memory, age, forgetting, etc.;
(7) deal with knowledge in its di!erent forms (e.g., rules; probabilities); analyze itself

in terms of behavior, global error and success; `explaina what the system has
learned and what it `knowsa about the problem it is trained to solve; make
decisions for a further improvement.

Some of the above seven issues have already been addressed in di!erent connection-
ist systems. Such systems can successfully perform incremental learning [7}15],
on-line learning [9,13,20]; can deal with rules [3,5,17,32,34,40,49,50,55]. The latter
class of neural networks (NN) are also called knowledge-based neural networks
(KBNN).

On-line learning is concerned with learning data as the system operates (usually in
a real time) and data might exist only for a short time. NN models for on-line learning
are introduced and studied in [1,9,13,20,34,55]. Several investigations proved that the
most popular neural network models and algorithms are not suitable for adaptive,
on-line learning, that include: multi-layer perceptrons trained with the backpropaga-
tion algorithm, radial basis function networks [13], self-organising maps (SOMs)
[35,36], and fuzzy neural networks [22,40]. These models either operate on a "xed
size connectionist structure, that limits its ability to accommodating new data; they
may require both new data and the preciously used ones in order to adjust to the new
data; they may require many iterations of passing data through the connectionist
structure in order to learn it, which could be unacceptably time-consuming; they may
be based on a global optimization algorithm, i.e., during the learning of each data item
all the elements of the connectionist structure need to be adjusted. Problems of
choosing the optimal initial structure, of arriving at a local minimum, of catastrophic
forgetting, of lack of meaningful explanation of the stored in the connections informa-
tion, and others, are often experienced (see [4]).

KBNN are pre-structured neural networks that allow for data and knowledge
manipulation, including learning from data, rule insertion, rule extraction, adaptation
and reasoning. KBNN have been developed either as a combination of symbolic AI
systems and NN [3,25,49,50], or as a combination of fuzzy logic systems [56] and NN

2 N.K. Kasabov / Neurocomputing 000 (2001) 000}000

NEUCOM 1207

[18,22}32,40,55], or as other hybrid systems [24,40,55]. Rule insertion and rule
extraction operations are typical operations for a KBNN to accommodate existing
knowledge along with data, and to produce an explanation on what the system has
learned.

Many of the existing KBNN can capture rules but cannot operate in an on-line
mode. They are usually trained in a batch, o!-line mode, and then rules are extracted.
A representative of this class KBNN is called fuzzy neural network FuNN [24}27,32]
and is described in Section 3. FuNNs can be used to learn from data and for rule
extraction and rule insertion. FuNN is further developed into a new class of KBNN
called evolving fuzzy neural networks EFuNN (Section 4). EFuNNs have the advant-
ages of the traditional NNs, KBNNs, and instance-based learning systems, but in
addition they can operate in an on-line mode. The move from FuNNs to EFuNNs is
a move from global optimization to local element tuning, from multiple-pass learning
to one-pass learning, from a "xed connectionist structure to a #uctuating one,
allowing for growing through insertion of nodes, and shrinking through node ag-
gregation or pruning. This is also a move from one type of rules, that is dealt with in
the FuNN structure, to another type, that is dealt with in the EFuNN structure, from
the fuzzy neural network principles, where a NN structure is associated with linguisti-
cally meaningful fuzzy concepts, to neuro-fuzzy systems, where a connectionist-type
learning mechanism is associated with a set of fuzzy rules. The two systems, FuNN
and EFuNN, have a similar connectionist structure, but are based on di!erent
learning principles that de"ne their functionality and applicability. A comparative
analysis of FuNNs and EFuNNs is presented and illustrated on a bench-mark
problem of dynamic time-series prediction.

Before the principles of FuNNs and EFuNNs, and the transition between the two,
are described, di!erent types of rules widely used in the KBNN, and some of them in
the FuNN and the EFuNN architectures, are presented in the section below.

2. Rule extraction from KBNN = di4erent types of rules

Knowledge (e.g., rules) is the essence of what a KBNN system has learned during its
operation. Manipulating rules in a KBNN can pursue the following objectives:

(1) Understanding and explanation of the data used to train the KBNN; improve-
ment of the KBNN system. The extracted rules can be analyzed either by experts,
or by the system itself [18,22,24,32,40,55]. Di!erent methods for reasoning can be
subsequently applied to the extracted set of rules [24,56].

(2) Maintaining an optimal size of the KBNN that is adequate to the expected
accuracy of the system. Reducing the structure of a KBNN can be achieved
through regular pruning of nodes and connections thus allowing for knowledge
to emerge in the structure, or through aggregating nodes into bigger rule clusters.
The former approach is used in [19,21,38,39,41,44,46,47,53]. The latter one is
explored in this paper. It is based on a regular aggregation of rule nodes in the
KBNN structure, which is equivalent to aggregating rules into rule clusters before

N.K. Kasabov / Neurocomputing 000 (2001) 000}000 3

NEUCOM 1207

new data and new knowledge is accommodated in the system. This is the case
with the EFuNNs.

Di!erent KBNNs are designed to represent di!erent types of rules, some of them
listed below [24]:

(1) Simple propositional rules (e.g., IF x1 is A AND/OR x2 is B THEN y is C, where
A, B and C are constants, variables, or symbols of true/false type);

(2) Propositional rules with certainty factors (e.g., IF x1 is A (CF1) AND x2 is
B (CF2) THEN y is C (CFc));

(3) Zadeh}Mamdani fuzzy rules [56] (e.g., IF x1 is A AND x2 is B THEN y is C,
where A, B and C are fuzzy values represented by their membership functions);

(4) Takagi}Sugeno fuzzy rules [22,40] (e.g., IF x1 is A AND x2 is B THEN y is
a.x1#b.x2#c, where A, B and C are fuzzy values and a, b and c are constants);

(5) Fuzzy rules of type (3) with degrees of importance and certainty degrees
[18,24,32] (e.g., IF x1 is A (DI1) AND x2 is B (DI2) THEN y is C (CFc), where
DI1 and DI2 represent the importance of each of the condition elements for the
rule output, and the CFc represents the strength of this rule);

(6) Fuzzy rules that represent associations of clusters of data from the problem space
(e.g., Rule j: IF [an input vector x is in the input cluster de"ned by its center (x1 is
Aj, to a membership degree of MD1j, AND x2 is Bj, to a membership degree of
MD2j) and by its radius Rj-in] THEN [y is in the output cluster de"ned by its
center (y is C, to a membership degree of MDc) and by its radius Rj-out, with
Nex(j) examples represented by this rule] (see [5,9,34,36]);

(7) Temporal rules [30] (e.g., IF x1 is present at a time moment t1 (with a certainty
degree and/or importance factor of DI1) AND x2 is present at a time moment t2
(with a certainty degree/importance factor DI2) THEN y is C (CFc));

(8) Temporal, recurrent rules (e.g., IF x1 is A (DI1) AND x2 is B (DI2) AND y at the
time moment (t!k) is C THEN y at a time moment (t#n) is D (CFc)).

FuNNs deal with rules of type (5), and EFuNNs deal with rules of type (6), (7) and
(8). Here only EFuNN rules of type (6) are discussed.

There are several methods for rule extraction from a KBNN. Three of them are
explained below:

(1) Rule extraction through activating a trained KBNN on input data and observing
the patterns of activation (the short-term memory). The method is not practical
for on-line, incremental learning in IS as past data may not be available for
a consecutive activation of the trained KBNN. This method is widely used in
brain-research (e.g., analyzing MRI, fMRI and EEG patterns and signals to detect
rules of behavior [2,4]).

(2) Rule extraction through analysis of the connections in a trained KBNN
[3,18,24,40,55] (the long-term memory). This approach allows for extracting
knowledge without necessarily activating the connectionist system again on input
data. It is appropriate for on-line learning and system improvement. This is the

4 N.K. Kasabov / Neurocomputing 000 (2001) 000}000

NEUCOM 1207

case in the rule extraction procedures of FuNNs and EFuNNs. This approach is
not used in brain study research as there are no methods known so far for
processing information stored in neuronal synapses.

(3) Combined methods of (1) and (2).

In terms of applying the extracted rules from a KBNN to infer new information,
there are three types of methods used in the KBNN:

(1) The rules extracted from a KBNN are interpreted in another inference machine.
The learning module is separated from the reasoning module. This is also the
main principle used in many AI and expert systems, where the rule base acquisi-
tion is separated from the inference machine [5,24,40].

(2) The rule base learning and reasoning modules constitute an integrated structure,
so reasoning is part of the rule learning, and vice versa. This is the case of
EFuNNs.

(3) The two options from above are possible within one intelligent system.

In terms of learning modes in a KBNN, we can di!erentiate the following cases:
(1) o!-line learning and rule extraction*"rst learning is performed and then rules are
extracted which is one}o! process, an example for such systems is FuNN; (2) on-line
learning and rule extraction* rules can be extracted as part of the continuous on-line
learning process, an example is EFuNN.

In terms of mode of optimization of the connections as part of the learning process,
there are three cases: (1) globally optimized KBNN* an example is FuNN; (2) locally
optimized KBNN* an example is EFuNN; (3) a mixture of both partial and global
optimization. Globally optimized KBNN use global optimization algorithms, such as
gradient-descent algorithms (e.g., [5,13,18,32,40,55]), and genetic algorithms (e.g.,
[16,48,52]). Usually these algorithms are computationally expensive, require the
whole previous data in order the system to adjust to new data, and are applied in an
o!-line, batch mode. These methods often cause local minimum problems and
catastrophic forgetting when used for on-line adaptation [24]. They require multiple
iterations to train the KBNN. The KBNN optimized through a mixture of local and
global optimization use a combination of locally optimized elements, and another
part of the connectionist structure being globally optimized. This approach is used in
radial basis function NN [13], the feature space mapping [9], the GAL method [1],
growing and splitting elastic nets [14], melting octree network [11], CONSIDER
[49]. The partially locally optimized KBNN still involve global optimization algo-
rithms, that may cause a problem when applied to on-line learning tasks.

The method of local optimization of KBNN would allow for adjusting the KBNN
to new data through tuning a small number of elements, and also for extracting locally
meaningful rules. The rules can be tuned as the system works, can be optimized and
used for a higher level processing. Some theoretical investigations on locally opti-
mized systems have been conducted by Vapnik and Bottou [51]. One approach to
building locally optimized KBNN for adaptive learning, rule extraction, rule agg-
regation, and rule reasoning for the purpose of a continuous adaptation in an

N.K. Kasabov / Neurocomputing 000 (2001) 000}000 5

NEUCOM 1207

Fig. 1. An exemplar FuNN structure.

on-line, life-long learning mode is based on the EFuNN structure and is presented in
Sections 4 and 5.

On-line learning and local optimization in a KBNN would allow for tracing
the process of knowledge emergence, for analyzing how rules change over time.
That is illustrated in Section 5 on the bench mark data set with the use of the
EFuNN.

3. Fuzzy neural networks FuNNs = global optimization in multiple steps, synergistic
reasoning over synergistic rules

3.1. The FuNN architecture. learning, reasoning and rule extraction in FuNNs

Fuzzy neural networks are NN models that allow for fuzzy rules to be manipulated
[5,18,22,24,32,34,55]. FuNN is a fuzzy neural network introduced in [24] and de-
veloped in [25}27,32] (see also WWW site: http://divcom.otago.ac.nz/infoscie/kel/
CBIIS.htm }' FuzzyCope3). FuNN is a connectionist feed-forward architecture
with "ve layers of neurons and four layers of connections (Fig. 1). The "rst layer of
neurons receives the input information. The second layer (the condition element layer)
calculates the fuzzy membership degrees to which the input values belong to
prede"ned fuzzy membership functions, e.g., small, large. The third layer of neurons
(rule layer) represents associations between the input and the output variables, fuzzy
rules. The fourth layer (action element layer) calculates the degrees to which output
membership functions are matched by the input data, and the "fth layer performs
defuzzi"cation and calculates exact values for the output variables. Each layer of
neurons has a set of parameters that de"ne, respectively, its summation function* to
aggregate the incoming signals, its activation function * to calculate the activation
value of the neurons, and its output function * to calculate the output values.

Learning in FuNNs is based on global optimization techniques and the output error
is minimized through changing all the connection weights for multiple learning

6 N.K. Kasabov / Neurocomputing 000 (2001) 000}000

NEUCOM 1207

Fig. 2. Modeling the gas-furnace data with FuNN* rules extracted after a FuNN was trained on the "rst
half of the data set. A, B, and C denote `smalla, `mediuma, and `largea fuzzy values, respectively,
represented as triangular membership functions.

iterations [32]. Several global optimization training algorithms have been developed
for FuNNs [24,32]. They include:

(a) A modi"ed back-propagation (BP) algorithm that does not change the input and
the output connections that represent the membership functions (MF).

(b) A modi"ed BP algorithm that utilizes structural learning with forgetting, i.e.,
a small forgetting ingredient, e.g., 10~5, is used when the connection weights are
updated [21,37].

(c) A modi"ed BP algorithm that updates both the inner connection layers and the
membership layers. This is possible when the derivatives are calculated separately
for the two parts of the triangular MF. These are also the non-monotonic
activation functions of the neurons in the condition element layer [32].

(d) A genetic algorithm for training [52] * implemented in the FuzzyCOPE/3
simulator.

(e) Training with the so-called zeroing and pruning method [26].

The membership functions (MF), used in FuNN to represent fuzzy values, are either
of a triangular, or of a Gaussian type, the centers of them being attached as weights to
the corresponding connections. The MF can be modi"ed during the learning proced-
ure (e.g., altering the centers and the widths of the triangular MF).

When a trained FuNN is recalled on a new input data vector x', the FuNN
performs a fuzzy reasoning procedure of a synergistic type [24,32], i.e., the output
vector y' is calculated as a result of the activation of all rule nodes (each of them
representing one fuzzy rule of type (5) as described in Section 1), every node contribu-
ting to certain degree to the "nal result. This is a typical fuzzy inference method,
implemented in a FuNN structure with the weighted sum operation and a sigmoidal
activation function.

The FuNN is designed to allow for fuzzy rules of type (5) to be inserted and
extracted [24,27,32]. An example of a set of rules is given in Fig. 2 and will be
explained later in this section. The rule extraction procedure consists of the following
steps:

N.K. Kasabov / Neurocomputing 000 (2001) 000}000 7

NEUCOM 1207

RE1: Train a FuNN that was pre-structured according to certain fuzzy representa-
tion of the problem under consideration (inputs, outputs, "xed number of rule nodes,
learning parameters, etc.)

RE2: Represent each rule node as a rule of type (5). For this purpose:

(a) The connection weights are thresholded with the use two thresholds, Thr1 and
Thr2, for the condition-to-rule layer, and for the rule-to-action element layer,
respectively.

(b) Each rule node is represented as a rule according to the FuNN structure shown in
Fig. 1, where only the highest-value condition element for each input variable is
represented in each rule with its neighboring condition elements all expressed in
their corresponding linguistic fuzzy concepts.

RE3: Aggregate rules that have same condition and conclusion parts and di!er only
in the values of the degrees of importance and certainty degrees through calculating
the maximum values for them.

3.2. Using FuNNs for modeling and knowledge manipulation

The gas-furnace data has been used by many researchers in the area of neuro-fuzzy
engineering [22,40]. The data set consists of 292 consecutive values of methane at
a time moment (t!4), and the carbon dioxide (CO

2
) produced in a furnace at a time

moment (t!1) as input variables, with the produced CO
2

at the moment (t) as an
output variable.

The following steps illustrate just one method of using FuNNs for a time-series
modelling: (1) A FuNN is trained on the "rst half of the data set until convergence; (2)
The trained FuNN is tested on the other half and error is calculated; (3) Weighted
fuzzy rules of type (5) are extracted from the trained FuNN, where 3 membership
functions, uniformly distributed on each of the input and output variable domains,
respectively, are used. Some of the extracted rules are shown in Fig. 2.

The structure and the training of FuNNs make it possible to interpret the incoming
connection weights to the rule node as degrees of importance, and the outgoing
connection weights from the rule nodes as certainty degrees.

FuNNs have several advantages when compared with the traditional connectionist
systems, or with the fuzzy inference systems: (1) they are both statistical and knowl-
edge engineering tools; (2) they are relatively resistant to catastrophic forgetting, i.e.,
when they are further trained on new data, they do not forget much about the
previously used data; (3) they interpolate and extrapolate well in regions where data is
sparse; (4) they accept both real input data and fuzzy input data.

At the same time there are di$culties when using FuNNs for incremental, on-line
learning as FuNNs have a "xed structure and their training is based on global
optimization, rather than on a local element tuning technique. The requirement for
a global optimization and multiple iteration training would not be suitable for on-line
training. The "xed number of rule nodes is opposite to the requirements listed in
Section 1 for having an open structure where new data, new inputs and outputs can be

8 N.K. Kasabov / Neurocomputing 000 (2001) 000}000

NEUCOM 1207

Fig. 3. An exemplar EFuNN structure.

accommodated at any time of the operation of the system. In order to overcome these
drawbacks a new architecture was developed* the EFuNN, as presented in the next
section.

4. Evolving fuzzy neural networks EFuNNs: local optimization, on-line learning,
one-rule reasoning, structural growth, and structural aggregation

4.1. The architecture and the principles of EFuNNs

EFuNNs are introduced in [28}30] where preliminary results were given. Here
EFuNNs are further developed, analyzed and applied to a bench-mark problem. An
EFuNN has a "ve-layer structure, similar to the structure of FuNNs (Fig. 1), but here
nodes and connections are created/connected as data examples are presented. An
optional short-term memory layer can be used through a feedback connection from
the rule (also called, case) node layer. The layer of feedback connections could be used
if temporal relationships between input data are to be memorized structurally [30]
* Fig. 3.

In contrast to the FuNNs, in EFuNNs the rule layer, the condition-to-rule connec-
tion layer and the rule-to-action connection layer have the meaning expressed in rules
of type (6) (from Section 2). The third layer of neurons in EFuNN evolves through
hybrid supervised/unsupervised learning. Each rule node r is de"ned by two vectors of
connection weights*=1(r) and=2(r), the latter being adjusted through supervised
learning based on the output error, and the former being adjusted through unsuper-
vised learning based on similarity measure within a local area of the problem space.
The fourth layer of neurons represents fuzzy quantization for the output variables,

N.K. Kasabov / Neurocomputing 000 (2001) 000}000 9

NEUCOM 1207

similar to the input fuzzy neurons representation. The "fth layer represents the real
values for the output variables.

The evolving process may be based on either of the following two assumptions:
(1) no rule nodes exist prior to learning and all of them are created (generated) during
the evolving process; or (2) there is an initial set of many rule nodes that are connected
to the input and output nodes but their connections are de"ned and updated through
the learning (evolving) process. The latter case is more biologically plausible as when
a child is born its brain contains almost all neurons and connections but their
structure and functionality evolve with the development of the person. The EFuNN
evolving algorithm presented in the next section does not make a di!erence between
these two cases.

Each rule node, e.g., r
j
, represents an association between a hyper-sphere from the

fuzzy input space and a hyper-sphere from the fuzzy output space, the =1(r
j
)

connection weights representing the co-ordinates of the center of the sphere in the
fuzzy input space, and the=2(r

j
)* the co-ordinates in the fuzzy output space. The

radius of the input hyper-sphere of a rule node r
j
is de"ned as R

j
"1!S

j
, where S

j
is

the sensitivity threshold parameter de"ning the minimum activation of the rule node
r
j

to a new input vector x from a new example (x, y) in order the example to be
considered for association with this rule node. The pair of fuzzy input}output data
vectors (x

f
, y

f
) will be allocated to the rule node r

j
if x

f
falls into the r

j
input receptive

"eld (hyper-sphere), and y
f

falls in the r
j

output reactive "eld hyper-sphere. This is
ensured through two conditions, that a local normalized fuzzy di!erence between
x
f

and =1(r
j
) is smaller than the radius r

j
and the normalized output error Err"

DD y!y@DD/N
065

is smaller than an error threshold E, N
065

is the number of the outputs in
the EFuNN and y@ is the output vector produced by the EFuNN. The error threshold
parameter E sets the error tolerance of the system. It also de"nes the radius of the
output cluster for each rule node.

De5nition. A local normalised fuzzy distance between two fuzzy membership vectors
d
1f

and d
2f

that represent the membership degrees to which two real data vectors
d
1

and d
2

belong to pre-de"ned MFs, is calculated as

D(d
1f

, d
2f

)"DDd
1f

!d
2f

DD/DDd
1f

#d
2f

DD, (1)

where: DDp!qDD denotes the sum of all the absolute values of a vector that is obtained
after vector subtraction (or summation in case of DDp#qDD) of two vectors p and q;
` / a denotes division. For example, if d

1f
"(0,0,1,0,0,0) and d

2f
"(0,1,0,0,0,0), than

D(d
1
, d

2
) " (1#1)/2"1 which is the maximum value for the local normalized fuzzy

di!erence when uniformly distributed triangular membership functions are used. In
EFuNNs, the local normalized fuzzy distance is used to measure the distance between
a new input data vector and a rule node in the local vicinity of this rule node. In RBF
networks Gaussian radial basis functions are allocated to the nodes and used as
activation functions to calculate the distance between the node and the input vector
across the whole input space.

Through the process of associating new data points to a rule node r
j
, the center of

this node and its radius adjust in the fuzzy input space depending on the distance

10 N.K. Kasabov / Neurocomputing 000 (2001) 000}000

NEUCOM 1207

between the new input vectors and the current rule node position, and on a learning
rate l

j
, and in the fuzzy output space depending on the output error through the

Widrow}Ho! LMS algorithm (delta algorithm). This adjustment can be represented
mathematically by the change of the connection weights of the rule node r

j
from

=1(r(t)
j
) and =2(r(t)

j
) to =1(r(t`1)

j
) and =2(r(t`1)

j
), respectively, according to the

following vector operations:

=1(r(t`1)
j

)"=1(r(t)
j
)#l

j
(=1(r(t)

j
)!x

f
) (2)

=2(r(t`1)
j

)"=2(r(t)
j
)#l

j
(A2!y

f
)A1(r(t)

j
)

where A2"f
2
(=2A1) is the activation vector of the fuzzy output neurons in the

EFuNN structure when x is presented; A1(r(t)
j
)"f

1
(D(=1(r(t)

j
), x

f
)) is the activation

of the rule node r(t)
j
; a simple linear function can be used for f

1
and f

2,
e.g.,

A1(r(t)
j
)"1!D(=1(r(t)

j
), x

f
)); l

j
is the current learning rate of the rule node r

j
cal-

culated as l
j
"1/Nex(r

j
), where Nex(r

j
) is the number of examples currently asso-

ciated with rule node r
j
. The statistical rationale behind this is that the more examples

are currently associated with a rule node the less it will `movea when a new example
has to be accommodated by this rule node. When a new example is associated with
a rule node r

j
not only its location in the input space, but also its receptive "eld

expressed as its radius Rj, and its sensitivity threshold Sj, change as follows:

Rj(t`1)"Rj(t)#D(=1(r(t`1)
j

),=1(r(t)
j
)), (3)

respectively: Sj(t`1)"Sj(t)!D(=1(r(t`1)
j

),=1(r(t)
j
))

While the connection weights=1 and=2 capture fuzzy co-ordinates of the learned
prototypes (exemplars) represented as centers of hyper-spheres, the temporal layer of
connection weights =3 from Fig. 3 captures temporal dependencies between con-
secutive data examples. If the winning rule node at the moment (t!1) (to which the
input data vector at the moment (t!1) was associated) was r(t~1)

.!9
, and the winning

node at the moment t is r(t)
.!9

, then a link between the two nodes is established as
follows:

=3(r(t~1)
.!9

, r(t)
.!9

)/%8"=3(r(t~1)
.!9

, r(t)
.!9

)0-$#l
3
.A1(r(t~1)

.!9
)A1(r(t)

.!9
) (4)

where A1(r(t)) denotes the activation of a rule node r at a time moment (t); l
3

de"nes the
degree to which the EFuNN associates links between rule nodes (clusters, prototypes)
that include consecutive data examples. If l

3
"0, no temporal associations are

learned.
The EFuNN system was explained so far with the use of one rule node activation

(the winning rule node for the current input data). The same formulas as above are
applicable when activation of m rule nodes (m'1) is propagated and used (the
so-called `many-of-na mode, or `m-of-na for short). Usually m"3.

The supervised learning in EFuNN is based on the above-explained principles, so
when a new data example d"(x, y) is presented, the EFuNN either creates a new rule
node r

n
to memorize the two input and output fuzzy vectors =1(r

n
)"x

f
and

=2(r
n
)"y

f
, or the EFuNN adjusts the position and the radius of an existing rule

node r
j

to accommodate this example.

N.K. Kasabov / Neurocomputing 000 (2001) 000}000 11

NEUCOM 1207

After a certain time (when certain number of examples have been presented) some
neurons and connections may be pruned or aggregated. Aggregation techniques are
explained in a later section of the paper.

Di!erent pruning rules can be applied for a successful pruning of unnecessary nodes
and connections. One of them is given below:

IF (Age(r
j
)'OLD) AND (the total activation TA(r

j
) is less than a pruning

parameter Pr times Age (r
j
)) THEN prune rule node r

j
, where Age(r

+
) is calculated

as the number of examples that have been presented to the EFuNN after r
j

had
been "st created; OLD is a pre-de"ned age limit; Pr is a pruning parameter in the
range [0,1], and the total activation TA(r

j
) is calculated as the number of examples

for which r
j
has been a correct winning node (or among the m winning nodes in the

m-of-n mode of operation).

The pruning rule and the way the values for the pruning parameters are de"ned,
depend on the application task.

4.2. Local versus global generalization error. EFuNNs for on-line learning of dynamic
time series

Modeling, tracing and predicting chaotic dynamic time series of continuously
incoming data (with possibly changing dynamics) is an extremely di$cult task. It can
only be attempted with the use of on-line learning methods and the application of
locally optimized structures as it is the case of EFuNNs. Here, the on-line learning
ability of EFuNNs through one-pass local optimization is illustrated on the same
gas-furnace bench-mark time-series data set as it was the case in Section 3 when
FuNN was used.

In contrast to the experiment with the FuNN, here an EFuNN was trained on each
data pair of input}output vectors as they become available in an on-line mode, and
then tested immediately to predict the following data item, before the latter is
accommodated (learned) in the system. Fig. 4a shows the real versus the predicted by
an EFuNN values when the EFuNN was trained on the "rst half of the gas-furnace
data (o!-line, one-pass training). The evolved EFuNN is tested in an o!-line mode
on the second half of the data, similar to the training and testing of FuNN from
Section 3 (Fig. 4b). The results are much better when EFuNN continues to evolve
on each data example from the second half of the data set after it is tested on this
example (on-line continuous evolving), as we can assume that the desired output
values of the time series become available in the evolving process * Fig. 4c.

For an on-line learning mode, in which the EFuNN is adjusted incrementally to
each example from the data stream, the generalization error on the next new input
vector (for which the output vector is not known) is called local generalization error.
The local generalization error at the moment t, for example, when the input vector is
Xdt, and calculated by the evolved EFuNN output vector is>dt@, is expressed as Err

t
.

The cumulative local generalization error can be estimated as

TErr
t
"sumMErr

5
N
, t/1,2,2i

. (5)

12 N.K. Kasabov / Neurocomputing 000 (2001) 000}000

NEUCOM 1207

Fig. 4. The process of an EFuNN evolving on the gas-furnace data set. The desired versus the predicted one
step ahead value by the EFuNN when: (a) EFuNN trained on the "rst half of the data; RMSE"0.88; (b) the
trained from (a) EFuNN is tested on the second half of the data set* RMSE"4.70; (c) an EFuNN trained
on the "rst half is continuously tested on each example from the second half and after that this example is
added to the EFuNN* RMSE"0.81. The following parameter values have been assigned [3.000, 0.100,
!1.000, 70.000, 60.000, 0.500, 2.000, 1.000, 1.000, 0.100, 0.100] to the respective parameters: number of
MF, E, Pr, Age, N

!''
, R

.!9
, distance measure (in this case it is Euclidean); m; normalized values used;

¹1 and ¹2.

N.K. Kasabov / Neurocomputing 000 (2001) 000}000 13

NEUCOM 1207

In contrast to the global generalization error calculated for FuNNs, which can also be
calculated for EFuNNs, here the error Err

t
is calculated after the EFuNN has learned

the previous example (Xd(t!1), >d(t!1)). Each example is propagated only once
through the EFuNN, both for testing the error and learning (after the output vector
becomes known). The root mean square error can be calculated for each data point Di
from the input data stream as

RMSE(i)"sqrt(sumMErr
5
N
t/1,2,..,i

)/i, (6)

where Err
t
"(d

t
!o

t
)2, d

t
is the desired output value and o

t
is the EFuNN output

value produced for the t
th

input vector Dt. The non-dimensional error index NDEI(i)
can also be calculated as

NDEI(i)"RMSE(i)/std(D(1 : i)), (7)

where std(D
1

:Di) is the standard deviation of the data points from D
1

to Di.
After an EFuNN is evolved on some examples from the problem space, its global

generalization error can be evaluated on a set of p new examples from the problem
space as follows:

GErr"sumMErr
i
N
i/1,2,2p

, (8)

where Err
i
is the error for a vector x

i
from the input space X, which vector has not

been and will not be used for training the EFuNN before the value GErr is calculated.
After having evolved an EFuNN on a small, but representative part of the whole
problem space, its global generalization error may become su$ciently small.

When issues such as universality of the EFuNN mechanism, learning accuracy,
generalization and convergence for di!erent tasks are discussed, two cases must be
distinguished:

(A) The incoming data is from a compact and bounded data space. In this case the
more data vectors are used for evolving an EFuNN, the better its global general-
ization is on the whole problem space (or on an extraction of it).

(B) Open problem space, where the data dynamics and data probability distribution
change over time in a continuous way. Here, only local generalization error can
be evaluated.

5. Fuzzy rule insertion, on-line rule adaptation, and rule extraction in EFuNNs for
on-line applications

5.1. Rule insertion, rule adaptation, rule aggregations and rule extraction in EFuNNs

EFuNNs are adaptive rule-based systems. Manipulating rules is essential for their
operation. This includes rule insertion, rule extraction, and rule adaptation.

At any time (phase) of the evolving (learning) process, fuzzy or exact rules can be
inserted and extracted from an EFuNN structure. Insertion of fuzzy rules is achieved
through setting a new rule node r

j
for each new rule, such that the connection weights

=1(r
j
) and =2(r

j
) of the rule node represent this rule. For example, the fuzzy rule

14 N.K. Kasabov / Neurocomputing 000 (2001) 000}000

NEUCOM 1207

Fig. 5. The process of EFuNN aggregation and structure optimization can be viewed as a process of
knowledge abstraction * associated clusters in the problems space emerge from the structure.

(IF x
1

is Small and x
2

is Small THEN y is Small) can be inserted into an EFuNN
structure by setting the connections of a new rule node to the fuzzy condition nodes
x
1
-Small and x

2
-Small and to the fuzzy output node y-Small to a value of 1 each. The

rest of the connections are set to a value of zero. Similarly, an exact rule, e.g., IF x
1

is
3.4 and x

2
is 6.7 THEN y is 9.5, can be inserted into an EFuNN structure. Here the

membership degrees to which the input values x
1
"3.4 and x

2
"6.7, and the output

value y"9.5 belong to the corresponding fuzzy values are calculated and attached to
the corresponding connection weights.

Rule extraction and rule aggregation are important operations as EFuNN is a know-
ledge-based connectionist model. Each rule node r

j
can be expressed as a fuzzy rule,

for example:

r
j
: IF x1 is Small 0.85 and x1 is Medium 0.15 and x2 is Small 0.7 and x2 is Medium

0.3 (Radius of the receptive "eld Rj"0.1, maxRadiusj"0.2) THEN y is Small 0.2
and y is Large 0.8 (Radius of the reactive "eld E) [number of examples associated
with this rule 20 out of 175],

where the numbers attached to the fuzzy labels denote the degrees to which the centers
of the input and the output hyper-spheres belong to the respective MF. The degrees
associated to the condition elements are the connection weights from the matrix=1.
Only values that are greater than a threshold ¹1 are shown in the rules. The degrees
associated with the conclusion part are the connection weights from =2 that are
greater than a threshold ¹2. The other parameters associated with the rule represent
the importance and the strength of the rule. An example of rules extracted from
a bench-mark dynamic time-series data is given in the next sub-section. The two
thresholds ¹1 and ¹2 are used to disregard the connections from=1 and=2 that
represent small and insigni"cant membership degrees (e.g., less than 0.1).

Another knowledge-based technique applied to EFuNNs is rule node aggregation.
Through this technique several rule nodes that are close to each other in the problem
space are merged into one. The idea is illustrated in Fig. 5.

The aggregation procedure is presented here on a simple case of three rule nodes
r
1
, r

2
, and r

3
. Either of the two aggregation rules can be used to calculate the=1

N.K. Kasabov / Neurocomputing 000 (2001) 000}000 15

NEUCOM 1207

connections of a new aggregated rule node r
!''

(the same formulas are used to
calculate the =2 connections)

f as a geometrical center of the three nodes:

=1(r
!''

)"(=1(r
1
)#=1(r

2
)#=1(r

3
))/3. (9)

f as a weighted statistical center:

=2(r
!''

)"(=2(r
1
)N

%9
(r
1
)#=2(r

2
)N

%9
(r
2
)#=2(r

3
)N

%9
(r
3
))/N

sum
, (10)

where Nex(r
!''

)"N
46.

"N
%9

(r
1
)#N

%9
(r
2
)#Nex(r

3
); Rr

!''
"d(=1(r

!''
), =1(r

j
))#

Rj"R
.!9

, where r
j

is the rule node among the three nodes that has a maximum
distance from the new node r

!''
and Rj is its current radius of the receptive "eld. The

three rule nodes will aggregate only if the radius of the aggregated node is less than
a pre-de"ned maximum radius R

.!9
.

In order to chose for a given node r
j

which other nodes it should aggregate with,
two subsets of nodes are formed* the subset of nodes Nj-pos"Mr

k
N that if activated

to a degree of 1 will produce an output value y@(r
k
) that is di!erent from y@(r

j
) in less

than the error threshold E, and the subset of nodes Nj-neg"Mr
p
N so that nodes r

p
cause output values to be di!erent from y@(r

j
) and the di!erence is higher than E. Rule

nodes r
k
from the "rst subset that are closer to r

j
in the input space than the closest to

r
j

node from the second subset Mr
p
N in terms of =1 distance, are aggregated if the

radius of the new node r
!''

is less than the pre-de"ned limit R
.!9

for a receptive "eld.
Instead of aggregating all the rule nodes from Nj-pos that are closer to the rule node

r
j
than the closest node from the other class Nj-pos, it is possible to keep the closest

node from this aggregation pool to the other class as a separate node * a `guarda,
thus preventing miss-classi"cation between the two classes in the bordering area.

Through node creation and their consecutive aggregation, an EFuNN system can
adjust over time to changes in the data stream and at the same time * preserve its
generalization capabilities.

Through analysis of the weights =3 of an evolved EFuNN, temporal correlation
between time consecutive exemplars can be expressed in terms of rules and condi-
tional probabilities, e.g.

IFr(t~1)
1

THENr(t)
2

(0.3). (11)

The meaning of the above rule is that some examples that belong to the rule
(prototype) r

2
follow in time examples from the rule prototype r

1
with a relative

conditional probability of 0.3.

5.2. Rule extraction and adaptation on the bench-mark time series data

In the experiment described below the following steps were taken:

(1) An EFuNN was evolved on half the data set for one pass learning and rules were
extracted * Fig. 6a.

16 N.K. Kasabov / Neurocomputing 000 (2001) 000}000

NEUCOM 1207

Fig. 6. Fuzzy rules (of type (6) as explained in Section 2) are extracted from: (a) an evolved on the "rst half of
the gas-furnace data EFuNN* 33 rules; (b) an EFuNN that is evolved "rst on the "rst half on the data set,
and afterwards* on the second half* 57 rules, 33 of which represent the "rst half of the data* some of
them updated on examples from the second half.

(2) The evolved in (1) EFuNN was further evolved on the other half of the data and
a next set of rules was extracted * Fig. 6b.

When compared the two sets they show a signi"cant di!erence as the EFuNN trained
on the "st set is further evolved on the second set which re#ects in both existing rules
update and the creation of new rules.

N.K. Kasabov / Neurocomputing 000 (2001) 000}000 17

NEUCOM 1207

5.3. Comparing EFuNNs with FuNNs

In [34] an extensive comparative table that compares FuNNs and 15 other
neuro-fuzzy techniques on the gas-furnace bench-mark data set is presented. FuNNs
are shown to produce much less generalization error than the other techniques given
there and compare well with the ANFIS system [22]. The clarity of the FuNNs rules
though is much better than the Takagi}Sugeno rules used in ANFIS. FuNNs
generalize well when the problem space is closed and bounded.

Both FuNN and EFuNN produce a similar global generalization error in an
o!-line mode when trained on the "rst half of the data and tested on the second half,
with FuNNs outperforming EFuNNs slightly.

The EFuNN has a de"nite advantage to the FuNN as follows:

f EFuNN structure is open, i.e., it grows and shrinks according to the data distribu-
tion and the problem under consideration.

f EFuNNs can be further trained on new data as they do not forget previously used
data, unless the pruning parameters allow for that.

f EFuNNs are much faster than FuNNs as they require one-pass learning.
f The explanation power of the EFuNN rules is better as they are local rules rather

than synergistic rules as it is in FuNN.

Simulators of both FuNN (as part of the FuzzyCOPE/3 environment) and
EFuNNs, that include learning, rule insertion and rule extraction, are available from
the Web site: http://divcom.otago.ac.nz/infoscience/kel/projects/CBIIS.htm.

6. Conclusions

The paper compares two architectures of knowledge-based neural networks
(KBNN) * FuNN, that is designed for o!-line learning and knowledge manipula-
tion, and EFuNN* designed for on-line continuous learning and knowledge manip-
ulation. The EFuNNs are orders of magnitude faster than FuNNs used for the
same tasks without compromising with the accuracy. The proposed method for
structure optimization through rule aggregation can be used to make meaningful
abstractions during the process of on-line, life long learning in the EFuNN connec-
tionist systems.

Further applications include: adaptive speech and language processing [30]; Bioin-
formatics; intelligent agents on the WWW [54] for "nancial and economic analysis
and prediction; adaptive mobile robot control; adaptive process control; adaptive
expert systems; adaptive arti"cial life systems.

7. Uncited references

[6,33,42,43,45]

18 N.K. Kasabov / Neurocomputing 000 (2001) 000}000

NEUCOM 1207

Acknowledgements

This research is part of a research programme funded by the New Zealand
Foundation for Research Science and Technology, UOOX0016.

References

[1] E. Alpaydin, GAL: networks that grow when they learn and shrink when they forget, TR 91-032,
International Computer Science Institute, Berkeley, CA, 1991.

[2] S. Amari, N. Kasabov (Eds.), Brain-Like Computing and Intelligent Information Systems, Springer,
Berlin, 1997.

[3] R. Andrews, J. Diederich, A.B. Tickle, A survey and critique of techniques for extracting rules from
trained arti"cial neural networks, Knowledge-Based Systems 8 (1995) 373}389.

[4] M. Arbib (Ed.), The Handbook of Brain Theory and Neural Networks, The MIT Press, Cambridege,
MA, 1995.

[5] H. Berenji, P. Khedkar, Learning and tuning fuzzy logic controllers through, IEEE Trans. Neural
Networks 3 (1992) 724}740.

[6] G. Carpenter, S. Grossberg, Pattern Recognition by Self-Organizing Neural Networks, The MIT
Press, Cambridge, MA, 1991.

[7] G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, D.B. Rosen, FuzzyARTMAP: a neural
network architecture for incremental supervised learning of analog multi-dimensional maps, IEEE
Trans. Neural Networks 3 (5) (1991) 698}713.

[8] H. DeGaris, Circuits of production rule* genNets* the genetic programming of nervous systems,
in: R. Albrecht, C. Reeves, N. Steele (Eds.), Arti"cial Neural Networks and Genetic Algorithms,
Springer, Berlin, 1993.

[9] W. Duch, G. Diercksen, Feature Space Mapping as a universal adaptive system, Compu. Phys.
Commun. 87 (1995) 341}371.

[10] G. Edelman, Neuronal Darwinism: The Theory of Neuronal Group Selection, Basic Books, New
York, 1992.

[11] L.M. Encarnacao, M.H. Gross, An adaptive classi"cation scheme to approximate decision
boundaries using local Bayes criterias * Melting Octree Networks, Report 92-047, International
Computer Science Institute, Berkeley, CA, 1992.

[12] C. Fahlman, C. Lebiere, The cascade- correlation learning architecture, in: D. Turetzky (Ed.),
Advances in Neural Information Processing Systems, Vol. 2, Morgan Kaufmann, Los Altos, 1990,
pp. 524}532.

[13] J.A.S. Freeman, D. Saad, On-line learning in radial basis function networks, Neural Comput. 9 (7)
(1997).

[14] B. Fritzke, Vector quantization with growing and splitting elastic net, in: ICANN'93: Proceedings of
the International Conference on Arti"cial Neural Networks, Amsterdam, 1993.

[15] B. Fritzke, A growing neural gas network learns topologies, Adv. Neural Inform. Process. Systems
7 (1995).

[16] D.E. Goldberg, Genetic Algorithms in Search, Optimisation and Machine Learning, Addison-Wesley,
Reading, MA, 1989.

[17] R.M. Goodman, C.M. Higgins, J.W. Miller, P. Smyth, Rule-based neural networks for classi"cation
and probability estimation, Neural Comput. 14 (1992) 781}804.

[18] T. Hashiyama, T. Furuhashi, Y. Uchikawa, A Decision Making Model Using a Fuzzy Neural
Network, in: Proceedings of the second International Conference on Fuzzy Logic & Neural
Networks, Iizuka, Japan, 1992, pp. 1057}1060.

[19] Hassibi, Stork, Second order derivatives for network pruning: optimal brain surgeon, in: Advances in
Neural Information Processing Systems, Vol. 4, 1992, pp. 164}171.

[20] T.M. Heskes, B. Kappen, On-line learning processes in arti"cial neural networks, in: Math.
Foundations of Neural Networks, Elsevier, Amsterdam, 1993, pp. 199}233.

N.K. Kasabov / Neurocomputing 000 (2001) 000}000 19

NEUCOM 1207

[21] M. Ishikawa, Structural learning with forgetting, Neural Networks 9 (1996) 501}521.
[22] R. Jang, ANFIS: adaptive network-based fuzzy inference system, IEEE Trans. Systems Man

Cybernet. 23 (3) (1993) 665}685.
[23] N. Kasabov, M. Watts, Spatio-temporal evolving fuzzy neural networks and their applications for

on-line, adaptive phoneme recognition, TR 99/03, Department of Information Science, University of
Otago, New Zealand.

[24] N. Kasabov, Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering, The
MIT Press, Cambridge, MA, 1996.

[25] N. Kasabov, Adaptable connectionist production systems, Neurocomputing 13 (2}4) (1996) 95}117.
[26] N. Kasabov, Investigating the adaptation and forgetting in fuzzy neural networks by using the

method of training and zeroing, Proceedings of the International Conference on Neural Networks
ICNN'96, Plenary, Panel and Special Sessions volume, 1996, pp. 118}123.

[27] N. Kasabov, Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid
systems, Fuzzy Sets and Systems 82 (2) (1996) 2}20.

[28] N. Kasabov, ECOS: a framework for evolving connectionist systems and the eco learning paradigm,
Proceedings of ICONIP'98, Kitakyushu, IOS Press, October 1998, pp. 1222}1235.

[29] N. Kasabov, The ECOS framework and the ECO learning method for evolving connectionist systems,
J. of Adv. Comput. Intell. 2 (6) (1998) 195}202.

[30] N. Kasabov, Adaptive learning system and method, Patent Reg.No.503882, New Zealand, 2000.
[31] N. Kasabov, Evolving fuzzy neural networks } algorithms, applications and biological motiva-

tion, in Proceedings of Iizuka'98, Iizuka, Japan, World Scienti"c Singapore, October 1998,
pp. 271}274.

[32] N. Kasabov, J.S. Kim, M. Watts, A. Gray, FuNN/2 } a fuzzy neural network architecture for adaptive
learning and knowledge acquisition, Inform. Sci. - Appl. 101 (3}4) (1997) 155}175.

[33] S.B. Kater, N.P. Mattson, C. Cohan, J. Connor, Calcium regulation of the neuronal cone growth,
Trends Neurosci. 11 (1988) 315}321.

[34] J. Kim, N. Kasabov, HyFIS: adaptive hybrid connectionist fuzzy inference systems, TR 99/05,
Department of Information Science, University of Otago, New Zealand.

[35] T. Kohonen, The self-organizing map, Proceedings of the IEEE 78 (9) (1990) 1464}1497.
[36] T. Kohonen, Self-Organizing Maps, 2nd Edition, Springer, Berlin, 1997.
[37] R. Kozma, N. Kasabov, Rules of chaotic behaviour extracted from the fuzzy neural network FuNN,

Proceedings of the WCCI'98 FUZZ-IEEE International Conference on Fuzzy Systems, Anchorage,
May, 1998.

[38] A. Krogh, J.A. Hertz, A simple weight decay can improve generalisation, Adv. Neural Inform. Process.
Systems 4 (1992) 951}957.

[39] Y. Le Cun, J.S. Denker, S.A. Solla, Optimal brain damage, in: D.S. Touretzky (Ed.), Advances in
Neural Information Processing Systems, Vol. 2, Morgan Kaufmann, Los Altos, 1990 pp. 598}605.

[40] C.T. Lin, C.S.G. Lee, Neuro Fuzzy Systems, Prentice-Hall, Englewood Cli!s, NJ, 1996.
[41] D. Miller, J. Zurada, J.H. Lilly, Pruning via dynamic adaptation of the forgetting rate in structural

learning, Proceedings IEEE ICNN'96, Vol.1, 1996, p.448.
[42] M.T. Mitchell, Machine Learning, MacGraw-Hill, New York, 1997.
[43] X. Mitchell, X. Melanie, An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA, 1996.
[44] M. Mozer, P. Smolensky, A technique for trimming the fat from a network via relevance assessment,

in: D. Touretzky (Ed.), Advances in Neural Information Processing Systems, Vol. 2, Morgan
Kaufmann, Los Altos, CA, 1998, pp. 598}605.

[45] S.R. Quartz, T.J. Sejnowski, The neural basis of cognitive development: a constructivist manifesto,
Behav. Brain Sci., to appear.

[46] R. Reed, Pruning algorithms * a survey, IEEE Trans. Neural Networks 4 (5) (1993) 740}747.
[47] A. Sankar, R.J. Mammone, Growing and pruning neural tree networks, IEEE Trans. Comput. 42 (3)

(1993) 291}299.
[48] W. Schi!man, M. Joost, R. Werner, Application of genetic algorithms to the construction of

topologies for multilayer perceptrons, In: C.R. Reeves, R.F. Albrecht, N.C. Steele (Eds.), Arti"cial
Neural Nets and Genetic Algorithms, Springer Wien, New York, 1993.

20 N.K. Kasabov / Neurocomputing 000 (2001) 000}000

NEUCOM 1207

[49] R. Sun, A connectionist model for commonsense reasoning incorporating rules and similarities, in:
Knowledge Acquisitions, Academic Press, Cambridge, 1992.

[50] G. Towel, J. Shavlik, M. Noordewier, Re"nement of approximate domain theories by knowledge-
based neural networks, Proceedings of the eight National Conference on Arti"cial Intelligence
AAAI'90, Morgan Kaufmann, Los Altos, CA, 1990, pp. 861}866.

[51] V. Vapnik, L. Bottou, Neural Comput. 5 (1993) 893}909.
[52] M. Watts, N. Kasabov, Genetic algorithms for the design of fuzzy neural networks, in Proceedings of

ICONIP'98, Kitakyushu, IOS Press, October 1998, pp. 793}795.
[53] L.X. Wang, Adaptive Fuzzy Systems and Control, Prentice Hall, Englewood Cli!s, NJ, 1994.
[54] M. Woldrige, N. Jennings, Intelligent agents: theory and practice, Knowledge Eng. Rev. (10) (1995).
[55] T. Yamakawa, H. Kusanagi, E. Uchino, T. Miki, A new e!ective algorithm for neo fuzzy neuron

model, Proceedings of Fifth IFSA World Congress, 1993, pp. 1017}1020.
[56] L. Zadeh, Fuzzy Sets, Inform. and Control 8 (1965) 338}353.

Nikola K. Kasabov is Professor of Information Science in the Department of
Information Science, University of Otago, Dunedin, New Zealand. He received
his M.Sc. degree in Computer Science from the Technical University in So"a,
Bulgaria, in 1971. He obtained his Ph.D. degree in Mathematical Sciences in
1975 from the same university. Kasabov has published over 200 works, among
them over 50 journal papers, 90 conference papers, 15 book chapters, 5 text
books, 2 edited research books, 3 edited conference proceedings, 19 patents
and authorship certi"cates in the area of intelligent systems, connectionist and
hybrid connectionist systems, fuzzy systems, expert systems, speech recogni-
tion, and data analysis. He is Director of the research laboratory for Know-
ledge Engineering and Computational Intelligence in the Department of
Information Science, University of Otago. Kasabov is the immediate past
President of APNNA* Asia Paci"c Neural Network Assembly. He is mem-

ber of the TC12 group on Arti"cial Intelligence of IFIP and also member of the IEEE, INNS, NZCS,
NZRS, ENNS, IEEE Computer Society. He was the general chairman of the First, the Second and the
Third New Zealand International Conferences on Arti"cial Neural Networks and Expert Systems
* ANNES'93, ANNES'95 and ANNES'97 (the latter jointly held with ICONIP'97 and ANZIIS'97).

N.K. Kasabov / Neurocomputing 000 (2001) 000}000 21

NEUCOM 1207

