
November 19, 2010 10:50 00256

International Journal of Neural Systems, Vol. 20, No. 6 (2010) 481–500
c© World Scientific Publishing Company

DOI: 10.1142/S0129065710002565

ON THE PROBABILISTIC OPTIMIZATION OF SPIKING
NEURAL NETWORKS

STEFAN SCHLIEBS∗ and NIKOLA KASABOV†

Knowledge Engineering and Discovery Research Institute
Auckland University of Technology, New Zealand

∗sschlieb@aut.ac.nz
†nkasabov@aut.ac.nz

MICHAËL DEFOIN-PLATEL
Department of Biomathematics and Bioinformatics

Rothamsted Research, United Kingdom
michael.defoinplatel@gmail.com

The construction of a Spiking Neural Network (SNN), i.e., the choice of an appropriate topology and
the configuration of its internal parameters, represents a great challenge for SNN based applications.
Evolutionary Algorithms (EAs) offer an elegant solution for these challenges and methods capable of
exploring both types of search spaces simultaneously appear to be the most promising ones. A vari-
ety of such heterogeneous optimization algorithms have emerged recently, in particular in the field of
probabilistic optimization. In this paper, a literature review on heterogeneous optimization algorithms is
presented and an example of probabilistic optimization of SNN is discussed in detail. The paper provides
an experimental analysis of a novel Heterogeneous Multi-Model Estimation of Distribution Algorithm
(hMM-EDA). First, practical guidelines for configuring the method are derived and then the perfor-
mance of hMM-EDA is compared to state-of-the-art optimization algorithms. Results show hMM-EDA
as a light-weight, fast and reliable optimization method that requires the configuration of only very few
parameters. Its performance on a synthetic heterogeneous benchmark problem is highly competitive and
suggests its suitability for the optimization of SNN.

Keywords: Spiking Neural Network; heterogeneous optimization algorithms; Estimation of Distribution
Algorithms; Multi-Model EDA; evolutionary algorithms.

1. Introduction

The desire to better understand the impressive infor-
mation processing capabilities of the mammalian
brain has recently led to the development of more
complex and more biologically plausible connection-
ist models, the spiking neural networks (SNN). See
e.g., Ref. 1 for an introduction and Ref. 2 for a com-
prehensive standard text on the material. Recent
reviews on SNN can be found in Refs. 3 and 4. These
models use trains of spikes as internal information
representation rather than continuous variables. In
Ref. 1, the author argues that SNN have at least
similar computational power to the traditional arti-
ficial neural networks (ANN), such as the multi-layer

perceptron (MLP) derivates. Nowadays, many stud-
ies use SNN for practical applications, some of them
demonstrating very promising results in solving com-
plex real world problems. For example, substantial
progress has been made in areas such as speech recog-
nition,5 learning rules,6,7 associative memory,8 and
function approximation.9 Other studies have investi-
gated the simulated growth of SNN and the emer-
gence of firing sequences in large networks,10 but
also hardware implementations using CMOS technol-
ogy11 and the use of SNN for EEG data classification
and seizure detection.12,13

However, these novel models have also introduced
new complex problems. The learning of a desired

481

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0129065710002565

November 19, 2010 10:50 00256

482 S. Schliebs, N. Kasabov & M. Defoin-Platel

network behavior, i.e., the synaptic plasticity, is par-
ticularly hard to address in SNN. In a general way,
the overall construction of a network, including the
choice of an appropriate topology and the setting
of its internal parameters, remains a great challenge
for SNN based applications, because a variety of dif-
ficulties impair the development of learning proce-
dures for SNN. The explicit time dependence results
in asynchronous information processing that com-
monly requires complex software and/or hardware
implementations to simulate these neural networks.
Additional difficulties are added by the fact that
recurrent network topologies are commonly used in
SNN and thus the formulation of a straightforward
learning method, such as back-propagation for MLP,
is not possible. Finally, the fine-tuning of the learn-
ing algorithm itself appears to be another complex
but critical aspect of the construction of SNN and
therefore specific methods need to be designed and
evaluated.

Evolutionary Algorithms (EAs) are stochastic
optimization techniques offering an elegant solution
for constructing and optimizing SNN. Numerous
studies have discussed such schemes, especially in
the context of the evolution of the weight matrix and
the topology of neural networks. See for example the
study presented in Ref. 14 where a Differential Evo-
lution algorithm trains the weights of a SNN to solve
a classification task and the work by Ref. 15 where
the topology of a neural network is optimized using
a Genetic Algorithm (GA).

Methods capable of exploring different search
spaces simultaneously appear to be the most promis-
ing. Recently, such an heterogeneous evolutionary
algorithm was proposed in the context of a SNN
based feature selection and classification problem.16

This algorithm employs separate probabilistic mod-
els to represent a combined solution consisting of a
binary and a continuous sub-component. The binary
sub-components encodes the feature space (pres-
ence/absence of features) and the continuous sub-
component encodes the parameter space of the SNN.
Due to the metaphor of the optimization algorithm
the SNN based classifier was named the Quantum-
inspired SNN (QiSNN) framework. It was shown in
Ref. 16 that employing a heterogeneous optimizer
is very beneficial for the classification performance

of the system. Exchanging the optimizer for a more
traditional EA resulted in a significant performance
decrease.

In this paper, we argue that the heterogeneous
EA proposed in Ref. 16 may be a general tool for the
optimization of other SNN based applications. Con-
sequently, this paper has the following goals. First,
we present a literature review on heterogeneous
EA that might be potentially useful for optimizing
SNN. Second, recent developments on QiSNN are
reviewed, since this approach represents an example
for the successful application of heterogeneous EAs.
Third, we experimentally analyze the novel heteroge-
neous EA introduced in QiSNN and integrate it into
the family of Estimation of Distribution Algorithms
(EDA). We provide practical guidelines for config-
uring the method in order promote the application
of the algorithm to other problems. Furthermore, we
compare its performance to numerous optimization
algorithms and discuss its computational costs.

2. EA for Optimizing SNN

The idea of exploring heterogeneous search spaces
is not new. Among the earliest contributions to this
research area is the work by Ref. 17 where a GA
was used to optimize binary chromosomes struc-
tured in sub-components to allow the encoding of
connectivity and connection weights in a single bit
string. Promising results have been reported on a
9 × 9 bit character recognition problem. A similar
approach was investigated in Ref. 18, where an algo-
rithm called ANNA ELEONORAa was presented.
Here the presence or absence of a connection between
two neurons was encoded by a connectivity bit, fol-
lowed by a number of additional bits representing the
corresponding connection weight. Due to the binary
representation of the weights, a conversion from bit
strings into real values was required. The granular-
ity of the weights, i.e., the number of bits used for
encoding a single weight, was adapted as part of the
evolutionary process. As a consequence, since the
interpretation of the bits in the chromosome was
not homogeneous, a set of complex crossover and
mutation operators has been defined. The method
was later developed further in Ref. 19, in which the
binary chromosome was replaced by a continuous

aAbbreviation for Artificial Neural Networks Adaptation: Evolutionary Learning of Neural Optimal Running Abilities.

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

November 19, 2010 10:50 00256

On the Probabilistic Optimization of Spiking Neural Networks 483

one. Although the real value representation seems
appropriate for the evolution of connection weights,
it is less suitable for the representation of the connec-
tivity bit. Similar genetic approaches were discussed
in Refs. 20–23.

All of the above studies employ EAs to explore
a heterogeneous search space using either a binary
or a continuous representation of the chromosome.
As a consequence these methods are not optimally
adapted for the exploration of either the continuous
or the binary sub-component of a candidate solu-
tion. In Ref. 24 this issue was explicitly addressed
by proposing a method called FeaSANNT (Feature
Selection and Artificial Neural Network Training).
FeaSANNT is a GA using a binary representation
for the evolution of appropriate feature subsets and
a continuous representation for the optimization of
the weight matrix of the neural net. The method is
discussed in greater detail in Ref. 25. For each rep-
resentation individual genetic operators are imple-
mented. A standard two-point crossover along with
bit-flip mutation is used for the binary landscape,
while uniform random mutations and Lamarckian
learning using back-propagation are applied to the
variables of the continuous solution part. A practical
application of FeaSANNT on a wood veneer classi-
fication problem can be found in Ref. 26. Further
efforts have been made to also evolve the network
topology, cf. Ref. 27, which required the definition
of additional operators, such as node deletion and
insertion according to some user-specified probabil-
ity parameters.

Very recent studies follow similar trends. The
chromosome in Ref. 28 consists of the concatena-
tion of three parts: A connectivity bit encoding the
presence or absence of a connection, a real-valued
weight, and another bit representing the presence or
absence of a particular hidden neuron. A GA is used
but the actual genetic operators are unfortunately
not reported in the article. A modified version of a
Particle Swarm Optimizer is proposed in Ref. 29 that
also evolves the neural transfer function in addition
to topology and connection weights.

Many heterogeneous optimizers are specialized
for the evolution of the topology and the weight
matrix of neural networks. Only very few general
mixed-variable algorithms exist. Arguably among
the most promising algorithms on heterogeneous
optimization is the Mixed Bayesian Optimization

Algorithm (MBOA) introduced in Ref. 30. In
MBOA, a set of decision trees that are iteratively
constructed and adapted during the evolutionary
process, explore the search space in a probabilistic
fashion. New solution candidates are sampled accord-
ing to the current state of the trees. Although MBOA
was not extensively investigated on heterogeneous
problems, promising results have been obtained on
binary benchmark problems. The continuous opti-
mization performance of MBOA, on the other hand,
is less competitive as experimentally demonstrated in
Ref. 31. Furthermore, the method involves a signif-
icant computational overhead, which has motivated
a multi-threaded implementation on parallel hard-
ware.32

Other directions have suggested the use of dif-
ferent EA variants. A heterogeneous version of an
Ant Colony Optimization (ACO) algorithm was pro-
posed in Ref. 33. Due to the lack of comparison
algorithms, the authors have experimentally inves-
tigated the performance of the method using a num-
ber of continuous benchmark functions. Thus, the
suitability of this ACO on mixed-variable problems
is less clear. However, it is interesting to note that
the principle idea of ACO is also based on a prob-
abilistic exploration of the search space, as shown
in Refs. 34 and 35. This is very similar to the
above-mentioned MBOA, despite the very different
metaphor employed in ACO. While ACO assumes a
population of “ants”, each of them iteratively con-
structing a solution according to discrete or continu-
ous probability distributions, MBOA emphasizes on
an entirely mathematical description of its working.

When summarizing the presented survey on
mixed-variable optimization methods, several con-
clusions can be made. First of all, the exploration
of heterogeneous search spaces is feasible and was
implemented in numerous algorithms. However, few
of them are suitable for an application to general het-
erogeneous optimization problems. Either the rep-
resentation of the search space is non-optimal, i.e.,
binary-only or continuous-only representations, or
the optimization algorithm is too problem specific,
e.g., its application aims explicitly towards topol-
ogy and weight optimization of neural networks.
Furthermore, although some general purpose mixed-
variable optimizers have been developed recently,
none of them was studied thoroughly on heteroge-
neous problems. We have also noted that the most

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

November 19, 2010 10:50 00256

484 S. Schliebs, N. Kasabov & M. Defoin-Platel

promising mixed-variable algorithms employ a prob-
abilistic model to explore the search space.

3. QiSNN

With encouraging results SNN were presented
in the context of a feature subset selection
(FSS) problem.36 In this work, a binary state-
of-the-art optimization algorithm, namely the Ver-
satile Quantum-inspired Evolutionary Algorithm
(vQEA),37 was combined with an evolving Spiking
Neural Network (eSNN).38 Through implementing
quantum principles, vQEA evolves in parallel a num-
ber of independent probability vectors, that may
interact at certain intervals with each other, form-
ing a multi-model Estimation of Distribution Algo-
rithm (EDA).39 Following the wrapper approach,40

vQEA was used to identify relevant feature sub-
sets and simultaneously evolve an optimal eSNN
parameter setting. Due to the quantum metaphor
employed in vQEA, the architecture was referred to
as the Quantum-inspired SNN (QiSNN) framework.
Applied to carefully designed benchmark data, con-
taining irrelevant and redundant features of varying
information quality, QiSNN reported excellent classi-
fication results and an accurate detection of relevant
information in the data set.36

The QiSNN framework was also used in a case
study on ecological modeling41 in which relevant fea-
tures for predicting the presence/absence of insect
species at different geographical sites were identified.

Recently, QiSNN was improved by introducing a
novel hybrid optimization method based on vQEA,
which allows the exploration of heterogeneous search
spaces.16 In the context of QiSNN, this algorithm
uses a binary representation for optimizing feature
subsets and a continuous representation for evolv-
ing appropriate real-valued configurations of the
eSNN classifier. The novel method was shown to be
highly beneficial on two benchmark problems and
one real-world data set.

The QiSNN is illustrated in Fig. 1. Given a spe-
cific data set, samples are selected and for each of
them a feature subset is extracted using a bit mask
in which each bit represents a single feature. The
quality of this feature subset is then evaluated by
the eSNN classification method which is configured
using a specific parameter set, i.e., a vector of real
values. The quality measure for both the bit mask
and the parameter configuration is used as the fitness
criterion for an evolutionary algorithm, which in turn
proposes a new candidate solution. This solution con-
sists of a binary and a continuous sub-component,
that represent a bit mask and a parameter set respec-
tively. The process iterates until a termination crite-
rion is met.

In Ref. 42, some detailed experimental anal-
ysis of the behavior and functioning of QiSNN
were presented. Especially interesting is the pro-
cess of the simultaneous optimization of features
subsets and eSNN parameters and their interaction
and mutual influences. Furthermore, the role of the

Fig. 1. Structure of QiSNN. A specialized evolutionary algorithm evolves a combined solution consisting of a binary and
a real-valued sub-component, which represent a feature subset (FSS) for a data sample and a parameter configuration
for an eSNN classifier respectively. The quality of this combined solution is evaluated by determining the classification
accuracy of eSNN on a set of test samples.

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

November 19, 2010 10:50 00256

On the Probabilistic Optimization of Spiking Neural Networks 485

neural encoding and its impact on the classification
characteristics of QiSNN was investigated. As a
result of this analysis the experimenter is pro-
vided with a comprehensive understanding of all
parameters involved in QiSNN and recommendations
are given for configuring parameters that are not
included in the evolutionary optimization process.

A comprehensive description and analysis of
QiSNN can be found in Ref. 43.

4. Heterogeneous Optimization

QiSNN employs a heterogeneous optimization algo-
rithm belonging to the family of Estimation of
Distribution Algorithms (EDA).44 It uses special-
ized representations to explore a binary and a con-
tinuous search space simultaneously. Consequently,
the method was named Heterogeneous Multi-Model
EDA (hMM-EDA). In the context of QiSNN, hMM-
EDA was shown to perform well especially when
compared to a binary-only optimizer.

In this section we present a comprehensive
description of hMM-EDA. On a synthetic bench-
mark problem, we derive some practical guidelines
to configure the method, compare its performance
to a number of related EAs and discuss the compu-
tational costs of the method.

4.1. Description of the algorithm

The overall structure of hMM-EDA can be decom-
posed in three different interacting levels, see Fig. 2.

Individuals The lowest level corresponds to indi-
viduals. An individual i at generation t contains
a heterogeneous probabilistic model Hi(t) and two
compound solutions Si(t) and Ai(t). More precisely,
Hi corresponds to a string of N pairs of models
(Q(j)

i , P
(j)
i):

Hi = H∞
i . . . HN

i =

Q

(1)
i . . . Q

(N)
i

P
(1)
i . . . P

(N)
i

 (1)

where Pi denotes the continuous representation of
the search space in the form of a string of Gaussian
distributions:

Pi = P 1
i . . . PN

i =

µ

(1)
i . . . µ

(N)
i

σ
(1)
i . . . σ

(N)
i

 (2)

Fig. 2. Three interacting levels can be distinguished
in hMM-EDA: The individual, group and population
level.

and Qi the binary representation in form of a con-
catenation of Qbits:

Qi = Q1
i . . . QN

i =

[
α1

i . . . αN
i

β1
i . . . βN

i

]
(3)

The pair (µ(j)
i , σ

(j)
i) corresponds to the param-

eters of the distribution of the jth variable of the
ith probabilistic model, and (α(j)

i , β
(j)
i) correspond

to the probability amplitudes of the jth Qbit of the
ith probabilistic model. We refer to Refs. 37 and 39
for a comprehensive discussion on the probabilistic
model represented by a Qbit.

Each variable in Qi and Pi is sampled according
to (α(j)

i , β
(j)
i) and (µ(j)

i , σ
(j)
i) respectively, forming

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

November 19, 2010 10:50 00256

486 S. Schliebs, N. Kasabov & M. Defoin-Platel

a compound solution Si = (Ci, Ri), where Ci is a
bit vector and Ri a real-valued vector of size N .
Hence, Si(t) represents a configuration in the search
space whose quality can be determined using a fit-
ness function f .

Without loss of generality, we assume each
r
(j)
i ∈ Ri to be defined in the range [−1, 1]. As

a consequence, each r
(j)
i ∈ Ri follows a truncated

normal distribution in the range [−1, 1]. Truncated
normals can be sampled using a simple numerical
procedure and the technique is widely adopted in
pseudo-random number generation, see e.g., Ref. 45
for an efficient implementation.

To each individual i, a solution Ai consisting of a
binary and a continuous sub-component is attached
acting as an attractor for Hi. Every generation Si(t)
and Ai are compared in terms of their fitness. If Ai

is better than Si(t), an update operation is applied
on the corresponding model Hi. Each representation
uses its corresponding update operator to drive the
probabilistic model. The binary probabilistic model
Qi is updated using the rotation gate as employed in
vQEA. The jth Qbit at generation t of Qi is updated
as follows:[

αj
i (t + 1)

βj
i (t + 1)

]
=

[
cos(∆θ) − sin(∆θ)

sin(∆θ) cos(∆θ)

] [
αj

i (t)

βj
i (t)

]

(4)

where the constant ∆θ is a rotation angle designed in
compliance with the application problem.46 We note
that the sign of ∆θ determines the direction of rota-
tion (clockwise for negative values). In this study the
application of the rotation gate operator is limited in
order to keep θ in the range [0, π/2].

The continuous model Pi is modified by a mean
and standard deviation shift. The mean µ(j) is
shifted towards the value of the current attractor a(j)

at location j. Depending on the distance d(j)(t) =
a(j)(t) − µ(j)(t), a shift ∆µ(j)(t) at generation t is
defined as a sigmoid function:

∆µ(j)(t) =
2

1 + e−5d(j)(t)
− 1 (5)

which is then used to perform the update:

µ(j)(t + 1) = µ(j)(t) + θµ∆µ(j)(t) (6)

In Eq. (6) a parameter θµ is introduced which we will
refer to as the learning rate of the mean. We note that

θµ corresponds to the maximum mean shift in a sin-
gle generation. The standard deviation at generation
t is updated using

σ(j)(t + 1)

=

{
σ(j)(t) × (1 − θσ) if |d(j)(t)| < σ(j)(t)

σ(j)(t) × (1 − θσ)−1 otherwise

(7)

In Eq. (7) a parameter θσ is introduced which we will
refer to as the learning rate of the standard devia-
tion. In order to avoid divergent behavior of the algo-
rithm, i.e., σ(j)(t) increases indefinitely, the domain
of σ(j)(t) is restricted by defining upper and lower
bounds, such that σmin ≤ σ(j)(t) ≤ σmax.

Consequently, hMM-EDA requires the setting of
three learning rates for the model update: the learn-
ing rate ∆θ used in the rotation gate to update a
Qbit, and the two learning rates θµ and θσ to update
the Gaussian mean and standard deviation respec-
tively.

Groups The second level corresponds to groups.
The population is divided into g groups each contain-
ing k individuals having the ability of synchronizing
their attractors. For that purpose, the best attrac-
tor (in terms of fitness) of a group, denoted Bgroup,
is stored at every generation and is periodically dis-
tributed to the group attractors. This phase of local
synchronization is controlled by the parameter Slocal.

Population The set of all p = g × k individuals
forms the population and defines the topmost level
of the multi-model approach. As for the groups, the
individuals of the population can synchronize their
attractors, too. For that purpose, the best attrac-
tor (in terms of fitness) among all groups, denoted
Bglobal, is stored every generation and is periodically
distributed to the group attractors. This phase of
global synchronization is controlled by the parame-
ter Sglobal.

4.2. Benchmark problem

In order to analyze hMM-EDA, a simple benchmark
is proposed here. We consider a minimization prob-
lem containing two equally sized search landscapes,
i.e., a binary and a continuous one. The dimensional-
ity (number of variables) of each landscape is denoted
by N . Target vectors representing the global opti-
mum of the problem are specified for each landscape:

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

November 19, 2010 10:50 00256

On the Probabilistic Optimization of Spiking Neural Networks 487

a binary vector B∗ = (b∗1, . . . , b
∗
N) and a continuous

vector R∗ = (r∗1 , . . . , r∗N). A solution for this problem
is denoted as S = (B, R), where B = (b1, . . . , bN)
and R = (r1, . . . , rN) represent the binary and the
real part of the problem respectively. The goal is to
evolve a solution S, such that it becomes equivalent
to the target solution S∗ = (B∗, R∗). More specifi-
cally, the fitness function in this problem is defined
as the Euclidean distance between the real part R

of a solution S to the real part R∗ of the target
solution S∗. The binary part B of the solution acts
as a mask in the computation of the distance: only
if bit bi = 1, does the corresponding real value ri

contribute to the computation of the difference. Fur-
thermore, if bi �= b∗i a penalty is added to the overall
fitness of the solution. The complete fitness function
is described in detail in Fig. 3. The global optimum
is reached if the fitness becomes f = 0.

The problem is designed to resemble a typi-
cal wrapper-based feature selection scenario. The
feature space is represented by the binary solu-
tion sub-component while the parameter space of
the classification method is reflected by the real-
valued sub-component. If a certain bit (feature)
bi ∈ B is wrongly selected, i.e., bi �= b∗i , the
solution S = (B, R) receives a penalty (r∗i)2.
Thus, different bits (features) may have a differ-
ent significance, since different fitness penalties are
associated with them. On the other hand, if the
bit (feature) is correctly selected, i.e., bi = b∗i =
1, the size of the fitness penalty depends on the
quality of the variable (parameter of the classi-
fier) ri of the real solution part R. Thus, even
if the optimization method correctly selects a cer-
tain feature, the fitness penalty may be large if the

Fig. 3. Algorithm to evaluate the fitness f of a hetero-
geneous solution S = (B, R).

classification method is poorly parametrized. Both
solution sub-components need to co-operate in order
to minimize the fitness penalties.

In the following experiment, the target solution
S∗ = (B∗, R∗) was chosen in dependence of the prob-
lem size N :

B∗ = (

×N
2︷ ︸︸ ︷

1, . . . , 1,

×N
2︷ ︸︸ ︷

0, . . . , 0)

R∗ = (
×N

2 , equi−distant︷ ︸︸ ︷
pmax, . . . , pmin , pmax, . . . , pmin︸ ︷︷ ︸

×N
2 , equi−distant

)

(8)

The parameters pmin and pmax denote the minimum
and maximum fitness penalty assigned to a certain
bit. Penalties are equi-distantly distributed over the
first N

2 and last N
2 elements of the real-valued solu-

tion sub-component. In the experiments discussed
later in this paper, pmin = 0.5 and pmax = 1 are
chosen.

It is noteworthy that, using this configuration,
only the first N

2 real-valued elements ri ∈ R have to
be optimized by the algorithm. The other N

2 elements
become irrelevant in the fitness computation, if the
algorithm has evolved zeroes at the last N

2 positions
of the binary vector.

Since different fitness penalties are assigned to
each binary element, all bits correspond to a differ-
ent marginal fitness contribution. In the GA domain,
such a situation is also referred to as salient build-
ing blocks.47 Due to the difference of significance,
the convergence behavior of the binary probabilis-
tic model is directly affected. More specifically, a
sequential convergence of variables is expected, start-
ing with the ones with the highest salience and fin-
ishing with the ones with the lowest salience. This
sequential convergence phenomenon is called domino
convergence and was first mentioned in Ref. 48.

4.3. Configuring hMM-EDA

The population structure consisting of ten individu-
als that are fully synchronized in every generation,
i.e., Sglobal = Slocal = 1, is directly adopted from
previous experiments on vQEA. Although this set-
ting has generally reported good optimization per-
formance, it is noted that this structure might not
be necessarily optimal for hMM-EDA. Nevertheless,
we restrict the analysis here to this simple configura-
tion only and leave the exploration of more complex

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

November 19, 2010 10:50 00256

488 S. Schliebs, N. Kasabov & M. Defoin-Platel

population hierarchies for future research. We derive
practical guidelines on the setting of the three learn-
ing rates θµ, θσ and ∆θ in the next paragraphs.

Learning rates θµ and θσ The first series of exper-
iments investigates the impact of the learning rates
θµ and θσ on the performance of hMM-EDA. For this
analysis, the learning rate of the rotation gate is fixed
to specific values ∆θ ∈ {0.0005π, 0.001π, 0.005π}.
For each ∆θ, the parameters θµ and θσ are varied and
the success rate of hMM-EDA is computed based on
25 independent runs on the proposed heterogeneous
benchmark problem. A run is considered successful
if the final achieved fitness value is lower than 10−5.
The success rate is defined as the ratio between the
successful and total number of runs. Different prob-
lem sizes N are investigated and a maximum number
of N × 4 × 103 fitness evaluations (FES) is allowed
for the optimizer.

Figure 4 presents the success rate of hMM-EDA
in dependence of the two learning rates θµ and θσ

for the problem sizes N = 25, N = 50, N = 100
and ∆θ = 0.001π. The darker the color in these dia-
grams, the higher the success rate of the particular
parameter setting. It is clearly demonstrated that a
variety of settings are suitable for solving the prob-
lem. We also note that the setting of the mean shift
θµ has only a low impact on the performance of the
algorithm. Additionally, it is only slightly affected
by the increase of the problem size N . The learning
rate θσ, on the other hand, is a critical parameter
that strongly depends on the problem size. The larger
the size N , the smaller θσ has to be set in order to
achieve optimal performance. Very similar results are
reported for ∆θ = 0.0005π and ∆θ = 0.005π. Due
to the similarities of the figures, the results for ∆θ =
0.0005π and ∆θ = 0.005π are not presented here.

A general observation of the presented results
above is the comparably low importance of the mean
shift rate θµ. An appropriate default value seems to
be θ̂µ = 0.05. The standard deviation rate θσ is a
critical parameter in hMM-EDA. It should always
be adjusted according to the dimensionality N of
the problem. A reasonable choice for a default value
seems θ̂σ = 1

10×N .

Learning rate ∆θ Since the mean shift rate θµ

has only a low impact on the performance of hMM-
EDA, we now focus on the relationship between
the learning rate ∆θ of the binary model and the

standard deviation shift θσ. For this analysis θµ is
fixed to θ̂µ = 0.05, which was earlier introduced
as the default value for this parameter. Due to the
explicit linkage between the binary and continuous
search variables, several local optima exist in the
fitness landscape of the heterogeneous benchmark
problem. A known remedy against premature con-
vergence of QEA and vQEA towards local optima
in multi-modal landscapes is the use of a modi-
fied rotation gate operator, which was introduced
as the Hε gate in Ref. 49. For vQEA the Hε gate
was already utilized in the performance and noise
analysis presented in Refs. 37 and 39. In the follow-
ing experiments, the two configurations ε = 0 and
ε = sin2(0.02π) are investigated, where for ε = 0 the
Hε gate equals to the standard rotation gate, while
ε = sin2(0.02π) was introduced as an appropriate
default configuration for Hε in Ref. 39.

Figure 5 presents the average success rate show-
ing the interdependence of ∆θ and θσ obtained from
25 independent runs of hMM-EDA on the benchmark
problem for a problem size N = 100. The darker the
color in these diagrams, the higher the success rate
of the particular parameter setting.

In the case of the standard rotation gate, cf. Fig. 5
(top), a certain correlation between ∆θ and θσ is
observed. Clearly the best performance is reported
when small values for both learning rates are used.
If ∆θ is increased, θσ also needs to increase (and vice
versa) in order to maintain a non-zero success rate.
Particularly a combination of a small (large) ∆θ and
a large (small) θσ is not suitable for the algorithm.

In the case of the Hε gate, a similar correlation
is noted, but additionally another effect impacts the
performance of the method, cf. Fig. 5 (bottom). Very
surprising is the low sensitivity of the algorithm to
the learning rate of the binary model. Almost any ∆θ

is suitable, as long as the standard deviation shift θσ

is small enough. The Hε operator prevents the con-
vergence of the binary probabilistic model towards 1
or 0, and instead defines for the two values |α|2 and
|β|2 of a Qbit a minimal and a maximal probabil-
ity, i.e., ε and 1 − ε respectively. Due to the resid-
ual probabilities ε and 1 − ε a certain mechanism
is employed by the algorithm that is similar to the
bit-flip mutations used in a GA. With low probabil-
ities, a certain Qbit may collapse towards 1 (or 0),
although its amplitudes have evolved close towards 0
(or 1). Thus, at least for some problems, premature

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

November 19, 2010 10:50 00256

On the Probabilistic Optimization of Spiking Neural Networks 489

Fig. 4. The success rate of hMM-EDA in dependence of the two learning rates θµ and θσ . The parameter ∆θ of the
rotation gate was fixed to 0.001π. Different problem sizes of the benchmark are presented. The diagrams show the average
of 25 independent runs. The low impact of the learning rate θµ of the mean shift is clearly demonstrated. The learning
rate θµ is dependent on the problem size N .

convergence of a specific bit due to hitch-hiking phe-
nomena may be compensated through the use of the
Hε gate.

In the context of the heterogeneous bench-
mark problem, the Hε gate is highly advantageous
and counteracts hitch-hiking efficiently, since larger
learning rates ∆θ not only increase the risk of hitch-
hiking effects, but at the same time also increase
the impact of the mutations on the probabilistic

model. If a certain bit-flip mutation is evaluated to
be positive, i.e., the fitness of the mutated solution
improves, the corresponding Qbit is updated towards
the mutated bit value. Larger learning rates result in
larger model shifts, which in turn increase the prob-
ability of mutations for the Qbit in the next gener-
ation. Thus, in succeeding generations the state of
a Qbit may completely invert due to the impact of
earlier mutations.

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

November 19, 2010 10:50 00256

490 S. Schliebs, N. Kasabov & M. Defoin-Platel

Fig. 5. The success rate of hMM-EDA in dependence of the two learning rates ∆θ and θσ. The learning rate θµ was
fixed to the default value θ̂µ = 0.05. In the top figure the standard rotation gate was used, which allows the convergence
of the probability amplitudes α and β to 0 or 1. Using the Hε gate (bottom figure) prevents the complete convergence
of the amplitudes, which decreases the sensitivity of hMM-EDA to the parameter ∆θ. Almost any ∆θ is suitable, as long
as the standard deviation shift θσ is small enough.

Since the mutations occur with low probabili-
ties only and are entirely random for each bit, many
generations are required to mutate the non-optimal
bits in the binary sub-component of a solution. If
a certain Qbit Q

(j)
i is non-optimally converged, the

corresponding continuous model P
(j)
i has to main-

tain enough diversity, i.e., the standard deviations
σ

(j)
i need to stay reasonably large, until the desired

mutation occurs, in order to be able to optimize
the continuous search variable rj after the bit bj

is mutated. This is due to the fact that the con-
tinuous variable rj only contributes to the fitness
computation if the corresponding bit bj = b∗j = 1.
In any other case rj is irrelevant in the fitness
evaluation and its value is subject to genetic drift,

since no selective pressure is provided by the fit-
ness function. Thus, the described mutation mech-
anism works well only for small learning rates θσ,
which prevents the premature convergence of σ

(j)
i

due to drift before a positive mutation at bit bj

occurs.
From the presented experimental analysis we con-

clude that the most critical parameter in hMM-EDA
is the learning rate θσ of the standard deviation
shift. It should be adjusted according to the num-
ber of variables in the problem to solve. The mean
shift θµ is of low importance and can be fixed to
standard values for most problems. Configuring the
learning rate ∆θ for updating the binary probabilis-
tic model is straightforward if the Hε gate is used.

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

November 19, 2010 10:50 00256

On the Probabilistic Optimization of Spiking Neural Networks 491

An appropriate value for the parameter ε was pre-
sented in the experiments.

4.4. Performance analysis

In this section, the performance of hMM-EDA is
evaluated. Results are compared to a selection of
contemporary continuous-only and binary-only opti-
mization methods, along with the already mentioned
MBOA. For the binary-only optimizers three first-
level binary EDA are considered, namely UMDA,50

PBIL51 and cGA.52 Using binary representations to
explore continuous search spaces is a typical scenario
in the context of traditional genetic algorithms, cf.
e.g., the early work in Ref. 53 and also Ref. 18,
in which a binary GA was applied on a hetero-
geneous optimization problem. Bit strings of pre-
defined length are mapped into real values by a Gray
encoding.

Using a continuous representation to explore a
binary landscape, on the other hand, is less com-
mon. An example can be found in Ref. 19 where a
real-coded GA evolves the topology and the weight
matrix of a neural network. Since a continuous
representation is used, real values x ∈ R of the
chromosome are converted into bits using a simple
mapping:

δ(x) =

{
0 if x < 0

1 else
(9)

This mapping enables a numerical optimizer to
explore a binary search space. Due to the excel-
lent performance reported in Ref. 54, the Covariance
Matrix Adaptation Evolutionary Strategy (CMA-
ES) is used for the performance analysis presented
here.

Furthermore, we investigate the performance of
the continuous-only version of hMM-EDA. In this
version, hMM-EDA utilizes the continuous proba-
bilistic model exclusively, i.e., the binary model is
removed. Similar to CMA-ES, Eq. (9) is used to
explore the binary part of the search space. We refer
to the continuous version of hMM-EDA as the con-
tinuous Multi-Model EDA (cMM-EDA). This sce-
nario allows us to directly compare the benefits of
the heterogeneous optimization of hMM-EDA over
the continuous-only optimization of cMM-EDA and
the binary-only optimization of vQEA.

4.4.1. Benchmark analysis

We apply hMM-EDA to the proposed heterogeneous
benchmark problem. In all experiments a problem
size N = 100 is used which should present a certain
challenge for the tested algorithms. Each method is
allowed to perform a maximum number of N × 4 ×
103 = 4 × 105 FES. The search space was limited to
the range [−1, 1] for each search variable.

Two configurations of hMM-EDA are consid-
ered that are directly adopted from the configura-
tion analysis discussed above. The first setting is
θµ = θ̂µ = 0.05 and θσ = θ̂σ = 1

10×N = 0.001.
The only difference of the second setting is a slightly
faster rate θσ = 0.0015. Both configurations use a
small value, ∆θ = 0.001π, for the Hε gate to update
the binary probabilistic model, that was shown to be
efficient in the previous analysis.

Optimal configurations for all tested methods
were obtained through a comprehensive parameter
analysis. In the case of UMDA, the choice of an
appropriate population size n is critical. Different
sizes in the range [200, 2500] were investigated. The
default ratio of 50% for the truncation selection is
used. PBIL also requires the setting of a popula-
tion size which was varied n ∈ [50, 300]. Additional
parameters are the learning rate Rl and the muta-
tion shift Rs. We assume Rl = Rs; values were varied
Rl, Rs ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2}. In total,
36 different parameter configurations were investi-
gated for PBIL.

The only parameter of cGA is the virtual
population size n that was optimized in the
range [150, 1250]. For vQEA, a single group
of ten fully synchronized individuals is tested
while the learning rate of a Hε gate is varied
∆θ ∈ {0.001, 0.0025, 0.005, 0.0075, 0.01}. Default ε =
sin2(0.02π) was used. All binary methods use 12 bits
to encode a single real value. A Gray encoding was
used for the conversion of bit strings into a continu-
ous value.

The CMA-ES employs special mechanisms that
adapt most of its parameters automatically. Accord-
ing to Ref. 54, only the initial starting points and
the initial standard deviation of the method needs
to be specified for a given problem. We adopt the
strategy given in54 and set the initial standard devi-
ation to 10−2(B − A)/2, with [A, B]N = [−1, 1]N

being the search interval of the benchmark. The

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

November 19, 2010 10:50 00256

492 S. Schliebs, N. Kasabov & M. Defoin-Platel

initial starting points were uniformly sampled in the
range [−0.1, 0.1]N , which is slightly different from
Ref. 54, but in favor for the method. In Ref. 54
the initial starting points were uniformly drawn
from [A, B]N . No further parameter fine-tuning was
attempted for this method. The Java implementa-
tion provided by Nikolaus Hansenb was used in the
experiments.

For cMM-EDA, the default value for θµ = θ̂µ

is used and only θσ ∈ {0.00025, . . . , 0.0015} is varied
which allows a direct comparison to hMM-EDA. The
only difference between cMM-EDA and hMM-EDA
is the different probabilistic model for the binary
solution sub-component of the latter one. All con-
tinuous methods use Eq. (9) to explore the binary
solution sub-component.

MBOA only requires the proper setting of its
population size n. Sizes are varied n ∈ {50, 100,

125, 150, 200, 250, 300}. These values correspond to
the size of the base population in MBOA. Every gen-
eration, τ×N new offspring are generated and evalu-
ated, thus each generation requires the computation
of τ ×N FES instead of N . Parameter τ ∈ R was set
to 0.5 as recommended as the default in.31 An official
implementation of the method in the programming
language C++ is provided by Jiri Ocenasek.c

4.4.2. Results

The results of the parameter analysis can be found
in Tables 1 and 2. For each setting of a method,
the best, median, worst and mean performance along
with the standard deviation obtained from 25 inde-
pendent runs is presented in the columns. Addi-
tionally, the success rate as defined in the previ-
ous section is given. The most suitable configuration
in terms of success rate is highlighted. In the cases
where the success rate is not discriminative enough,
the mean fitness and number of required FES are
considered, in order to determine the most suitable
setting.

hMM-EDA, vQEA, UMDA, cMM-EDA and
MBOA all report a success rate of 100%. With cGA,
76% of the runs were successful, while not a sin-
gle run reached the required fitness threshold using
PBIL. It is also noted that the binary methods

require a rather large population size due to the map-
ping of 100 × 12 bits into 100 real values. Because
of this mapping, the overall precision of the opti-
mization is also affected. In the case of cMM-EDA,
hMM-EDA, CMA-ES and MBOA, the optimization
was stopped when the fitness value dropped below
10−10. In the tables, this situation is indicated by
the value 0.00e + 00.

In Fig. 6, the fitness evolution of the median run
is presented. We note the logarithmic scale of the fit-
ness axis. hMM-EDA is clearly the fastest optimizer
among the tested algorithms on this benchmark,
requiring only 12300 FES to achieve the desired solu-
tion accuracy of ε = 10−5 and 21700 FES to drop
below a precision of 10−10. The fitness is exponen-
tially minimized resulting in a linear curve on the
logarithmic scale of the ordinate.

Particularly interesting is the fitness evolu-
tion of PBIL, since a number of stepwise fitness
improvements are observed. This behavior is caused
by mutations having a positive impact on the fitness
of a solution. Mutations become very important in
the later stages of the optimization process when the
probabilistic model has almost converged towards
a specific solution candidate in the search space.
Mutating a wrongly evolved bit in the binary solu-
tion sub-component can result in an especially sig-
nificant fitness improvement of the overall solution.
Since a comparably large mutation shift Rs = 0.1 is
used, an improvement due to mutation can be effi-
ciently exploited by PBIL.

The step-wise fitness evolution of CMA-ES, on
the other hand, has an entirely different reason. It
reflects the local restarts of the method after get-
ting stuck on some non-optimal solution during the
evolutionary process. In the presented median run,
CMA-ES performed four independent restarts, the
first finishing after 88, 483 FES, the second after
190, 799 FES, the third after 327, 562 FES, while the
fourth restart exhausted the maximum number of
FES and achieved the best results. That means, if
the initial population of CMA-ES represents a solu-
tion close to the optimum, the method can converge
towards it very quickly. Indeed, the fastest run of
CMA-ES required only three restarts and a total of
294, 065 FES to achieve the precision of 10−10.

bAvailable at http://www.lri.fr/˜hansen
cAvailable at http://jiri.ocenasek.com

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

November 19, 2010 10:50 00256

On the Probabilistic Optimization of Spiking Neural Networks 493

Table 1. Results of the parameter analysis for hMM-EDA, vQEA, UMDA, cGA, cMM-EDA, CMA-ES and MBOA.
Shown is the best, median and worst run obtained from 25 independent runs. Additionally the mean and standard
deviation of the runs, along with the success rate is presented (see text for a definition of the success rate). The
most suitable setting in terms of success rate for each method is highlighted.

Method Setting Best Med Worst Mean Stdev Success
rate (%)

hMM-EDA ∆θ = 0.001π, θσ = 0.001 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 100
∆θ = 0.001π, θσ = 0.0015 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 100

vQEA ∆θ = 0.001π 1.41e − 04 2.38e − 04 2.82e − 04 2.30e − 04 3.42e − 05 0
∆θ = 0.0025π 9.84e − 06 1.72e − 05 2.91e − 05 1.73e − 05 5.49e − 06 8
∆θ = 0.005π 2.89e − 06 5.41e − 06 9.08e − 06 5.52e − 06 1.50e − 06 100
∆θ = 0.0075π 2.41e − 06 3.40e − 06 5.30e − 06 3.71e − 06 9.42e − 07 100
∆θ = 0.01π 2.07e − 06 3.83e − 06 5.15e − 06 3.67e − 06 7.78e − 07 100

UMDA n = 200 1.17e + 00 1.55e + 00 3.85e + 00 1.84e + 00 6.82e − 01 0
n = 300 5.84e − 02 6.98e − 01 2.02e + 00 7.93e − 01 5.23e − 01 0
n = 400 1.84e − 02 8.69e − 02 1.06e + 00 2.66e − 01 3.05e − 01 0
n = 500 7.66e − 04 1.64e − 02 7.59e − 01 1.46e − 01 2.30e − 01 0
n = 600 9.22e − 05 5.72e − 03 7.81e − 01 4.37e − 02 1.51e − 01 0
n = 700 6.04e − 04 5.08e − 03 4.28e − 01 3.89e − 02 1.03e − 01 0
n = 800 3.28e − 05 1.14e − 03 2.50e − 01 1.32e − 02 4.87e − 02 0
n = 900 1.15e − 05 1.79e − 04 5.64e − 03 8.31e − 04 1.28e − 03 0
n = 1500 1.21e − 06 2.76e − 06 2.54e − 04 2.50e − 05 5.46e − 05 72
n = 2000 1.21e − 06 1.30e − 06 3.33e − 05 3.72e − 06 6.84e − 06 92
n = 2500 1.21e − 06 1.21e − 06 4.68e − 06 1.50e − 06 7.49e − 07 100

cGA n = 150 3.72e − 01 1.30e + 00 3.12e + 00 1.41e + 00 6.70e − 01 0
n = 250 1.79e − 02 3.33e − 01 1.43e + 00 4.27e − 01 4.22e − 01 0
n = 350 2.82e − 04 1.33e − 02 5.32e − 01 1.13e − 01 1.56e − 01 0
n = 450 2.06e − 04 3.83e − 03 3.82e − 01 4.12e − 02 1.02e − 01 0
n = 550 1.94e − 05 4.62e − 04 5.74e − 01 3.46e − 02 1.20e − 01 0
n = 750 1.91e − 06 5.94e − 05 1.01e − 03 2.09e − 04 2.92e − 04 20
n = 850 1.42e − 06 5.53e − 06 2.92e − 01 1.17e − 02 5.73e − 02 72
n = 900 1.21e − 06 4.15e − 06 3.09e − 05 7.26e − 06 7.79e − 06 76
n = 950 1.64e − 06 6.63e − 06 4.11e − 05 1.02e − 05 9.14e − 06 60
n = 1000 5.70e − 06 1.10e − 05 5.56e − 05 1.43e − 05 1.03e − 05 36
n = 1250 1.33e − 04 1.81e − 04 3.34e − 04 1.88e − 04 4.27e − 05 0

cMM-EDA θσ = 0.00025, θµ = θ̂ 2.02e − 03 2.37e − 03 2.72e − 03 2.35e − 03 1.79e − 04 0

θσ = 0.0005, θµ = θ̂ 2.44e − 07 3.13e − 07 3.45e − 07 3.07e − 07 2.61e − 08 100

θσ = 0.00075, θµ = θ̂ 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 100

θσ = 0.001, θµ = θ̂ 0.00e + 00 0.00e + 00 6.83e − 01 2.73e − 02 1.34e − 01 96

θσ = 0.0015, θµ = θ̂ 0.00e + 00 0.00e + 00 5.55e − 01 4.56e − 02 1.31e − 01 88

CMA-ES 0.00e + 00 7.34e − 06 4.40e − 01 2.89e − 02 1.00e − 01 52

MBOA N = 50 4.66e + 00 8.11e + 00 1.32e + 01 8.20e + 00 1.83e + 00 0
N = 100 0.00e + 00 0.00e + 00 1.38e + 00 2.61e − 01 3.59e − 01 56
N = 125 0.00e + 00 0.00e + 00 5.70e − 01 6.22e − 02 1.50e − 01 84
N = 150 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 100
N = 200 3.93e − 07 9.61e − 06 2.24e − 04 2.80e − 05 4.91e − 05 52
N = 250 3.56e − 04 1.37e − 03 4.47e − 03 1.43e − 03 9.20e − 04 0
N = 300 2.74e − 03 1.08e − 02 1.64e − 02 1.05e − 02 3.71e − 03 0

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

November 19, 2010 10:50 00256

494 S. Schliebs, N. Kasabov & M. Defoin-Platel

Table 2. Results of the parameter analysis for PBIL. Shown is the best, median and worst run obtained from 25
independent runs. Additionally the mean and standard deviation of the runs, along with the success rate is presented
(see text for a definition of the success rate). The most suitable setting in terms of success rate for PBIL is highlighted.

Method Setting Best Med Worst Mean Stdev Success
rate (%)

PBIL n = 50, Rl = Rs = 0.001 6.46e + 00 7.53e + 00 8.58e + 00 7.52e + 00 5.29e − 01 0
n = 50, Rl = Rs = 0.005 1.17e − 02 1.81e − 02 2.56e − 02 1.81e − 02 3.17e − 03 0
n = 50, Rl = Rs = 0.01 2.64e − 03 3.45e − 03 5.62e − 03 3.61e − 03 7.13e − 04 0
n = 50, Rl = Rs = 0.05 1.80e − 03 2.45e − 03 3.29e − 03 2.50e − 03 4.21e − 04 0
n = 50, Rl = Rs = 0.1 2.37e − 03 3.93e − 03 5.09e − 03 3.89e − 03 6.35e − 04 0
n = 50, Rl = Rs = 0.2 5.06e − 03 9.15e − 03 1.33e − 02 9.07e − 03 1.64e − 03 0

n = 100, Rl = Rs = 0.001 1.43e + 01 1.63e + 01 1.74e + 01 1.62e + 01 8.38e − 01 0
n = 100, Rl = Rs = 0.005 1.14e − 01 1.49e − 01 1.66e − 01 1.46e − 01 1.25e − 02 0
n = 100, Rl = Rs = 0.01 3.90e − 03 5.84e − 03 7.59e − 03 5.87e − 03 9.03e − 04 0
n = 100, Rl = Rs = 0.05 3.57e − 04 5.30e − 04 7.53e − 04 5.28e − 04 9.72e − 05 0
n = 100, Rl = Rs = 0.1 5.43e − 04 7.14e − 04 1.06e − 03 7.44e − 04 1.50e − 04 0
n = 100, Rl = Rs = 0.2 8.41e − 04 1.46e − 03 2.30e − 03 1.54e − 03 3.36e − 04 0

n = 150, Rl = Rs = 0.001 1.90e + 01 2.06e + 01 2.23e + 01 2.07e + 01 7.96e − 01 0
n = 150, Rl = Rs = 0.005 4.76e − 01 6.14e − 01 7.37e − 01 6.09e − 01 6.72e − 02 0
n = 150, Rl = Rs = 0.01 1.75e − 02 2.52e − 02 2.94e − 02 2.39e − 02 3.64e − 03 0
n = 150, Rl = Rs = 0.05 2.06e − 04 2.99e − 04 4.70e − 04 3.19e − 04 6.61e − 05 0
n = 150, Rl = Rs = 0.1 2.26e − 04 3.47e − 04 4.52e − 04 3.42e − 04 5.27e − 05 0
n = 150, Rl = Rs = 0.2 3.96e − 04 7.32e − 04 1.07e − 03 7.29e − 04 1.72e − 04 0

n = 200, Rl = Rs = 0.001 1.86e + 01 2.30e + 01 2.40e + 01 2.25e + 01 1.23e + 00 0
n = 200, Rl = Rs = 0.005 1.50e + 00 1.80e + 00 2.08e + 00 1.80e + 00 1.64e − 01 0
n = 200, Rl = Rs = 0.01 5.61e − 02 7.43e − 02 9.62e − 02 7.51e − 02 1.12e − 02 0
n = 200, Rl = Rs = 0.05 2.07e − 04 3.02e − 04 6.24e − 04 3.23e − 04 1.08e − 04 0
n = 200, Rl = Rs = 0.1 1.44e − 04 2.60e − 04 1.11e − 02 6.80e − 04 2.13e − 03 0
n = 200, Rl = Rs = 0.2 1.81e − 04 4.16e − 04 4.14e − 01 1.70e − 02 8.09e − 02 0

n = 250, Rl = Rs = 0.001 2.06e + 01 2.41e + 01 2.57e + 01 2.41e + 01 1.11e + 00 0
n = 250, Rl = Rs = 0.005 3.01e + 00 3.51e + 00 4.37e + 00 3.56e + 00 3.08e − 01 0
n = 250, Rl = Rs = 0.01 1.61e − 01 1.90e − 01 2.39e − 01 1.90e − 01 1.97e − 02 0
n = 250, Rl = Rs = 0.05 1.74e − 04 3.82e − 04 1.16e − 03 4.22e − 04 1.82e − 04 0
n = 250, Rl = Rs = 0.1 9.19e − 05 2.52e − 04 6.13e − 04 2.68e − 04 1.19e − 04 0
n = 250, Rl = Rs = 0.2 1.24e − 04 3.23e − 04 3.75e − 01 1.55e − 02 7.34e − 02 0

n = 300, Rl = Rs = 0.001 2.39e + 01 2.54e + 01 2.67e + 01 2.54e + 01 6.77e − 01 0
n = 300, Rl = Rs = 0.005 5.10e + 00 5.61e + 00 6.77e + 00 5.72e + 00 3.98e − 01 0
n = 300, Rl = Rs = 0.01 3.19e − 01 4.16e − 01 5.03e − 01 4.13e − 01 4.53e − 02 0
n = 300, Rl = Rs = 0.05 2.73e − 04 8.23e − 04 2.46e − 02 1.79e − 03 4.67e − 03 0
n = 300, Rl = Rs = 0.1 1.17e − 04 3.25e − 04 2.56e − 02 1.73e − 03 5.19e − 03 0
n = 300, Rl = Rs = 0.2 9.08e − 05 3.68e − 04 9.24e − 01 3.75e − 02 1.81e − 01 0

All 25 runs of cMM-EDA solved the problem reli-
ably in the given maximum number of FES. Since
the learning rate θσ = 0.00075 for cMM-EDA is two
times smaller than in hMM-EDA, the latter is also
significantly faster. The overall fitness evolution of
the method is very similar to hMM-EDA.

MBOA, on the other hand, reports a very dif-
ferent convergence behavior. The optimization per-
formance is comparatively fast in early stages of the

run, but slows down significantly after ≈0.5 × 105

FES, increases again after ≈1.5×105 FES and finally
converges towards the optimum at an exponential
rate. It was also noted that MBOA is able to explore
the binary search space very efficiently. The binary
model of the presented median run, for example, con-
verged after only 17, 100 FES, while the remaining
232, 800 FES were used to optimize the continuous
model.

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

November 19, 2010 10:50 00256

On the Probabilistic Optimization of Spiking Neural Networks 495

Fig. 6. Evolution of the median fitness for all tested algorithms on the heterogeneous benchmark problem. Results are
obtained from 25 independent runs. Due to the mapping from bit values to the continuous domain, the binary methods
allow a minimal solution quality of ≈10−6 only. As the continuous optimizers are more precise, the evolution was stopped
when the fitness value dropped below 10−10.

This observation suggests a very competitive per-
formance of MBOA on binary optimization prob-
lems, but a comparably slow convergence rate on
numerical problems. In Ref. 31, very similar results
are reported. Here, several continuous EA, i.e.,
the Cumulative Step Size Adaptation Evolution-
ary Strategy (CSA-ES), CMA-ES, the Iterated Den-
sity Estimation Evolutionary Algorithm (IDEA) and
MBOA were experimentally compared to each other
using well-known numerical benchmark problems.
Especially on simple uni-modal, separable problems,
MBOA was shown to be less competitive than the
considered ES. Furthermore, it has been demon-
strated in Ref. 31, that although good results could
be obtained on separable multi-modal functions,
MBOA was not able to optimize any of the tested
non-separable functions at all.

Similar to MBOA, also hMM-EDA follows a step-
wise optimization strategy of its two models. The
optimal binary solution sub-component is discovered
after 47,000 FES and the optimization of the con-
tinuous component was finished after 170,000 addi-
tional FES. The evolution of the mean generational

best solutions of the binary and the real solution
sub-components are presented in Fig. 7. Results are
averaged from the 25 runs of hMM-EDA. The color
in Fig. 7a reflects the average bit status of each of the
100 bits at a specific generation, where dark colors
denote a status of 0, and white colors a status of 1.
The domino convergence due to the different salience
of the bits is clearly visible in the figure. Bits corre-
sponding to larger fitness penalties converge earlier
during the evolutionary process.

Simultaneously the continuous search space is
explored, cf. Fig. 7b. If the binary sub-component
was successfully optimized, only the first N

2 = 50
real-valued elements ri ∈ R are considered for fur-
ther optimization. The last 50 variables are subject
to genetic drift and converge randomly.

4.4.3. Computational cost

The tested methods are also compared accord-
ing to their computational cost. The binary-only
algorithms are generally fast, since the computa-
tional overhead for managing the simple probabilistic

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

November 19, 2010 10:50 00256

496 S. Schliebs, N. Kasabov & M. Defoin-Platel

(a) Evolution of binary solution sub-component (b) Evolution of continuous solution sub-component

Fig. 7. Evolution of binary and continuous solution sub-component using hMM-EDA. Results are averaged from 25
independent runs. Dark colors in (a) correspond to an average bit status of 0, white colors a status of 1. The domino
convergence effect due to different salience of the bits is clearly visible in the figure. Simultaneously the continuous search
space is optimized, cf. (b). Only the first 50 variables are subject to optimization, if the binary solution was identified
correctly. The irrelevant variables are subject to genetic drift and converge randomly.

model is low. For vQEA, a multi-model has to be
maintained and updated which slightly increases
the computational requirements compared to PBIL,
UMDA and cGA. Also, cMM-EDA and hMM-EDA
are fast, since their algorithmic structure and the
employed models are very similar to vQEA.

The more costly methods are clearly CMA-ES
and MBOA. In terms of CMA-ES, a covariance
matrix is generated based on the population of the
current generation. Also, the sampling of new solu-
tions according to this covariance matrix adds com-
plexity to the algorithm. MBOA is the most costly
among the tested methods here. As discussed earlier,
its computational overhead is large and it requires
significantly more resources than any of the other
methods.

In order to demonstrate the computational cost
of all the methods, the execution time for each of
them is recorded. It is explicitly noted that the exe-
cution time is not a very reliable metric to compare
algorithms to each other since it has a number of
problems. The results depend not only on the used
hardware, but also on the used programming lan-
guage, the programmer’s capabilities to optimize the
code and the included software libraries. For exam-
ple, MBOA is based on a C++ implementation,
while all other methods are implemented in Java.
Nevertheless, such a comparison can be very infor-
mative, if the limitations are known and discussed
properly.

All methods apply the same configurations as
used in the benchmark analysis. Only the stopping

criterion was slightly modified: the algorithms per-
form the maximum number of FES and are not
allowed to stop earlier, even if the success criterion is
reached. Thus, all methods evaluate the fitness func-
tion N ×4×103 = 4×105 times. The execution time
was averaged over five runs. All experiments are per-
formed on the same machine, which is an Intel Core2
Duo CPU, 3.00GHz, 4GB RAM, running a 64Bit
Ubuntu Linux. The C++ code of MBOA was com-
piled using GCC 4.3.3 and the highest optimization
level.

Table 3 presents the measured CPU time for each
method required to finish a single run. As expected,
all binary methods are approximately equal in their
computational demands, vQEA being slightly slower

Table 3. Execution time of the tested methods when
applied on the heterogeneous benchmark problem of size
N = 100. In brackets the standard deviation is given.
The third column presents the required time in rela-
tion to the execution time of hMM-EDA. For example,
CMA-ES required ≈18.5 more time than hMM-EDA.

Method Time in sec. Relative to hMM-EDA

hMM-EDA 8.5 (0.0) 1.0
cMM-EDA 12.0 (0.0) 1.4
vQEA 38.6 (0.9) 4.5
PBIL 18.4 (0.1) 2.2
cGA 26.5 (0.1) 3.1
UMDA 19.8 (0.0) 2.3
CMA-ES 157.5 (5.1) 18.5
MBOA 2740.3 (12.0) 322.6

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

November 19, 2010 10:50 00256

On the Probabilistic Optimization of Spiking Neural Networks 497

due to the additional probabilistic models. Also
cMM-EDA and hMM-EDA report a fast execu-
tion time. The very good results of hMM-EDA are
attributed to the conditional model update. Only
if the sampled solution is worse than the current
attractor does an update occur. Since the algorithm
converges before the maximum number of FES is
reached, no model update occurs in later stages of
the run since the attractor and sampled solution are
always identical. This situation results in an impres-
sive execution time. If hMM-EDA is configured with
a slower learning rate θσ in order to prevent the early
convergence of the method, the execution time of the
algorithm is close to the one for cMM-EDA.

CMA-ES and MBOA require on average ≈157
and ≈2740 seconds, respectively, to finish the run.
Compared to hMM-EDA, these methods are approx-
imately 18 and 322 times slower than hMM-EDA.

Considering the obtained results on the proposed
benchmark, hMM-EDA is clearly a highly competi-
tive algorithm among the presented methods. How-
ever, a more detailed analysis on a wider range of test
functions will have to be performed to provide fur-
ther statistical evidence for this claim. Nevertheless,
the obtained results have demonstrated a promising
proof of concept. The hMM-EDA is a light-weight,
fast and reliable optimizer with a negligible computa-
tional overhead. Practical guidelines have been pre-
sented that allow an easy and intuitive configuration
of the method.

5. Conclusion and Future Directions

In this paper, it was argued that the simultaneous
optimization of different search spaces can be highly
beneficial in the context of optimizing SNN. We have
presented a literature review on heterogeneous opti-
mization algorithms and provided an example for the
successful application of such a method for a SNN
based feature selection and classification method.
The heterogeneous evolutionary algorithm proposed
by the authors in Ref. 16 was named Heterogeneous
Multi-Model Estimation of Distributed Algorithm
(hMM-EDA).

This paper provides an experimental analy-
sis of hMM-EDA using a synthetic test problem.
The benchmark shares similarities with a typical
wrapper-based feature selection scenario as observed
in QiSNN. It resembles a classical sphere function,

see e.g.,55 for a definition, which was investigated in
many EA related studies. We argue that in order to
address complex problems in the context of SNN, it
is essential for any heterogeneous optimizer to solve
this simple test function efficiently.

Eight different optimization techniques were
tested and discussed. In comparison to binary-
only and continuous-only optimization algorithms,
hMM-EDA is highly competitive. Even the much
more complex continuous-discrete optimizer MBOA
required slightly more FES than hMM-EDA to solve
the benchmark reliably. However, the analysis of
more test functions is required to provide strong
statistical evidence to this claim.

In terms of the computational cost of these meth-
ods, it was shown that hMM-EDA requires very
little algorithmic overhead, especially in compari-
son to MBOA and CMA-ES. hMM-EDA is a light-
weight, fast and reliable optimization method that
requires the configuration of only very few parame-
ters. Practical guidelines for configuring the method
were experimentally derived.

Future research might consider the optimiza-
tion of other benchmark functions. A generalized
benchmark suite providing a variety of hetero-
geneous test functions with known characteristics
would allow a more rigorous experimental analy-
sis of the performance of hMM-EDA. Similar suites
have been proposed for the testing of numerical opti-
mization algorithms, cf. e.g., the excellent CEC’05
benchmark suite.55 Other directions might elabo-
rate on the differences between hMM-EDA and co-
evolutionary approaches such as presented in Ref. 56.
An early discussion of these differences can be found
in Ref. 43.

A concrete example for an application of
hMM-EDA is the optimization of the specific neural
models, such as probabilistic SNN57 or the compu-
tational neuro-genetic modeling (CNGM) presented
in Ref. 58. In the latter a gene regulatory network
(GRN) affects the spike activity of a SNN. Both the
GRN and the SNN have parameters that need to
be optimized in order to fit the CNGM to a given
data set. A manually fine-tuned CNGM that is capa-
ble of reproducing experimental data on long-term
potentiation (LTP) occurring in the rat hippocam-
pal dentate gyros was presented in Ref. 59. Using
hMM-EDA the optimization process could be auto-
mated and the model accuracy increased.

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

November 19, 2010 10:50 00256

498 S. Schliebs, N. Kasabov & M. Defoin-Platel

References

1. W. Maass, Computing with spiking neurons, in
Pulsed Neural Networks (MIT Press, Cambridge,
MA, USA, 1999), pp. 55–85.

2. W. Gerstner and W. M. Kistler, Spiking Neu-
ron Models: Single Neurons, Populations, Plastic-
ity (Cambridge University Press, Cambridge, MA,
2002).

3. S. Ghosh-Dastidar and H. Adeli, Third generation
neural networks: Spiking neural networks, in W. Yu
and E. Sanchez (eds.), Advances in Computational
Intelligence, Vol. 116 of Advances in Soft Computing,
Springer Berlin/Heidelberg (2009), pp. 167–178.

4. S. Ghosh-Dastidar and H. Adeli, Spiking neural net-
works, Int. J. Neural Syst. 19(4) (2009) 295–308.

5. D. Verstraeten, B. Schrauwen and D. Stroobandt,
Isolated word recognition using a liquid state
machine, in ESANN (2005), pp. 435–440.

6. S. M. Bohte, J. N. Kok and J. A. L. Poutré, Error-
backpropagation in temporally encoded networks
of spiking neurons, Neurocomputing 48(1–4) (2002)
17–37.

7. F. Ponulak, ReSuMe–new supervised learning
method for spiking neural networks, Tech. Rep.,
Institute of Control and Information Engineering,
Poznań University of Technology, Poznań, Poland
(2005).

8. A. Knoblauch, Neural associative memory for brain
modeling and information retrieval. Inf. Process.
Lett. 95(6) (2005) 537–544.

9. N. Iannella and L. Kindermann, Finding iterative
roots with a spiking neural network, Information
Processing Letters 95(6) (2005) 545–551.

10. J. Iglesias and A. E. Villa, Emergence of preferred
firing sequences in large spiking neural networks dur-
ing simulated neuronal development, Int. J. Neural
Syst. 18(4) (2008) 267–277.

11. J. L. Rosselló, V. Canals, A. Morro and J. Verd,
Chaos-based mixed signal implementation of spiking
neurons. Int. J. Neural Syst. 19(6) (2009) 465–471.

12. S. Ghosh-Dastidar and H. Adeli, Improved spiking
neural networks for EEG classification and epilepsy
and seizure detection, Integr. Comput.-Aided Eng.
14(3) (2007) 187–212.

13. S. Ghosh-Dastidar and H. Adeli, A new supervised
learning algorithm for multiple spiking neural net-
works with application in epilepsy and seizure detec-
tion, Neural Networks 22(10) (2009) 1419–1431.

14. N. Pavlidis, D. K. Tasoulis, V. P. Plagianakos,
G. Nikiforidis and M. N. Vrahatis, Spiking neural
network training using evolutionary algorithms, in
Proc. of International Joint Conference on Neural
Networks (IJCNN’05) (2005), pp. 2190–2194.

15. C. Taylor and A. Agah, Evolving neural network
topologies for object recognition, in Automation
Congress, 2006. WAC’06, IEEE, Budapest, Hungary
(2006), pp. 1–6.

16. S. Schliebs, M. Defoin-Platel, S. Worner and
N. Kasabov, Integrated feature and parameter
optimization for an evolving spiking neural net-
work: Exploring heterogeneous probabilistic models,
Neural Networks 22(5–6) (2009) 623–632.

17. K. Hintz and J. Spofford, Evolving a neural network,
in 5th IEEE International Symposium on Intelligent
Control, Vol. 1 (1990), pp. 479–484.

18. V. Maniezzo, Genetic evolution of the topology and
weight distribution of neural networks, IEEE Trans-
actions on Neural Networks 5(1) (1994) 39–53.

19. F. Leung, H. Lam, S. Ling and P. Tam, Tuning of the
structure and parameters of a neural network using
an improved genetic algorithm, IEEE Transactions
on Neural Networks 14(1) (2003) 79–88.

20. D. White and P. A. Ligomenides, GANNet: A genetic
algorithm for optimizing topology and weights in
neural network design, in IWANN’93: Proceedings
of the International Workshop on Artificial Neu-
ral Networks, Springer-Verlag, London, UK (1993),
pp. 322–327.

21. E. Alba, J. F. A. Montes and J. M. Troya, Full
automatic ANN design: A genetic approach, in
IWANN’93: Proceedings of the International Work-
shop on Artificial Neural Networks, Springer-Verlag,
London, UK (1993), pp. 399–404.

22. S. Oliker, M. Furst and O. Maimon, Design archi-
tectures and training of neural networks with a
distributed genetic algorithm, in IEEE Interna-
tional Conference on Neural Networks, Vol. 1 (1993),
pp. 199–202.

23. S. Hung and H. Adeli, A parallel genetic/neural net-
work learning algorithm for MIMD shared memory
machines, Neural Networks, IEEE Transactions 5(6)
(1994) 900–909.

24. M. Valko, N. C. Marques and M. Castelani, Evo-
lutionary feature selection for spiking neural net-
work pattern classifiers, in B. et al. (ed.), Proceedings
of 2005 Portuguese Conference on Artificial Intelli-
gence, IEEE Press (2005), pp. 24–32.

25. M. Castellani and N. Marques, FeaSANNT — An
embedded evolutionary feature selection approach
for neural network classifiers, VIMation Journal 1
(2008) 46–53.

26. M. Castellani and H. Rowlands, Evolutionary
artificial neural network design and training for
wood veneer classification, Engineering Applica-
tions of Artificial Intelligence 22(4–5) (2009) 732–
741.

27. M. Castellani, ANNE — A new algorithm for evo-
lution of artificial neural network classifier systems,
in IEEE Congress on Evolutionary Computation,
CEC’06 (2006), pp. 3294–3301.

28. D. Rivero, J. Dorado, E. Fernández-Blanco and
A. Pazos, A genetic algorithm for ANN design, train-
ing and simplification, in IWANN’09: Proceedings of
the 10th International Work-Conference on Artificial

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.worldscientific.com/action/showLinks?crossref=10.1016%2Fj.ipl.2005.05.021&isi=000231637900004
http://www.worldscientific.com/action/showLinks?system=10.1142%2FS0129065708001580&isi=000258879800001
http://www.worldscientific.com/action/showLinks?crossref=10.1016%2Fj.engappai.2009.01.013&isi=000268057700025
http://www.worldscientific.com/action/showLinks?pmid=18237992&crossref=10.1109%2FTNN.2002.804317&isi=000180862400008
http://www.worldscientific.com/action/showLinks?isi=000248283800001
http://www.worldscientific.com/action/showLinks?pmid=19615855&crossref=10.1016%2Fj.neunet.2009.06.038&isi=000269808300016
http://www.worldscientific.com/action/showLinks?crossref=10.1016%2Fj.ipl.2005.05.022&isi=000231637900005
http://www.worldscientific.com/action/showLinks?pmid=18267778&crossref=10.1109%2F72.265959&isi=A1994MY60000005
http://www.worldscientific.com/action/showLinks?system=10.1142%2FS0129065709002166&isi=000273174000007
http://www.worldscientific.com/action/showLinks?system=10.1142%2FS0129065709002002&isi=000269527600006
http://www.worldscientific.com/action/showLinks?pmid=19447005&crossref=10.1016%2Fj.neunet.2009.04.003&isi=000272764400006
http://www.worldscientific.com/action/showLinks?crossref=10.1016%2FS0925-2312%2801%2900658-0&isi=000178464600003
http://www.worldscientific.com/action/showLinks?crossref=10.1109%2FICNN.1993.298556

November 19, 2010 10:50 00256

On the Probabilistic Optimization of Spiking Neural Networks 499

Neural Networks, Springer-Verlag, Berlin, Heidel-
berg (2009), pp. 391–398.

29. B. A. Garro, H. Sossa and R. A. Vazquez, Design of
artificial neural networks using a modified particle
swarm optimization algorithm, International Joint
Conference on Neural Networks, IEEE - INNS -
ENNS (2009), pp. 938–945.

30. J. Ocenasek and J. Schwarz, Estimation of distribu-
tion algorithm for mixed continuous-discrete opti-
mization problems, in 2nd Euro-International Sym-
posium on Computational Intelligence, IOS Press,
Kosice, Slovakia (2002), pp. 227–232.

31. S. Kern, S. Müller, N. Hansen, D. Büche, J. Ocenasek
and P. Koumoutsakos, Learning probability distri-
butions in continuous evolutionary algorithms — a
comparative review, Natural Computing 3(1) (2004)
77–112.

32. J. Ocenasek, Parallel estimation of distribution algo-
rithms. Ph.D. thesis, Faculty of Information Tech-
nology, Brno University of Technology, Brno, Czech
Rep. (2002).

33. K. Socha, ACO for continuous and mixed-variable
optimization, Ant Colony, Optimization and Swarm
Intelligence (2004), pp. 25–36.

34. O. Cordón, I. Fernández de Viana, F. Herrera and
L. Moreno, A new ACO model integrating evolu-
tionary computation concepts: The best-worst ant
system, in M. Dorigo, M. Middendoff and T. Stützle
(eds.), From Ant Colonies to Artificial Ants: Pro-
ceedings of the Second International Workshop on
Ant Algorithms, Springer, Brussels, Belgium (2000),
pp. 22–29.

35. N. Monmarché, E. Ramat, G. Dromel, M. Sli-
mane and G. Venturini, On the similarities between
AS, BSC and PBIL: Toward the birth of a new
meta-heuristic, Rapport Interne 215, Laboratoire
d’Informatique de l’Université de Tours, E3i Tours
(1999).

36. S. Schliebs, M. Defoin-Platel and N. Kasabov, Inte-
grated feature and parameter optimization for an
evolving spiking neural network, in M. Köppen,
N. K. Kasabov and G. G. Coghill (eds.), Advances
in Neuro-Information Processing, 15th International
Conference, Vol. 5506 of Lecture Notes in Computer
Science, Springer, Heidelberg, Germany (2009),
pp. 1229–1236.

37. M. Defoin-Platel, S. Schliebs and N. Kasabov, A
versatile quantum-inspired evolutionary algorithm,
in IEEE Congress on Evolutionary Computation,
CEC’07, IEEE Press, Singapore (2007), pp. 423–430.

38. S. G. Wysoski, L. Benuskova and N. Kasabov, On-
line learning with structural adaptation in a network
of spiking neurons for visual pattern recognition, in
Artificial Neural Networks ICANN 2006, Springer,
Berlin/Heidelberg (2006), pp. 61–70.

39. M. Defoin-Platel, S. Schliebs and N. Kasabov,
Quantum-inspired evolutionary algorithm: A

multimodel EDA, Evolutionary Computation, IEEE
Transactions 13(6) (2009) 1218–1232.

40. R. Kohavi and G. H. John, Wrappers for feature sub-
set selection, Artificial Intelligence 97(1–2) (1997)
273–324.

41. S. Schliebs, M. Defoin-Platel, S. Worner and
N. Kasabov, Quantum-inspired feature and param-
eter optimisation of evolving spiking neural net-
works with a case study from ecological modeling, in
International Joint Conference on Neural Networks,
IEEE - INNS - ENNS, IEEE Computer Society, Los
Alamitos, CA, USA (2009), pp. 2833–2840.

42. S. Schliebs, M. Defoin-Platel and N. Kasabov, Ana-
lyzing the dynamics of the simultaneous feature and
parameter optimization of an evolving spiking neural
network, in International Joint Conference on Neu-
ral Networks, IEEE - INNS - ENNS, IEEE Com-
puter Society, Barcelona, Spain (2010).

43. S. Schliebs, Heterogeneous Probabilistic Models for
Optimisation and Modelling of Evolving Spiking
Neural Networks. Ph.D. thesis, Auckland Uni-
versity of Technology (2010). http://hdl.handle.
net/10292/963.

44. P. Larrañaga and J. A. Lozano, Estimation of Dis-
tribution Algorithms: A New Tool for Evolutionary
Computation, Kluwer Academic Publishers, Boston
(2002).

45. J. Geweke, Efficient simulation from the multivari-
ate normal and student-t distributions subject to
linear constraints and the evaluation of constraint
probabilities, in Computing Science and Statistics:
Proceedings of the 23rd Symposium on the Interface,
American Statistical Association, New York, Seattle,
Washington (1991), pp. 571–578.

46. K.-H. Han and J.-H. Kim, On setting the parameters
of quantum-inspired evolutionary algorithm for prac-
tical application, in Congress on Evolutionary Com-
putation, CEC’03, Vol. 1, IEEE Press, Canberra,
Australia (2003), pp. 178–194.

47. D. Thierens, D. Goldberg and A. Pereira, Domino
convergence, drift, and the temporal-salience
structure of problems, in Evolutionary Compu-
tation Proceedings, 1998. IEEE World Congress
on Computational Intelligence, IEEE Press (1998),
pp. 535–540.

48. W. M. Rudnick, Genetic Algorithms and Fitness
Variance with an Application to the Automated
Design of Artificial Neural Networks. Ph.D. thesis,
Oregon Graduate Institute of Science & Technology,
Beaverton, OR, USA (1992).

49. K.-H. Han and J.-H. Kim, Quantum-inspired evolu-
tionary algorithms with a new termination criterion,
Hε gate, and two phase scheme, IEEE Transactions
on Evolutionary Computation 8(2) (2004) 156–169.

50. H. Mühlenbein and G. Paass, From recombination
of genes to the estimation of distributions I. binary
parameters, in PPSN (1996), pp. 178–187.

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.worldscientific.com/action/showLinks?crossref=10.1016%2FS0004-3702%2897%2900043-X&isi=000071321500009
http://www.worldscientific.com/action/showLinks?crossref=10.1109%2FTEVC.2004.823467&isi=000220968200006
http://www.worldscientific.com/action/showLinks?crossref=10.1023%2FB%3ANACO.0000023416.59689.4e

November 19, 2010 10:50 00256

500 S. Schliebs, N. Kasabov & M. Defoin-Platel

51. S. Baluja, Population-based incremental learning: A
method for integrating genetic search based function
optimization and competitive learning, Tech. Rep.
CMU-CS-94-163, Carnegie Mellon University, Pitts-
burgh, PA (1994).

52. G. R. Harik, F. G. Lobo and D. E. Goldberg, The
compact genetic algorithm, IEEE Transactions on
Evolutionary Computation 3(4) (1999) 287–297.

53. Z. Michalewicz and C. Z. Janikow, Genetic algo-
rithms for numerical optimization, Statistics and
Computing 1(2) (1991) 75–91.

54. A. Auger and N. Hansen, Performance evaluation of
an advanced local search evolutionary algorithm, in
IEEE Congress on Evolutionary Computation, IEEE
Press, Vol. 2 (2005), pp. 1777–1784.

55. P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb,
Y. P. Chen, A. Auger and S. Tiwari, Problem def-
initions and evaluation criteria for the CEC 2005

special session on real parameter optimization, Tech.
Rep., Nanyang Technological University, Singapore
(2005).

56. M. A. Potter and K. A. D. Jong, Cooperative coevo-
lution, An architecture for evolving coadapted sub-
components, Evolutionary Computation 8 (2000)
1–29.

57. N. Kasabov, To spike or not to spike: A probabilistic
spiking neuron model, Neural Networks 23(1) (2010)
16–19.

58. L. Benuskova and N. Kasabov, Computational Neu-
rogenetic Modeling, Springer, NY (2007).

59. L. Benuskova, V. Jain, S. G. Wysoski and
N. Kasabov, Computational neurogenetic modeling:
A pathway to new discoveries in genetic neuro-
science, Intl. Journal of Neural Systems 16(3) (2006)
215–227.

In
t.

J.
 N

eu
r.

 S
ys

t.
20

10
.2

0:
48

1-
50

0.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
C

K
L

A
N

D
 U

N
IV

E
R

SI
T

Y
 O

F
T

E
C

H
N

O
L

O
G

Y
 o

n
08

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.worldscientific.com/action/showLinks?pmid=10753229&crossref=10.1162%2F106365600568086&isi=000208114100002
http://www.worldscientific.com/action/showLinks?crossref=10.1007%2FBF01889983
http://www.worldscientific.com/action/showLinks?pmid=19783402&crossref=10.1016%2Fj.neunet.2009.08.010&isi=000273126500003
http://www.worldscientific.com/action/showLinks?system=10.1142%2FS0129065706000627&isi=000239225200006
http://www.worldscientific.com/action/showLinks?crossref=10.1109%2F4235.797971&isi=000083294900003

	1 Introduction
	2 EA for Optimizing SNN
	3 QiSNN
	4 Heterogeneous Optimization
	4.1 Description of the algorithm
	4.2 Benchmark problem
	4.3 Configuring hMM-EDA
	4.4 Performance analysis
	4.4.1 Benchmark analysis
	4.4.2 Results
	4.4.3 Computational cost

	5 Conclusion and Future Directions

