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Abstract

SNN have a tremendous potential as a new paradigm to implement and

achieve computational intelligence (CI).

Current models have some limitations that prevent their wider

application.

Based on biological evidence, new SNN models can be developed to

solve complex generic and specific tasks of CI, where connectivity,
computability and complexity need to be optimised.
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1. SNN: Models, Applications, Challenges    

Information processing  principles in neurons 

and neural networks:

– LTP and LTD;

– Trains of spikes; 

– Time, frequency, phase and space;

– Synchronisation and stochasticity; 

– Evolvability…

They offer the potential for: 

– Modelling cognitive functions through 

patterns of neuronal spiking activity;

– Integration of different ‘levels ‘of 

information processing, i.e.: modelling 

neuronal activities based on  genes 

and proteins. 
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Rich neurophysiological information about the spiking 

activities in the brain is already available 
(Singer, Abeles, Freeman, Villa, Kojima, Yamaguchi, Gat, Hopfield, Izhikevich, 

Reece, Thorpe, Fize, & Marlot, Villa, Tetko, Hyland, & Najem,  ...)

Electric synaptic potentials and axonal ion channels responsible for spike generation 

and propagation: EPSP = excitatory postsynaptic potential, IPSP = inhibitory 

postsynaptic potential, = excitatory threshold for an output spike generation.
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Many questions have to be answered before artificial SNN 

are applied for a generic or a specific task:  

- What model of an artificial neuron to use? 

- How to connect the neurons in a SNN?

- How to encode information in the SNN?

- What learning rule to apply?

- What this SNN can compute efficiently and what it cannot compute? 

- What is the time- and space- complexity of the SNN solution?

- What CI techniques can be applied to enhance the solution (e.g. optimisation 

through evolutionary algorithms (EA))?

- What software and hardware support will be needed?

- The main question always remains:    
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TO SPIKE OR NOT TO SPIKE?



Some models of Spiking Neurons

• ‘Microscopic Level’: Modeling of ion channels, that depend on presence/absence of 

various chemical messenger molecules:

 Hodgkin-Huxley’s (1952);

 Izhikevich’s  (2003);

 Many variants of the above (e.g. FitzHugh-Nagumo model); 

 Specialised neuronal models, e.g. Inferior Colliculus  (ICX) (INI, PNAS, 2010)

• ‘Macroscopic Level’: Neuron is a homogenous unit, receiving and emitting spikes 

according to defined internal dynamics (Maass; Gerstner,Kistler):

 Spike response model (SRM); 

 Integrate-and-Fire models (IF, LIF); 

 Adaptive  exponential IFM (Brette and Gerstner, 2005)

• ‘Integrative’:

 A  probabilistic spiking neuron model (pSNM)

 A neuro-genetic SNM (ngSNM)
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Dynamics of the LIF neuron
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Neural Information Encoding

• Fundamental questions in SNN: 

– What is the input- and the output information encoding?

– What is the internal code used by neurons to transmit information?

– Memory encoding;

– Instructive coding;

– Can we read and understand the message of the neural activity?

• Traditionally two main theories of neural encoding:

– Rate Codes: Average of many spike events (mean firing rate of a 

neuron) carries most, if not all, of the information;

– Pulse or Spike Codes: Exact spike time carries information.

• Spike-based sensory systems for information encoding into spikes, e.g.:

- Visual information, retina chip (Tobias Delbruk, INI);

- Acoustic, cochlea  chip (Shin-Chii Liu, INI). 
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Rank Order Population Encoding

• Distributes a single real input value to multiple neurons and may cause 

the excitation and firing of several responding neurons

• Implementation based on Gaussian receptive fields introduced by 

Bothe et al . 2002

nkasabov@aut.ac.nz www.kedri.info

mailto:nkasabov@aut.ac.nz
http://www.kedri.info/


Learning in SNN

• BCM (Bienenstock, Cooper and Munro’s);

• Hebbian learning;

• Spike-timing dependent plasticity (STDP);

• Time-to-first-spike principle (used by Thorpe);

• Stochastic spike-driven synaptic plasticity (membrane potential based STDP) 

(Brader, Senn and Fusi, 2007)

• Perceptron learning (learn when misclassify) (D’Souza, SCLiu, Hahnloser, INI);

• Reinforcement learning;

• SpikeProp – supervised error back-propagation, similar to learning in classical 

MLP;

• (Linear) readout functions for the Liquid State Machines (Maas et al);

• ReSuMe – Remote Supervised Method;

• Weight optimization based on evolutionary algorithms (EA);

• ...other learning rules....   
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Spike-Time Dependent Plasticity (STDP)

• Hebbian form of plasticity in the form of long-term potentiation (LTP) 

and depression (LTD)

• Effect of synapses are strengthened or weakened based on the timing 

of post-synaptic action potentials

Pre-synaptic activity that 

precedes post-synaptic 

firing can induce LTP,

reversing this temporal 

order causes LTD
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Thorpe’s Model utilising time-to-first-spike principle

• Simple but computationally efficient neural model, in which early spikes 

are stronger weighted

• Model was inspired by the neural processing of the human eye and  

introduced by S. Thorpe et. al. 1997

• PSP ui(t) of a neuron i :

• wji is the weight of the connection between neuron j and i, f (j ) is the 

firing time of j , mi a parameter of the model (modulation factor)

• Function order (j )  represents the rank of the spike emitted by neuron j

and receive at neuron i
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Some SNN software and hardware platforms

• Software simulators:

• Neuron

• Genesis

• Izhikevich software

• eSNN and CNGM (www.kedri.info)

• SpikeNet (Delorme and Thorpe)

• jAER (INI, T. Delbruck)

• Hardware realisations:

– SPINN (TU Berlin)

– SpinNNaker (U.Manchester)

– FPGA (U.Ulster, McGinnity)

– BlueGene (IBM, Almaden, Modha)

– Neuromorphic AER circuits and systems (G.Indivieri, INI, Zurich)  
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Some SNN applications for CI

• Modeling brain synapses (EPFL Lausanne, Markram);

• Large scale brain modeling (UCSD, Izhikevich).

• Engineering applications (IBM-Modha; Ulster- McGinnity, )

• Real-time pattern classification (Bothe et al)

• Robotics (R.Duro)

• Image processing and face recognition (Thorpe et al) 

• Speech and sound modeling (Villa)

• Adaptive multimodal audio-visual information processing (KEDRI)
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Problems and challenges with SNN models

• Most spiking neuron models are too simplistic; 

• Most SNN models have a fixed structure and functionality and do not 

evolve incrementally from incoming data;

• Most SNN models are deterministic and it could be difficult to model 

complex stochastic processes; 

• There are very few  SNN models that allow the integration of genetic 

and spiking activity information;

• An integrated study and optimisation of connectivity, computability and 

complexity of SNN is needed for each application;

The challenge is to develop new SNN models that would address the 

above problems, e.g.:

– seSNN (section 2)

– peSNN (section3)

– pqeSNN (section 4)

– ngeSNN (section 5)

nkasabov@aut.ac.nz



Problems and challenges with SNN applications 

Generic application problems, that are still difficult to achieve with 

traditional SNN and some of them addressed here are:  

• Incremental learning for pattern recognition;

• Learning complex spatio-temporal patterns (acoustic-, visual-, audio-

visual-, EEG-, fMRI and other brain data); 

• Knowledge extraction (e.g. association rules);

• Feature selection; 

• Learning finite automata of large number of states; 

• Building associative memories with a very large capacity;

• Computational  neuro-genetic modelling (CNGM).
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2. Simple evolving SNN (seSNN)  

Inspiration from the brain

• The brain evolves  through genetic 

“pre-wiring” and life-long learning 

• Evolving structures and functions

• Evolving features

• Evolving knowledge 

• Local (e.g. cluster-based) learning 

and global optimisation

• Memory (prototype)-based learning,  

“traceable”

• Multimodal, incremental learning

• Spiking activity

• Genes/proteins involved

• Quantum effects in  ion channels

The challenge: To develop evolving 

SNN models (eSNN) to facilitate  the 

creation of evolving CI.  
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Principles of Evolving Connectionist Systems - ECOS    

• ECOS are modular connectionist-based systems that evolve their structure and 
functionality in  a continuous, self-organised, possibly on-line, adaptive, 
interactive way from incoming information, in a supervised and unsupervised 
way, facilitating knowledge discovery. 

• Early ECOS models: RAN (J.Platt, 1991) – evolving RBF NN; RAN with a long
term memory – Abe et al, ; Incremental FuzzyARTMAP (Carpenter , Grossberg);
Growing gas; EFuNN (Kasabov, 1998, 2001); ESOM (Deng and Kasabov,
2002); DENFIS (Kasabov and Song, 2002); EFuRS, eTS (P.Angelov, 2002;Filev,
2002)

M.Watts, Ten years of Kasabov’s evolving connectionist systems, IEEE Tr SMC-
part B, 2008

• New developments: Ensembles of EFuNNs (T. Ljudemir, 2008-); Application
oriented ECOS (B.Gabric, R.Duro, A. Koenig2005-); Incremental feature
selection (Ozawa, Pang et al).

Environment

ECOS
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Example: Evolving  Fuzzy Neural Networks (EFuNN) for 

incremental supervised learning 

• As a general case, input and/or output variables 
can be non-fuzzy (crisp)  or fuzzy.

• EFuNN, N. Kasabov, IEEE Tr SMC, 2001.

• Incremental, supervised clustering.

• New neurons are created and connection weights 
are changed based on Euclidean distance 
between input vectors and  prototype nodes:  

Δw_i=lrate  * D(x, N),  

and on the output error:   

Δw_o=lrate  * E(y, O)

Inputs outputs

rule(case)

nodes



A seSNN model
(Kasabov, 2007; Wysoski, Benuskova and  Kasabov, 2006-2009)

• Creating and merging neurons based on localised information

• Uses the first spike principle (Thorpe et al.) for fast on-line training

• For each input vector 

a) Create (evolve) a new output spiking neuron and its connections

b) Propagate the input vector into the network and train the newly created neuron 

c) Calculate the similarity between weight vectors of newly created neuron and existing  

neurons: 

IF similarity > SIMthreshold THEN  Merge newly created neuron with the most similar neuron, 

where N is the number of  samples previously used to update the respective neuron. 

d) Update the corresponding PSP threshold ϑ:

• Three main parameters of the eSNN: Modulation factor m; Spiking threshold ϑ; SIMthreshold
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seSNN for person authentification based on face image data 
(Wysoski, Benuskova, Kasabov, Proc. ICANN 2006, Springer LNCS, 2006)
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seSNN for speaker authentification  
(Wysoski, Benuskova, Kasabov, Proc. ICANN 2007, Springer, LNCS, 2006)
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seSNN for integrated audio-visual information processing  

Person authentication based on auditory and visual information
(Wysoski, Benuskova and Kasabov, Proc. ICONIP, 2007, LNCS, and Neural Networks, 2010) 
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Using muti-modal audio-visual information reduces the error rate

VidTimit data base; (10 persons +2 imposters) x 4 attempts each.   
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seSNN for taste recognition
S.Soltic, S.Wysoski and N.Kasabov,  Evolving spiking neural networks for taste recognition, Proc.WCCI 

2008, Hong Kong, IEEE Press, 2008

• The L2 layer evolves during the learning stage (SΘ).

• Each class Ci is represented with an ensemble of L2 neurons

• Each ensemble (Gi) is trained to represent one class.

• The latency of L2 neurons’ firing is decided by the order of incoming spikes. 

Tastants (food, beverages)

“Artificial tongue”

GRF layer – population rank 
coding (m receptive fields)

. . .

L1 neurons ( j ). . .

L2 neurons ( i )

ESNN
. . . . . .. . .

. . .

G1 (C1) Gk (Ck)
. . .
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Knowledge discovery through seSNN  
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Ci Cj

L1m

L2i L2j

i

j

IF v is SMALL THEN C

IF v is LARGE THEN C

(S.Soltic and N.Kasabov, Int.J.Neural Systems, 2010)

The eSNN architecture can be analysed for new information discovery at several levels:

- Feature subset selection (important variables are discovered for the problem in hand);

- The (optimised) parameters can be interpreted in the context of the problem;

- Association rules can be extracted from the trained eSNN structure (the eSNN learn through 

clustering), e.g.:  



seSNN – advantages and problems
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Advantages: 

- Fast on-line learning;

- Simple neuronal model;

- Simple structure – only 3 parameters; 

- Accumulation of information over time from incoming frames;

- Good synchronisation between modules;

- Both feature extraction and learning is realised in a uniform structure.

Problems:

• Too simple IF model of a neuron;

• Too simple SNN structure (no recurrent connections; no complex evolvability); 

• No optimisation of the neuronal parameters;

• No feature selection;

• Too rough feature extraction scheme using digital spiking neurons to implement 

analogue filters;  

• Deterministic structure of the seSNN; 

• Limited spatio-temporal pattern recognition (STPR) abilities.  



3. Probabilistic evolving SNN (peSNN) 

nj

ni

pj(t)

pcji(t) 

psj,i(t),  wji(t) 

pi(t) 

The PSPi(t) is now calculated using a new formula:

PSPi (t) = ∑ ∑ ej g(pcj,i(t-p)) f(psj,i(t-p)) wj,i(t) + η(t-t0)

p=t0,.,t j=1,..,m

where: ej is 1, if a spike has been emitted from neuron nj, and 0 otherwise; g(pcj,i(t)) is 1 with

a probability pcji(t), and 0 otherwise; f(psj,i(t)) is 1 with a probability psj,i(t), and 0 otherwise; t0
is the time of the last spike emitted by ni; η(t-t0) is an additional term representing decay in

the PSP. As a special case, when all or some of the probability parameters are fixed to “1”,

the ipSNM will be simplified and will resemble some already known spiking neuron models,

such as SRM.

Probabilistic spiking neuron model, pSNM (Kasabov, Neural Netw., 2010). 

The information in pSNM is represented as both connection weights and 

probabilistic parameters for spikes to occur and propagate. The neuron 

(ni) receives input spikes from pre-synaptic neuron nj (j=1,2,…,m). The 

state of neuron ni is described by the sum of the inputs received from all m
synapses – the postsynaptic potential, PSPi(t). When PSPi(t) reaches a 

firing threshold i(t), neuron ni fires, i.e. emits a spike.  
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peSNN for STP recognition

S. Schliebs, N. Nuntalid, and N. Kasabov,Towards spatio-temporal pattern recognition using 

evolving spiking neural networks, Proc. ICONIP 2010, Springer LNCS, 2010
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Connectivity in the Reservoir of the epSNN

2
,

2 /

,
baD

ba eCp

 1000  neurons connected in a 3D grid as 10x10x10 

 Excitatory 80%, Inhibitory 20%; Small world connections:

 Maass, W., Natschl¨ager, T., Markram, H.: Real-time computing without stable states: A 
new framework for neural computation based on perturbations. Neur. Comp. 14(11),2531–
60, 2002;  and

 Wojcik and et al,2009, Which Model to use for the LSM?



peSNN for STP recognition on a bench mark data  

Experimental settings: 

- Two spiking sequences A and B are independently generated 25 times by a Poisson 

process with 200Hz mean rate (Grzyb, B.J., Chinellato, E., Wojcik, G.M., Kaminski, W.A.: Which model 
to use for the liquid state machine? In: Proc. IJCNN’09, pp. 1692–1698. IEEE Press, 2009). 
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Work in progress: peSNN for complex EEG STP recognition
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Case study 1: Four classes of brain perception states are used with 37 single trials each of them

including the following stimuli (With van Leuwen, Cihotcky, et al, RIKEN, BSI, Tokyo)

– Class1 - Auditory Stimulus;

– Class2 - Visual Stimulus;

– Class3 - Mixed Auditory and visual stimuli;

– Class 4 - No stimulus.

Case study 2: Person identification based on EEG data.



Work in progress: peSNN for state-dependent computations (FA)
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Challenges:

- How to represent stable states and state transitions?

- How to achieve a larger number of states? 

- Can we utilize polychronization states?

- FA synthesis as a SNN;

- Learning FA from data and extracting it from the SNN.

- How to apply the rich theory of FA developed so far? 

- Deterministic vs probabilistic FA;

- Pilot applications.
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4. Probabilistic quantum inspired eSNN (pqeSNN)
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1) The principle of quantum probability feature representation:

At any time a feature is both present and not present in a computational model,

which is defined by the probability density amplitudes. When the model computes,

the feature state is ‘collapsed’ in either 0 (not used) or 1 (used ).

2) Quantum probability representation of the connections per the peSNN.

3) Quantum probability representation of the eSNN parameters.

N.Kasabov, Integrative connectionist learning systems inspired by Nature: Current models, future trends and 

challenges, Natural Computation, Springer, 2009, 8:199-218.  
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qi Evolutionary Algorithms compute probability functions rather 

than single vectors (points in the problem space)   

• QiEA use a q-bit representation of a chromosome of n “genes” at a time 
t: 

• Each q-bit is defined as a pair of numbers (α, β) – probability density 
amplitudes. 

• A  n element q-bit vector can represent probabilistically 2n states at any 
time  

• The output is obtained after the q-bit vector is collapsed into a single 
state

• Changing probability density with quantum gates, e.g.  rotation gate: 

• Evolutionary computing with q-bit representation has a better 
characteristic of population diversity than other representations, since it 
can represent linear superposition of states probabilistically .

1 2( ) { , ,..., }t t t

nQ t q q q

2 2
1i i
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Versatile QiEA  (vQiEA) compute multiple probability 
functions (Multimodel  EDA) 

M. Defoin-Platel, S.Schliebs, N.Kasabov, Quantum-inspired Evolutionary Algorithm: A 
multi-model EDA, IEEE Trans. Evolutionary Computation, Dec., 2009

The (v)QEA consists of three different interacting levels: the quantum individual, -group

and -population levels. The group level corresponds to attractors.

A hypothetical example of state convergence to local minima for a system described by a

qbit register (chromosome) over 5 applications of a rotation quantum gate operator. The

darker points represent system states described by the qubit vector that have a higher

probability of occurrence.
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...vQiEA

Time complexity and 

scalability 
Computability in the 

presence of noise



Integrated feature selection and parameter optimisation of 

pqeSNN for classification 
S.Schliebs, M.Defoin-Platel and N.Kasabov, ICONIP’2008 and Neural Networks, 2010

Results:

- Minimised structural complexity (features and connections);

- Maximised accuracy and speed ; 

- Optimised SNN architecture;

- Knowledge discovery (important features).
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Benchmark classification problem (spiral data) 
(Schliebs,  Kasabov, Proc. IJCNN 2009 and Neural Networks, 2009)
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Feature selection in ecological modelling (insect 

establishment  prediction)  

Evolution of classification accuracy on the climate data set after 

3,000 generations.

Evolution of the features on the climate data set. The best accuracy model is obtained for 

15 features .  
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Quantum Inspired PSO (QiPSO)
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• Quantum inspired Particle Swarm Optimization (QiPSO) proposed by Han and Kim (2002)

• The main idea of QiPSO is to use a standard PSO function to update quantum angle θ

• The velocity update formula in standard PSO is modified to get a new quantum angle which

is translated to the new probability of the qubit as follows:

• Then, based on the new θ, new probabilities α and β are calculated using a rotation gate as

follows:

equivalently:

where θ is the new quantum angle of the quantum particle position.

• QiPSO computes multiple probability functions

)(*()*)(*()** 211 npbestngbestnn nnt
randcrandcw

1

1

)cos()sin(

)sin()cos(

t
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1t
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Feature, parameter and connectivity !!! optimisation of a pqeSNN

H. Nuzly, N. Kasabov, S. Shamsuddin, Probabilistic Evolving Spiking Neural Network Optimization Using Dynamic 

Quantum Inspired Particle Swarm Optimization, Proc. ICONIP 2010, LNCS, 2010
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Again, the 2-spiral classification benchmark problem, but this 
time optimising the probabilistic connections as well.
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Work in progress: peSNN for Associative Memories
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Challenges:

- How to achieve much larger capacity when compared to Hopfield networks? 

- Can we utilize the large number of polychronization states?

- STP storage and retrieval (rather than single vectors)?



5. Neurogenetic  evolving SNN (ngeSNN)  

Gene information processing  

principles:

• Nature via Nurture

• Complex interactions 

between thousands of genes 

(appr. 6000 expressed in the 

brain) and proteins (more 

than 100,000)

• Different time-scales 

• Stochastic processes 

Offer the potential for:

• Integrating molecular and 

neuronal information 

processing (possibly with 

particle level as well)

The challenge: 

How do we integrate 

molecular and spiking 

neuronal processes in a 

SNN? 
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Molecular (protein) level of spiking activities 

Scheme of synaptic transmission:

a) A synapse is ready to transmit a signal. 

b) Transmission of electric signal in a chemical synapse upon arrival of action potential into 
the terminal. 

Abbreviation: NT = neurotransmitter, R = AMPA-receptor-gated ion channel for sodium, N = 
NMDA-receptor-gated ion channel for sodium and calcium.

 

 

 

 

 

NT 

R 

Ca2+ 

Ca2+ 

Na+ Na+ 
Ca2+ 
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N 
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Gene/Protein Regulatory Networks (GRN) relate to 

spiking activities

Functions of neurons and neural networks 

are influenced by internal networks of 

connected and interacting genes – i.e. gene 

regulatory networks.

The challenge is how to integrate a GRN model into SNN
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Table.  Neuronal Parameters and Related Proteins 

Neuronal parameter 

Amplitude and time constants of 
Protein 

Fast excitation PSP AMPAR 

Slow excitation PSP NMDAR 

Fast inhibition PSP GABRA 

Slow inhibition PSP GABRB 

Firing threshold SCN, KCN, CLC 

Late excitatory PSP  

through GABRA 

PV 
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Computational  Neurogenetic Modelling:
A neuro-genetic spiking neuron model (ngSNM) integrates  two levels of 

computability and complexity – spiking and genetic.  
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A ngeSNN is an eSNN that incorporates a gene regulatory network to capture the 

connection and interaction of several genes related to neuronal activities.
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Work in progress: Integrative probabilistic ngeSNN   

g1 .. gk L11 .. Lkkx1 x2 … xn q1 q2 .. qs C11 C12 .. Cmm P1 … pm

Input features                      eSNN p parameters             eSNN connections             Probability of  neurons spiking  Genes and their connections 

----------------------------------------------------------------------------------------------------------------------------- --------------------------------------------------

An integrated representation  of  all model variables and parameters to be optimised together. 
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Table 1. Single and multiple genes related to some neurodegenerative diseases and brain abnormalities.  

 

 

DISEASE 
MUTATIONS OF 

GENES IDENTIFIED  

SO FAR 

LOCATION  

OF GENES  

ON CHRO 

MOSOMES 

BRAIN  

ABNORMALITY 

 

SYMPTOMS 

 

AGE OF 

ONSET 

Alzheimer disease 

(AD) 

PS2 (AD4) 

PS1 (AD3) 

unknown 

unknown 

1  

14 

19  

21 

plaques made of fragmented 

brain cells surrounded by 

amyloid-family proteins, 

tangles of cytoskeleton 

filaments 

progressive inability to 

remember facts and 

events and later to 

recognize friends and 

family 

71 years 

Amyotrophic lateral 

sclerosis (ALS) 

SOD1 (codes for 

enzyme removing 

dangerous superoxide 

radicals) 

21 
progressive degeneration of 

motor neuron cells in the spinal 

cord and brain 

loss of motor control 

which ultimately results 

in paralysis and death 

between 55 and 

75 years 

Fragile X syndrome  FMR1 (codes for 

FMRI protein with 

unknown function) 

X failure of the glutamate 

synapse formation and 

elimination 

the most common 

inherited form of mental 

retardation 

1 year 

Huntington disease 

(HD) 

HD gene (codes for the 

protein huntingtin that 

stimulates expression 

of BDNF) 

4 dilatation of ventricles and 

atrophy of caudate nucleus and 

striatum 

degenerative 

neurological disease that 

leads to dementia 

between 30 and 

50 years 

Rett syndrome MeCP2 

(codes for a protein 

which controls gene 

expression in the cell) 

X generalized brain atrophy, 

decrease in neuronal cell size,  

increased cell packing density, 

reduction in cholinergic 

neurons 

loss of purposeful use of 

hands and speech, 

wringing hand 

movements, seizures, 

mental retardation  

6 to 18 months 

Williams syndrome LIM kinase and elastin 

coding sequences 

7 unknown high competence in 

language, music and 

interpersonal relations, 

with low IQ 

At birth 

 

Work in progress: ngeSNN for modelling and 

understanding brain diseases
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Work in progress: Integrated brain-gene ontology with ngeSNN. 

The KEDRI BGO (www.kedri.info)
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6. Future SNN models and applications

• More efficient on-line learning algorithms for solving complex STP tasks, e.g. 

audio-visual, EEG, moving objects;  

• Methods and algorithms for computation of FA of large number of states;

• Methods and algorithms for computation of AM of large number of patterns;

• Novel algorithms for CNGM;

• Medical decision support systems for personalised risk and outcome prediction  

of brain diseases: AD, Stroke, TBI; 

• Neurogenetic robots;

• New hardware and software – reconfigurable software-hardware platforms; 

• Large scale applications for cognitive systems; 

• Large scale engineering applications , e.g.: cyber security, environmental 

disaster prediction, climate change prediction, …. 
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KEDRI: The Knowledge Engineering and Discovery 

Research Institute at AUT (www.kedri.info)

• Established June 2002

• Funded by AUT, FRST, NZ industry, 

projects with Japan and China.

• 4 senior research fellows and post-

docs

• 25 PhD and Masters   students;

• 25 associated researchers 

• Both fundamental and applied 

research  (theory + practice)

• 220 refereed publications 

• 5 PCT patents 

• Multicultural environment (9 ethnic 

origins) 

• Strong national and international 

collaboration
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