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Abstract

SNN have a tremendous potential as a new paradigm to implement and
achieve computational intelligence (ClI).

Current models have some limitations that prevent their wider
application.

Based on biological evidence, new SNN models can be developed to
solve complex generic and specific tasks of Cl, where connectivity,
computability and complexity need to be optimised.

Content

1) SNN: Models, applications, challenges.

2) Simple evolving SNN (seSNN).

) Probabilistic evolving SNN (peSNN).

) Probabilistic quantum inspired evolving SNN (pgeSNN).
) Neuro-genetic evolving SNN (ngeSNN).

) Further SNN models and applications.
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1. SNN: Models, Applications, Challenges

integration Information processing principles in neurons
+ leakage \‘mq“\ - and neural networks:
— LTP and LTD;

S —
\ V— - refractory period -
4/ | |+~ Binaryevents
X} ———t—t— —
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Trains of spikes;

Time, frequency, phase and space;
Synchronisation and stochasticity;
Evolvability...

They offer the potential for:

ui(t)

So

Modelling cognitive functions through
patterns of neuronal spiking activity;

Integration of different ‘levels ‘of
information processing, i.e.: modelling
neuronal activities based on genes
and proteins.
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Rich neurophysiological information about the spiking

activities in the brain is already available
(Singer, Abeles, Freeman, Villa, Kojima, Yamaguchi, Gat, Hopfield, I1zhikevich,
Reece, Thorpe, Fize, & Marlot, Villa, Tetko, Hyland, & Najem, ...)

Electric synaptic potentials and axonal ion channels responsible for spike generation
and propagation: EPSP = excitatory postsynaptic potential, IPSP = inhibitory
postsynaptic potential, 8 = excitatory threshold for an output spike generation.

M Spike train
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Many questions have to be answered before artificial SNN
are applied for a generic or a specific task:

= What model of an artificial neuron to use?

- How to connect the neurons in a SNN?

- How to encode information in the SNN?

What learning rule to apply?

What this SNN can compute efficiently and what it cannot compute?

What is the time- and space- complexity of the SNN solution?

What CI techniques can be applied to enhance the solution (e.g. optimisation
through evolutionary algorithms (EA))?

- What software and hardware support will be needed?

- The main question always remains:

TO SPIKE OR NOT TO SPIKE?

@
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Some models of Spiking Neurons

‘Microscopic Level’: Modeling of ion channels, that depend on presence/absence of
various chemical messenger molecules:

» Hodgkin-Huxley’s (1952);

> lzhikevich’s (2003);

» Many variants of the above (e.g. FitzZHugh-Nagumo model);

» Specialised neuronal models, e.g. Inferior Colliculus (ICX) (INI, PNAS, 2010)

‘Macroscopic Level’: Neuron is a homogenous unit, receiving and emitting spikes
according to defined internal dynamics (Maass; Gerstner,Kistler):

» Spike response model (SRM);
» Integrate-and-Fire models (IF, LIF);
» Adaptive exponential IFM (Brette and Gerstner, 2005)

‘Integrative’:
» A probabilistic spiking neuron model (pSNM)
» A neuro-genetic SNM (ngSNM)
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Dynamics of the LIF neuron

Spikes stimulus
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Neural Information Encoding

» Fundamental questions in SNN:
— What is the input- and the output information encoding?
— What is the internal code used by neurons to transmit information?
— Memory encoding;
— Instructive coding;

— Can we read and understand the message of the neural activity?

» Traditionally two main theories of neural encoding:

— Rate Codes: Average of many spike events (mean firing rate of a
neuron) carries most, if not all, of the information,;

— Pulse or Spike Codes: Exact spike time carries information.

« Spike-based sensory systems for information encoding into spikes, e.g.:
- Visual information, retina chip (Tobias Delbruk, INI);
- Acoustic, cochlea chip (Shin-Chii Liu, INI).
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Rank Order Population Encoding

Distributes a single real input value to multiple neurons and may cause
the excitation and firing of several responding neurons

Implementation based on Gaussian receptive fields introduced by
Bothe ef a/. 2002
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Learning in SNN

BCM (Bienenstock, Cooper and Munro’s);

Hebbian learning;

Spike-timing dependent plasticity (STDP);

Time-to-first-spike principle (used by Thorpe);

Stochastic spike-driven synaptic plasticity (membrane potential based STDP)
(Brader, Senn and Fusi, 2007)

Perceptron learning (learn when misclassify) (D’Souza, SCLiu, Hahnloser, INI);
Reinforcement learning;

SpikeProp — supervised error back-propagation, similar to learning in classical
MLP;

(Linear) readout functions for the Liquid State Machines (Maas et al);
ReSuMe — Remote Supervised Method;

Weight optimization based on evolutionary algorithms (EA);

...other learning rules....
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Spike-Time Dependent Plasticity (STDP)

Hebbian form of plasticity in the form of long-term potentiation (LTP)
and depression (LTD)

Effect of synapses are strengthened or weakened based on the timing
of post-synaptic action potentials

Pre-synaptic activity that
precedes post-synaptic
firing can induce LTP,
reversing this temporal
order causes LTD

-0.2 —

0.4 -
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Thorpe’s Model utilising time-to-first-spike principle

« Simple but computationally efficient neural model, in which early spikes
are stronger weighted

 Model was inspired by the neural processing of the human eye and
introduced by S. Thorpe et. al. 1997

PSP uyt) of a neuron /:

( 0 if fired

u. (t) =< order( j)
O=13wm else
LT ()<t

* w; is the weight of the connection between neuron jand i, (/) is the
firing time of j, m a parameter of the model (modulation factor)

« Function order(j) represents the rank of the spike emitted by neuron /
and receive at neuron /

@
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Some SNN software and hardware platforms

» Software simulators:
* Neuron
» Genesis
 lzhikevich software
« eSNN and CNGM ( )
» SpikeNet (Delorme and Thorpe)
* JAER (INI, T. Delbruck)

« Hardware realisations:
— SPINN (TU Berlin)
— SpinNNaker (U.Manchester)
— FPGA (U.Ulster, McGinnity)
— BlueGene (IBM, Aimaden, Modha)
— Neuromorphic AER circuits and systems (G.Indivieri, INI, Zurich)
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Some SNN applications for ClI

* Modeling brain synapses (EPFL Lausanne, Markram);

« Large scale brain modeling (UCSD, Izhikevich).

» Engineering applications (IBM-Modha; Ulster- McGinnity, )

» Real-time pattern classification (Bothe et al)

» Robotics (R.Duro)

* Image processing and face recognition (Thorpe et al)

« Speech and sound modeling (Villa)

* Adaptive multimodal audio-visual information processing (KEDRI)

@
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Problems and challenges with SNN models

* Most spiking neuron models are too simplistic;

« Most SNN models have a fixed structure and functionality and do not
evolve incrementally from incoming data;

« Most SNN models are deterministic and it could be difficult to model
complex stochastic processes;

« There are very few SNN models that allow the integration of genetic
and spiking activity information;

« An integrated study and optimisation of connectivity, computability and
complexity of SNN is needed for each application;

The challenge is to develop new SNN models that would address the
above problems, e.g.:
— seSNN (section 2)
— peSNN (section3)
— pgeSNN (section 4)
— ngeSNN (section 5)

@
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Problems and challenges with SNN applications

Generic application problems, that are still difficult to achieve with
traditional SNN and some of them addressed here are:

* Incremental learning for pattern recognition;

» Learning complex spatio-temporal patterns (acoustic-, visual-, audio-
visual-, EEG-, fMRI and other brain data);

« Knowledge extraction (e.g. association rules);

* Feature selection;

« Learning finite automata of large number of states;

« Building associative memories with a very large capacity;
« Computational neuro-genetic modelling (CNGM).

@
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2. Simple evolving SNN (seSNN)

Primary Motor Inspiration from the brain

Cortex « The brain evolves through genetic
Motor Association “pre-wiring” and life-long learning

Cortex «  Evolving structures and functions
* Evolving features
« Evolving knowledge

* Local (e.g. cluster-based) learning
and global optimisation

Speech Center AT * Memory (prototype)-based learning,
i “traceable”

* Multimodal, incremental learning
« Spiking activity

» Genes/proteins involved

* Quantum effects in ion channels

Auditory Cortex
Auditory Association Area

The challenge: To develop evolving
SNN models (eSNN) to facilitate the
creation of evolving CI.
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Principles of Evolving Connectionist Systems - ECOS

« ECOS are modular connectionist-based systems that evolve their structure and
functionality in a continuous, self-organised, possibly on-line, adaptive,
interactive way from incoming information, in a supervised and unsupervised
way, facilitating knowledge discovery.

|Enviror2ment | —

« Early ECOS models: RAN (J.Platt, 1991) — evolving RBF NN; RAN with a long
term memory — Abe et al, ; Incremental FuzzyARTMAP (Carpenter , Grossberg);
Growing gas; EFuNN (Kasabov, 1998, 2001); ESOM (Deng and Kasabov,
2002); DENFIS (Kasabov and Song, 2002); EFuRS, eTS (P.Angelov, 2002;Filev,

2002)
M.Watts, Ten years of Kasabov's evolving connectionist systems, IEEE Tr SMC-
part B, 2008

* New developments: Ensembles of EFuNNs (T. Ljudemir, 2008-); Application
oriented ECOS (B.Gabric, R.Duro, A. Koenig2005-); Incremental feature
selection (Ozawa, Pang et al).
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Example: Evolving Fuzzy Neural Networks (EFUNN) for
iIncremental supervised learning

« As a general case, input and/or output variables
can be non-fuzzy (crisp) or fuzzy.

rule(case)
nodes

« EFuNN, N. Kasabov, IEEE Tr SMC, 2001.
* Incremental, supervised clustering.

. New neurons are created and connection weight: nputs outputs
are changed based on Euclidean distance
between input vectors and prototype nodes:

Aw_i=Irate * D(x, N),

and on the output error:

Aw_o=lrate * E(y, O)

@
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A seSNN model
(Kasabov, 2007; Wysoski, Benuskova and Kasabov, 2006-2009)

Creating and merging neurons based on localised information
Uses the first spike principle (Thorpe et al.) for fast on-line training
For each input vector
a) Create (evolve) a new output spiking neuron and its connections
b) Propagate the input vector into the network and train the newly created neuron

0 if fired Aw;; = m°rert)
u. (t) = order( j)
10 | ijimi else Weights change based
(<t on the spike time arrival
c) Calculate the similarity between weight vectors of newly created neuron and existing

neurons:

IF similarity > S/Mthresho/d THEN Merge newly created neuron with the most similar neuron,
where N is the number of samples previously used to update the respective neuron.

d) Update the corresponding PSP threshold 9:
W, +NW 9 St NS
1+N 1+N

W <

Three main parameters of the eSNN: Modulation factor m; Spiking threshold &, S/Athreshold

y 20, T\ @
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seSNN for person authentification based on face image data
(Wysoski, Benuskova, Kasabov, Proc. ICANN 2006, Springer LNCS, 2006)

: / > L l
_ / )

y A J
cells
Orientation
cells

r L2

e \
W= SEE\

v L4

Visual Class 1 Visual Class 2

nkasabov@aut.ac.nz www.kedri.info


mailto:nkasabov@aut.ac.nz
http://www.kedri.info/

seSNN for speaker authentification

(Wysoski, Benuskova, Kasabov, Proc. ICANN 2007, Springer, LNCS, 2006)
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seSNN for integrated audio-visual information processing

Person authentication based on auditory and visual information
(Wysoski, Benuskova and Kasabov, Proc. ICONIP, 2007, LNCS, and Neural Networks, 2010)

Auditory Frame;,

Background
Model

v Receptive fields

Speaker,
Model

Visual Frame,

B s

19

w
o

e O.
\ﬂ e

Auditory Class 1 L’

+1
EEE-m mm /

/@ /

Vo4 Contrast
—— cells

o/
N W
/
crossmod

JEN

al
connections =

Orientation
cells

Supramodal
layer

OR Neuron
PSP =1

AND Neuron
PSP ,=2

_/

nkasabov@aut.ac.nz

www.kedri.info


mailto:nkasabov@aut.ac.nz
http://www.kedri.info/

Using muti-modal audio-visual information reduces the error rate
VidTimit data base; (10 persons +2 imposters) x 4 attempts each.
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seSNN for taste recognition

S.Soltic, S.Wysoski and N.Kasabov, Evolving spiking neural networks for taste recognition, Proc.WCCI
2008, Hong Kong, IEEE Press, 2008

Tastants (food, beverages)

J L
“Artificial tongue” I | o o
v GRF layer — population rank
SN N yer—pop

coding (m receptive fields)

L1 neurons (/)
ESNN

QO | 12 neurons (i)
vV v t \* v v

« The L2 layer evolves during the learning stage (Sy).
« Each class C;is represented with an ensemble of L2 neurons
« [Each ensemble (G) is trained to represent one class.

« The latency of L2 neurons’ firing is decided by the order of incoming spikes.
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Knowledge discovery through seSNN
(S.Soltic and N.Kasabov, /nt.J.Neural Systems, 2010)

The eSNN architecture can be analysed for new information discovery at several levels:
- Feature subset selection (important variables are discovered for the problem in hand);
- The (optimised) parameters can be interpreted in the context of the problem;

- Association rules can be extracted from the trained eSNN structure (the eSNN learn through
clustering), e.g.:

Wi O¢j

s I -------
0 A .
2 3 L1 4 5 B

IF v isSMALL THEN C;
IF vis LARGE THEN Cj

@
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seSNN — advantages and problems

Advantages:

- Fast on-line learning;

- Simple neuronal model;

- Simple structure — only 3 parameters;

- Accumulation of information over time from incoming frames;

- Good synchronisation between modules;

- Both feature extraction and learning is realised in a uniform structure.

Problems:

» Too simple IF model of a neuron;

» Too simple SNN structure (no recurrent connections; no complex evolvability);

* No optimisation of the neuronal parameters;

* No feature selection;

» Too rough feature extraction scheme using digital spiking neurons to implement
analogue filters;

» Deterministic structure of the seSNN;

* Limited spatio-temporal pattern recognition (STPR) abilities.

@
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3. Probabilistic evolving SNN (peSNN)

Probabilistic spiking neuron model, pSNM (Kasabov, Neural Netw., 2010).

Pyt The information in pSNM is represented as both connection weights and
probabilistic parameters for spikes to occur and propagate. The neuron
pei(t) (n;) receives input spikes from pre-synaptic neuron n; (j=1,2,...,m). The

state of neuron n, is described by the sum of the inputs received from all m
synapses - the postsynaptic potential, PSPi(t). When PSPi(t) reaches a

Py(t), w;(t) firing threshold Si(t), neuron ni fires, i.e. emits a spike.

pi(t)
The PSPi(t) is now calculated using a new formula:

PSP, (t) =2 2 € 9g(p,(t-p)) f(pg;,(t-p)) w;;(t) + n(t-ty)

p=ty,..t j=1,...,m

where: e,is 1, if a spike has been emitted from neuron n; and 0 otherwise; g(p; (1)) is 1 with
a probablllty Pg;i(t), and O otherwise; f(pg(t)) is 1 with a probablllty p;i(t), and O other\lee t0
is the time of the last spike emitted by n; n(t-t;) is an additional term representing decay in
the PSP. As a special case, when all or some of the probability parameters are fixed to “17,
the ipSNM will be simplified and will resemble some already known spiking neuron models,
such as SRM.

@
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peSNN for STP recognition

S. Schliebs, N. Nuntalid, and N. Kasabov, Towards spatio-temporal pattern recognition using
evolving spiking neural networks, Proc. ICONIP 2010, Springer LNCS, 2010
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Connectivity in the Reservoir of the epSNN

® 1000 neurons connected in a 3D grid as 10x10x10
® Excitatory 80%, Inhibitory 20%; Small world connections:

—D2ap/ A

pa,b:Cxe

® Maass, W., Natschl’ ager, T., Markram, H.. Real-time computing without stable stafes. A
new framework for neural computation based on perturbations. Neur. Comp. 14(117),2537-
60, 2002, and

® Wojcik and et al, 2009, Which Model to use for the LSM?
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peSNN for STP recognition on a bench mark data

Experimental settings:
- Two spiking sequences A and B are independently generated 25 times by a Poisson

process with 200Hz mean rate (Grzyb, B.J., Chinellato, E., Wojcik, G.M., Kaminski, W.A.: Which model
to use for the liquid state machine? In. Proc. IJCNN'09, pp. 1692-1698. IEEE Press, 2009).
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Work in progress: peSNN for complex EEG STP recognition

Case study 1: Four classes of brain perception states are used with 37 single trials each of them
including the following stimuli (With van Leuwen, Cihotcky, et al, RIKEN, BSI, Tokyo)

— Classl - Auditory Stimulus;
— Class2 - Visual Stimulus;
— Class3 - Mixed Auditory and visual stimuli;
— Class 4 - No stimulus.
Case study 2: Person identification based on EEG data.
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Work in progress: peSNN for state-dependent computations (FA)
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Challenges:

- How to represent stable states and state transitions?
- How to achieve a larger number of states?

- Can we utilize polychronization states?

- FA synthesis as a SNN;

- Learning FA from data and extracting it from the SNN.
- How to apply the rich theory of FA developed so far?
- Deterministic vs probabilistic FA;

- Pilot applications.
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4. Probabilistic quantum inspired eSNN (pgeSNN)

data feature recept. imnput Nneuron [ Induction Method
sample mask fields nNneurons repos.
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1) The principle of quantum probability feature representation:

At any time a feature is both present and not present in a computational model,
which is defined by the probability density amplitudes. When the model computes,
the feature state is ‘collapsed’ in either 0 (not used) or 1 (used ).

2) Quantum probability representation of the connections per the peSNN.

3) Quantum probability representation of the eSNN parameters.

N.Kasabov, Integrative connectionist learning systems inspired by Nature: Current models, future trends and
challenges, Natural Computation, Springer, 2009, 8:199-218.
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g/ Evolutionary Algorithms compute probability functions rather
than single vectors (points in the problem space)

* QIEA use a g-bit representation of a chromosome of n “genes” at a time
: Q) ={a;, d}, .-, Ay}

« [Each g-bit is defined as a pair of numbers (a, 5) — probability density
amplitudes. |a_|2 Yy |2 1

A nelement g-bit vector can represent probabilistically 2" states at any
time

« The output is obtained after the g-bit vector is collapsed into a single
state

« Changing probability density with quantum gates, e.g. rotation gate:

| |cosAfd) —sIin(AQ) || a4
[,6’} _[sin(AH) cos(AQ) } i

« Evolutionary computing with g-bit representation has a better
characteristic of population diversity than other representations, since it
can represent linear superposition of states probabilistically .
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Versatile QIEA (VQIEA) compute multiple probability
functions (Multimodel EDA)

M. Defoin-Platel, S.Schliebs, N.Kasabov, Quantum-inspired Evolutionary Algorithm: A
multi-model EDA, IEEE Trans. Evolutionary Computation, Dec., 2009

Better solutions become more likely
All solutions in the search space are equally probable -

Algorithm converges towards promising solutions Good solutions become very likely to appear

The (V)QEA consists of three different interacting levels: the quantum individual, -group
and -population levels. The group level corresponds to attractors.

A hypothetical example of state convergence to local minima for a system described by a
gbit register (chromosome) over 5 applications of a rotation quantum gate operator. The
darker points represent system states described by the qubit vector that have a higher
probability of occurrence.
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...VQIEA

Time complexity and Computability in the

scalability :
presence of noise
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Integrated feature selection and parameter optimisation of

pgeSNN for classification
S.Schliebs, M.Defoin-Platel and N.Kasabov, ICONIP’2008 and Neural Networks, 2010

Results:
- Minimised structural complexity (features and connections);
- Maximised accuracy and speed ;
- Optimised SNN architecture;
- Knowledge discovery (important features).
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Benchmark classification problem (spiral data)
(Schliebs, Kasabov, Proc. IJCNN 2009 and Neural Networks, 2009)

Evolution of Feature Subsets
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Feature selection in ecological modelling (insect
establishment prediction)

Evolution of Feature Number
35

-- Generational Best

—— Moving Average

30\,

N
u

Number of Features
N
=]

b
un

105 500 1000 1500 2000 2500 3000
Genera tion

Evolution of Accurac v
0.85

0.80

Aceuracy
0
~N
n

o.70
- = global best
a—a Mean
©-655 500 1000 1500 Z000 2500 3000
Genera tion

Evolution of classification accuracy on the climate data set after
3,000 generations.

Evolution of the features on the climate data set. The best accuracy model is obtained for
15 features .
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Quantum Inspired PSO (QiPSO)

Quantum inspired Particle Swarm Optimization (QiPSO) proposed by Han and Kim (2002)

The main idea of QIPSO is to use a standard PSO function to update quantum angle &

The velocity update formula in standard PSO is modified to get a new quantum angle which
is translated to the new probability of the qubit as follows:

AG, =w*AO, +c *rand()* (O ey —6,)+C, *rand () * (6 pes. —6,)

Then, based on the new &, new probabilities a and S are calculated using a rotation gate as

follows:
« | |cos(Ad) —sin(AD) | &,
Bl sin(a0) cos@o) | A,
equivalently: 0=0_,+A0

where @is the new quantum angle of the quantum particle position.

* QiIPSO computes multiple probability functions

@
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Feature, parameter and connectivity ! optimisation of a pqeSNN

H. Nuzly, N. Kasabov, S. Shamsuddin, Probabilistic Evolving Spiking Neural Network Optimization Using Dynamic
Quantum Inspired Particle Swarm Optimization, Proc. ICONIP 2010, LNCS, 2010
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Again, the 2-spiral classification benchmark problem, but this
time optimising the probabilistic connections as well.
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Work in progress: peSNN for Associative Memories

Neocortical
o patterns ~
/ consolidation ™\

Neocortical Network

(Izhikevich SFA
Model)
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Encoder ¥ t ¥ (Readout Function)

(Hippocampal

Network)

0
NO
i
: ——
/ Optimization (GA / PSO) /

(a) hippocampal network (b) neocortical network

__Hippocampal
patterns

Associative Memory T '

Challenges:

- How to achieve much larger capacity when compared to Hopfield networks?
- Can we utilize the large number of polychronization states?
- STP storage and retrieval (rather than single vectors)?
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5. Neurogenetic evolving SNN (ngeSNN)

. Neuron
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transcripton _ |

Gene information processing
principles:
* Nature via Nurture

« Complex interactions
between thousands of genes
(appr. 6000 expressed in the
brain) and proteins (more
than 100,000)

» Different time-scales
« Stochastic processes
Offer the potential for:

* Integrating molecular and
neuronal information
processing (possibly with
particle level as well)

The challenge:

How do we integrate
molecular and spiking
neuronal processes in a
SNN?
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Molecular (protein) level of spiking activities

2+
presynaptic Ca

terminal

10°m
Ca

Na®

synaptic cleft

postsynaptic membrane

Scheme of synaptic transmission:
a) A synapse is ready to transmit a signal.

b) Transmission of electric signal in a chemical synapse upon arrival of action potential into
the terminal.

Abbreviation: NT = neurotransmitter, R = AMPA-receptor-gated ion channel for sodium, N =
NMDA-receptor-gated ion channel for sodium and calcium.
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Gene/Protein Regulatory Networks (GRN) relate to
spiking activities

Functions of neurons and neural networks
are influenced by internal networks of
connected and interacting genes — i.e. gene
regulatory networks.

Table. Neuronal Parameters and Related Proteins
Neuronal parameter

Amplitude and time constants of Protein
Fast excitation PSP AMPAR

Slow excitation PSP NMDAR

Fast inhibition PSP GABRA

Slow inhibition PSP GABRB

Firing threshold SCN, KCN, CLC

Late excitatory PSP PV
through GABRA

The challenge is how to integrate a GRN model into SNN
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Computational Neurogenetic Modelling: —

A neuro-genetic spiking neuron model (ngSNM) integrates two levels of ﬁ‘;’.‘,‘,‘;‘;‘:,}‘:,?ﬁ'

computability and complexity — spiking and genetic. Modeling
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A ngeSNN is an eSNN that incorporates a gene regulatory network to capture the
connection and interaction of several genes related to neuronal activities.
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Work in progress: Integrative probabilistic ngeSNN

type type
z-decay Trise

f—t, — A f—t, — A
PSPYP (t—t; —AY) = AY| exp| ————— }—exp[— 1Y ]

x1 X2 Xxn ql Iq2 . gs Cl1 C12|.. Cmm | P1 pm _

Input features eSNN p parameters eSNN connections Probability of neurons spiking  Genes and their connections

An integrated representation of all model variables and parameters to be optimised together.
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Work in progress: ngeSNN for modelling and

understanding brain diseases
Table 1. Single and multiple genes related to some neurodegenerative diseases and brain abnormalities.
LOCATION

DISEASE (I\B/IIlEJI;IrI'EA\STIIE))ENNS'IE)IIEIED OF GENES BRAIN SYMPTOMS AGE OF

SO FAR ON CHRO ABNORMALITY ONSET

MOSOMES

Alzheimer disease PS2 (ADA4) 1 plagues made of fragmented progressive inability to |71 years
(AD) PS1 (AD3) 14 brain cells surrounded by remember facts and

unknown 19 amyloid-family proteins, events and later to

unknown 21 tangles of cytoskeleton recognize friends and

filaments family

Amyotrophic lateral |SOD1 (codes for 21 roaressive degeneration of loss of motor control between 55 and
sclerosis (ALS) enzyme removing prog g lls in the spinal which ultimately results |75 years

dangerous superoxide motor neuron cells in the spina in paralysis and death

h cord and brain

radicals)
Fragile X syndrome |FMRL1 (codes for X failure of the glutamate the most common 1 year

FMRI protein with synapse formation and inherited form of mental

unknown function) elimination retardation
Huntington disease  |HD gene (codes for the |4 dilatation of ventricles and degenerative between 30 and

(HD)

protein huntingtin that
stimulates expression

atrophy of caudate nucleus and
striatum

neurological disease that
leads to dementia

50 years

of BDNF)
Rett syndrome MeCP2 X generalized brain atrophy, loss of purposeful use of |6 to 18 months
(codes for a protein decrease in neuronal cell size, |hands and speech,
which controls gene increased cell packing density, |wringing hand
expression in the cell) reduction in cholinergic movements, seizures,
neurons mental retardation
Williams syndrome | LIM kinase and elastin |7 unknown high competence in At birth

coding sequences

language, music and
interpersonal relations,
with low 1Q
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Work in progress: Integrated brain-gene ontology with ngeSNN.
The KEDRI BGO
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6. Future SNN models and applications

More efficient on-line learning algorithms for solving complex STP tasks, e.g.
audio-visual, EEG, moving objects;

Methods and algorithms for computation of FA of large number of states;
Methods and algorithms for computation of AM of large number of patterns;
Novel algorithms for CNGM,;

Medical decision support systems for personalised risk and outcome prediction
of brain diseases: AD, Stroke, TBI;

Neurogenetic robots;
New hardware and software — reconfigurable software-hardware platforms;
Large scale applications for cognitive systems;

Large scale engineering applications , e.g.: cyber security, environmental
disaster prediction, climate change prediction, ....
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