
CHAPTER 41

Theoretical and Computational
Models for Neuro, Genetic, and
Neuro–Genetic Information
Processing

Nik Kasabov, Lubica Benuskova
Knowledge Engineering and Discovery Research Institute,
School of Information Technology, Auckland University of Technology,
Auckland, New Zealand

CONTENTS

1. Introduction . 1
2. Neuro-Information Processing . 2

2.1. Neuro-Information Processing in the Brain 2
2.2. Coding and Representation of Information

in the Brain . 7
3. Artificial Neural Networks . 9

3.1. General Classification Scheme 10
3.2. Evolving Connectionist Systems 18

4. Gene Information Processing . 22
4.1. Genes and Cellular Processes 23
4.2. Computational Models of Gene Information

Processing . 24
5. Neuro-Genetic Information Processing 25

5.1. Neuro-Genetic Processes in the Brain 25
5.2. Computational Modeling of Neuro-Genetic

Processes . 26
6. Conclusions and Future Development 32

References . 34

1. INTRODUCTION
Neuroscience, along with the information and mathematical sciences, has developed a variety
of theoretical and computational models to model complex brain functions [1]. Along with
this development, artificial neural networks—computational models that adopt principles

ISBN: 1-58883-042-X/$35.00
Copyright © 2005 by American Scientific Publishers
All rights of reproduction in any form reserved.

1

Handbook of Theoretical and Computational Nanotechnology
Edited by Michael Rieth and Wolfram Schommers

Volume X: Pages (1–38)

2 Theoretical and Computational Models

from the nervous system—have been developed into powerful tools for learning from data
and generalization [2–6]. Artificial neural networks have been applied to a large amount
of complex problems such as classification, prediction, diagnosis, and planning, not only for
brain and molecular data modeling [7–9], but across all disciplines of science and engineer-
ing [10]. This chapter is a review of existing computational models of brain functions and of
neural network models.
With the recent advancements in genetic research and with the successful sequencing of

the human and other genomes, more information is becoming available about the interaction
between brain functions and genes, about genes related to brain diseases (e.g., epilepsy [11],
mental retardation [12], etc.), and about gene-based treatment of them [13]. It is well
accepted now that brain functions are better understood and treated if information from
molecular and neuronal level is integrated. For this reason, computational models that com-
bine genetic and neuronal information are needed for modeling and prognosis. Such mod-
els are called neuro-genetic models. These models are further discussed in the section on
future development with the anticipation that models of integrated molecular and neuronal
information processing will be an important part of the theoretical and computational nano-
technology of the future.

2. NEURO-INFORMATION PROCESSING

2.1. Neuro-Information Processing in the Brain

Many functions are associated with neural cells (neurons) and with neural networks in the
brain [14]. An ensemble of neurons operates in concert, thus defining the functions of a
neural network that lead to such outcomes as perception of sound or brain disease (e.g.,
epilepsy [11] or mental retardation [12], etc.). At the level of the whole brain, complex
dynamic interactions are observed, and cognitive functions are performed (e.g., learning,
visual pattern recognition, speech and language processing, etc.).
It is estimated that there are from 1011 to 1012 of neurons in the human brain [14]. Three

quarters of these neurons form a 4–6-mm-thick cerebral cortex that constitutes a heavily
wrinkled brain surface. The cerebral cortex is thought to be a seat of cognitive functions,
like perception, imagery, thinking, and so on. The cortex cooperates with evolutionary, older
subcortical nuclei that are located in the middle of the brain, in and around the so-called
brainstem (Fig. 1). Subcortical structures and nuclei comprise, for instance, thalamus, basal
ganglia, hypothalamus, and dozens of other groups of neurons with more or less specific
functions in modulating the state of the whole brain. For example, the input from all sensory
organs comes to the cortex preprocessed in the thalamus. All the brain parts, either cortical
or subcortical, are directly or indirectly heavily interconnected, thus forming a huge recurrent
neural network.
Figure 1 shows a schematic functional division of the human cerebral cortex. One-third

of the cortex is devoted to the processing of visual information in the primary visual cortex
and higher-order visual areas. Association cortices take about one-half of the whole cortical
surface. In the parietal-temporal-occipital association cortex, sensory, and language data are
being associated. Memory and emotional data are associated in the limbic association cortex
(internal and bottom portion of hemispheres). The prefrontal association cortex takes care
of all associations, evaluation, planning ahead, and attention.
At the border between the frontal and parietal lobes, there is a somatic sensory cortex,

which processes touch and other tactile signals (temperature, pain, etc.) from the body
surface and interior. In front of this cortex, there is a primary motor cortex, which issues
signals for voluntary muscle movements including speech. These signals are preceded by the
preparation and anticipation of movements that takes place in the premotor cortex. The plan
of actions and their consequences, as well as the inclusion and exclusion of motor actions into
and from the overall goal of an organism, are performed within the prefrontal association
cortex. Subcortical basal ganglia and cerebellum also participate in preparation and tuning of
motor outputs in the sense of particular movements. For instance, the cerebellum executes
routine automatized movements like walking, biking, driving, and so on. Language processing

Theoretical and Computational Models 3

Limbic
association cortex

Prefrontal
association
cortex

Temporal
cortex

Cerebellum

Occipital
cortex

Primary
visual
cortex

Parietal-
temporal-
occipital
association
cortex

Frontal c
orte

x

Premotor

co
rte

x

Prim
ary

motor c
orte

x

Somatose
nso

ry
co

rte
x

Parietal cortex

Subcortical nuclei

Higher-order

visual areas

Figure 1. Gross anatomical and functional division of the human cerebral cortex. The same division applies for the
other; in this case, the right hemisphere. A dashed curve marks the position of evolutionary older subcortical nuclei
in the brainstem of the brain. Each of the depicted areas has far more subdivisions.

takes place within the temporal cortex, parietal-temporal-occipital association cortex, and
frontal cortex. We want to point out that there are far more anatomical and functional
subdivisions within each of the mentioned areas. Invaluable detailed information comes
from the study of patients with mental deficits caused by injuries of particular brain areas.
At present, noninvasive imaging techniques such as functional magnetic resonance (fMRI),
positron emission tomography (PET), electroencephalogram (EEG), and others provide a
rich source of information about the dynamics and organization of work within the healthy
and diseased brain.

2.1.1. Processing of Signals by Neurons
Neuro-information processing in the brain depends not only on the properties of neural
networks but also on the properties of processing units—neurons. A neuron (Fig. 2) receives
and sends out electric and chemical signals. The place of signal transmission is a synapse.
In the synapse, the signal can be nonlinearly strengthened or weakened. The strength or
efficacy of synaptic transmission is also called a synaptic weight. One neuron receives and
sends out signals through from 103 to 105 synapses. Dendrites (i.e., numerous bushy cell
extensions) and soma constitute the input surface. Electrical signals transmitted by synapses
can have a positive or negative electric sign. In the former case, we speak about excitatory
synapses, and in the latter case about inhibitory synapses. Most of excitatory synapses are

axon

soma

basal dendrites

dendritic tree

synapse

spine

10–6 m

Figure 2. Schematic illustration of a neuron and its parts. There is a synapse at every dendritic spine. Synapses are
also formed on the dendritic shafts and on the soma.

4 Theoretical and Computational Models

formed on spines, tiny extensions on dendrites. Spines are very important devices in relation
to learning and memory.
When the sum of positive and negative contributions (signals) weighted by synaptic weights

gets bigger than a particular value, called the excitatory threshold, a neuron fires; that is, it
emits an output signal called a spike (Fig. 3). A spike is also called an action potential or a
nerve impulse. The output frequency of a spike train (from 1 to 102 Hz) is proportional to
the overall sum of positive and negative synaptic contributions. Spikes are produced at the
initial segment of an axon (the only neuronal output extension). Then they quickly propagate
along the axon toward other neurons within a network (propagation speed is 5–100 m/s).
At its distant end, an axon makes thousands of branches, each of which is ended by a synaptic
terminal (bouton).

2.1.2. Process of Synaptic Transmission
A synapse consists of a presynaptic terminal (bouton), synaptic cleft and postsynaptic mem-
brane (Fig. 4). In the presynaptic terminal, there are dozens of vesicles filled with molecules
of neurotransmitter (NT) ready to be released. When a presynaptic spike arrives into a
terminal, calcium ions rush in and cause the fusion of vesicles with the presynaptic mem-
brane. This process is also called exocytosis. Molecules of NT are released into the synaptic
cleft (Fig. 4b) and diffuse toward the receptors within a postsynaptic membrane. Molecules
of NT form a transient bond with the molecules of receptors. This causes the opening of
ion channels associated with postsynaptic receptors. In the excitatory synapse, receptors are
associated with sodium (Na+) ion channels, and a positive excitatory postsynaptic poten-
tial (EPSP) is generated. In the inhibitory synapse, receptors are associated with chlorine
(Cl−) ion channels, and a negative inhibitory PSP is generated. Eventually, NT releases its
bond with receptors and diffuses back to the presynaptic membrane and out of the synaptic
cleft. Special molecular transporters within a presynaptic membrane take molecules of NT
back inside the terminal, where they are recycled into new vesicles. This process is called
a reuptake of NT. The whole synaptic transmission lasts for about 1 MS. Such a synapse is
called a chemical synapse, because the transmission of an electric signal is performed in a
chemical way.
The PSP, either excitatory or inhibitory, has some amplitude and duration. The amplitude

and duration of the PSP depend on the number of activated receptor-ion channels and
on how long they stay open, which may be miliseconds, tens of miliseconds, or hundreds
of miliseconds. The duration of channel opening depends on the number of released NT
molecules and on the type of receptors that are associated with ion channels. The amplitude
of PSP also depends on the electric input resistance for ions, which in turn depends on the
size and shape of a postsynaptic spine and dendrites and on the distance of synapse from
soma. For instance, a short and stubby dendritic spine has a much smaller electric resistance
than a long and thin spine. All these pre- and postsynaptic factors determine the weight
(strength, efficacy) of a particular synapse.

EPSP

IPSP

EPSP–IPSP≥ ϑ

ϑ Spike train

K+Na+

Voltage-gated
ion channels
in the neuron
membrane

Figure 3. Electric synaptic potentials and axonal ion channels responsible for spike generation and propagation.
EPSP = excitatory postsynaptic potential, IPSP = inhibitory postsynaptic potential, � = excitatory threshold for an
output spike generation.

Theoretical and Computational Models 5

NT

R

Na+

Na+

Ca2+

Ca2+

Ca2+
presynaptic
terminal

cleft

postsynaptic membrane

10–6m

N

vesicles

(a) (b)

Figure 4. Scheme of synaptic transmission. (a) A synapse is ready to transmit a signal. (b) Transmission of elec-
tric signal in a chemical synapse. NT = neurotransmitter, R = AMPA-receptor-gated ion channel for sodium,
N = NMDA-receptor-gated ion channel for sodium and calcium.

Within a postsynaptic membrane, there are also kinds of receptors that are not associated
with an ion channel, but instead with an enzyme. When the overall amount of released NT
reaches some critical concentration, these receptor–enzyme complexes activate particular
cytoplasmatic enzymes, the so-called second messengers. Second messengers trigger chains
of various biochemical reactions that may lead to a change in synaptic weight, or even
to transient changes in gene expression leading to alteration in biomolecular synthesis of
receptors, neurotransmitters, and enzymes. Thus, second messengers may act locally within
a synapse itself, or they may activate further (third, and so on) messengers that carry the
message to the genome of a neuron, thus causing a change in its biochemical machinery
related to signal processing. Therefore, it is now widely accepted that the activity of a neuron
itself influences its processing of information, and even its life itself, whether it survives
or not.

2.1.3. Learning Takes Place in Synapses
For major discoveries in the field of synaptic mechanisms of learning, the 2000 Nobel prize
for medicine went to the neuroscientists Eric R. Kandel and Paul Greengard. The third
laureate, Arvid Carlsson, got the prize for discoveries of actions of the neurotransmitter
dopamine. At present, it is widely accepted that learning is accompanied by changes in the
synaptic weights in cortical neural networks [14]. Changes of synaptic weights are also called
synaptic plasticity. In 1949, the Canadian psychologist Donald Hebb formulated a universal
rule for these changes: “When an axon of cell A excites cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one or both
cells so that A’ s efficiency as one of the cells firing B is increased” [15].
In cerebral cortex and in hippocampus of humans and animals, learning takes place in

excitatory synapses formed on dendritic spines that use glutamate as their neurotransmitter.
In the regime of learning, glutamate acts on specific postsynaptic receptors, the so-called
NMDA receptors (N -methyl-d-aspartate). NMDA receptors are associated with ion chan-
nels for sodium and calcium (see Fig. 5). The influx of these ions into spines is proportional
to the frequency of incoming presynaptic spikes. Calcium acts as a second messenger, thus
triggering a cascade of biochemical reactions that lead either to the long-term potentiation
of synaptic weights (LTP) or to the long-term depression (weakening) of synaptic weights
(LTD). In experimental animals, it has been recorded that these changes in synaptic weights
can last for hours, days, or even weeks and months, up to a year. Induction of such long-term
synaptic changes involves transient changes in gene expression [16].
A subcellular switch between LTD and LTP is the concentration of calcium within spines

[17]—an LTD/LTP threshold. In turn, the intraspine calcium concentration depends on the
intensity of synaptic stimulation; that is, on the frequency of presynaptic spikes: more presy-
naptic spikes means more glutamate within synaptic cleft. Release of glutamate must coincide
with a sufficient depolarization of the postsynaptic membrane to remove the magnesium

6 Theoretical and Computational Models

Ca2+

Ca2+

Ca2+

Na+

Na+

AMPA NMDA

Presynaptic
spike means
glutamate
release

Postsynaptic spike
arrives too early
to coincide with
glutamate action

Postsynaptic spike
arrives in good
time window to
coincide with
glutamate action

time

Figure 5. Spike timing dependent plasticity (STDP). Ions of sodium and calcium enter the postsynaptic spine
through the NMDA-receptor gated ion channels. When postsynaptic neuron fires, the postsynaptic spikes back-
propagate to spines. When their timing coincides with glutamate action, more calcium enters spines, and thus there
is a bigger chance to achieve LTP.

block of the NMDA receptor. The greater the depolarization, the more ions of calcium
enter the spine. Postsynaptic depolarization is primarily achieved via AMPA receptors; how-
ever, recently, a significant role of backpropagating postsynaptic spikes has been pointed
out (see, e.g., Fig. 5) .[18]. Calcium concentrations below or above the LTD/LTP threshold
switch on different enzymatic pathways that lead either to LTD or LTP, respectively. How-
ever, the current value of the LTD/LTP threshold (i.e., the properties of these two enzymatic
pathways) can be influenced by levels of other neurotransmitters, by an average previous
activity of a neuron, and possibly by other biochemical factors as well. This phenomenon
is called metaplasticity, a plasticity of synaptic plasticity [19]. Dependence of the LTD/LTP
threshold on different postsynaptic factors is the subject of the Bienenstock, Cooper, and
Munro (BCM) theory of synaptic plasticity [20] (for a nice overview see, e.g., Ref. [21]). The
BCM theory of synaptic plasticity has been successfully applied in computer simulations to
explain experience-dependent changes in the normal and ultrastructrally altered brain cortex
of experimental animals [22, 23].
The ease with which LTD and LTP can be evoked in the developing and the adult brain

are not the same. One of the factors responsible for this difference may be the genetically
programmed difference in NMDA receptor composition [24]. The NMDA receptor is made
up of an NR1 subunit, which is obligatory for channel function, and a selection of develop-
mentally and regionally regulated NR2 subunits (A–D). For example, the glutamate-evoked
positive current has a longer duration in receptors containing NR2B subunits than in those
containing NR2A subunits. The proportion of NR2B subunits is higher in young animals
than in adults, which may account for the greater degree of synaptic plasticity seen in young
animals.

2.1.4. Summary of Cortical Plasticity
Experimental developmental neuroscience brings abundant evidence that in the developing
brain strong genetic programs determine the overall pattern of hierarchical organization and
connections between brain areas. Nature provides an anatomical and physiological “scaffold”
in the sense of a framework that outlines the structures to be formed it later. A newborn
brain is not a “tabula rasa;” however, nurture and experience can shape it dramatically [14].
For instance, congenitally deaf kittens can develop almost normal auditory cortical maps and
normal hearing after experiencing sounds through implanted artificial chochlea [25].
Information needed to specify precise subtle differentiation of neurons and subtle pat-

terns of interneuronal connectivity far surpasses that which is contained in genetic programs.
Instead of it, genetic programs provide for a vast overproduction of abundant and redun-
dant synaptic connections in the developing brain. Individual differences in experience cause
selective pruning of the majority of these synapses. Only synapses that mediate the genuine

Theoretical and Computational Models 7

individual experience of an individual remain. Process of experience-dependent synaptic
pruning during early stages of brain development may constitute the basis of brain and mind
individuality. Early developmental overproduction of redundant synapses lasts only for some
time after birth. Time windows, that is, beginnings and durations, are different for different
brain systems. They also differ for different animal species. In general, what lasts weeks and
months in rats, cats, and monkeys usually lasts for years in humans.
Later in adolescence and adulthood, a new experience is “burned” into the brain not by a

selective pruning of existing redundant synapses but, instead, by a selective creation of new
connections and by changing the efficacies of the synaptic transmission of existing connec-
tions. This does not mean that synapses cannot be removed as a result of experience later in
life, or that new connections cannot be created because of experience early in development.
They can, but the prevailing process of experience-dependent cortical plasticity at different
ages is not the same. Some cortical areas retain the capacity of synaptic plasticity for their
whole course of life. These are association cortical areas, highest-order sensory areas, and
premotor and emotional cortical areas of the brain. The capacity of the brain to be plas-
tic and change its microstructure as a result of experience is of profound importance for
discovering the rules of the mind/brain relation.

2.2. Coding and Representation of Information in the Brain

2.2.1. Principles of Information Representation in the Brain
The first principle of representation (and coding) of information in the brain is redundancy.
Redundancy means that every piece of information (meant in any sense) is stored, trans-
mitted, and processed by a redundant number of neurons and synapses so that it does not
become lost when neural networks undergo damage; for instance, as a result of aging. When
neural networks get damaged, their performance does not drop down to zero abruptly, like
in a sequential computer, but instead it degrades gracefully. Computer models of neural
networks also confirm the idea that a degradation of performance with the loss of neurons
and synapses is neither total nor linear, but instead, neural networks can withstand quite
substantial damage and still perform well.
Next, the contemporary view on the nature of neural representation is such that infor-

mation (in the sense of content or meaning) is represented by place in the cortex (or, in
general, in the brain). However, this placement is a result of both genetically determined
anatomical framework and shaping by input through the process of experience-dependent
plasticity. For instance, a sound pattern for the word “apple” is represented (coded) in the
auditory areas of the temporal cortex. It is represented as a spatial pattern of active ver-
sus inactive neurons. This neural representation is associated (connected) through synaptic
weights, with the neural representation of a visual image of apple in the parietal cortex, with
the neural representation of an apple odour in the olfactory cortex, with memories on the
grandma garden and facts about apples being represented in some other areas of the brain,
and so forth. Neural representations (i.e., distributions or patterns of active neurons) within
particular areas and their associations between areas appear as a result of learning (synaptic
plasticity). Different objects are represented by means of different patterns or by distribu-
tions of active neurons within cortical areas. Thus, each object is represented by means of
distributed networks of neurons, whereas the activity of neurons in these networks is also
distributed.
Perception is an active process. Instead of a passive processing of all electrical signals that

may or may not arrive from hierarchically lower processing levels, cortical neural networks
should be able to use fragments of activity patterns to fill in the gaps, and thus quickly
re-create the whole neural representation. The filling-in process can be nicely modeled by
means of model neural networks; for instance, those of the Hopfield type [26] (Fig. 6).
Explicit neural representations (patterns of activities) are implicitly stored in the matrix

of synaptic weights through which neurons in the network are interconnected. The weight
distribution of storing a particular object representation is created as a result of an
experience-dependent synaptic plasticity (learning). When a sufficiently large portion of this
neural representation is activated from outside the network, few electric signals along all the

8 Theoretical and Computational Models

Figure 6. Illustration of spontaneous re-creation of neural representation after only few input impulses (figure in
the uppermost left corner). Black pixel represents a firing neuron, whereas blank pixel represents a silent neuron.
Between each pattern of activity from left to right (1 ms time frame), neurons in the network exchange only one
impulse. Thus, basically, after exchanging only two to three spikes, the memory pattern is re-created. Network can
reverberate the restored memory pattern until a different external input arrives.

synapses in the network quickly switch on the correct remaining neurons in the represen-
tation. Neural representations in the sense of patterns of activity have a holistic character.
Patterns of activity are being recalled (restored) as a whole.

2.2.2. Problem of Neural Coding: The Brain is Fast, Neurons are Slow
Neurons within and between different brain areas send messages to each other by means of
output spikes. Transmission time at one synapse takes about 1 ms. Neural representations of
objects “communicate with each other;” that is, neurons within and between these represen-
tations send messages to each other. At present, the nature of these messages, that is, the
nature of a neural code, is a mystery. It is because the recognition of sensory objects takes
only about 200 ms [27], although it is performed by tens of different cortical areas in which
the information processing involves billions of neurons. Even when taking into account the
parallel processing of information, one hierarchical area of the cortex is left with only about
10–30 ms to perform its share of processing, the results of which are sent to hierarchically
higher areas. Therefore, recently, a number of hypotheses have emerged based both on
theoretical and experimental investigations, dealing with this problem.
These hypotheses can be divided into two categories: spike-timing hypotheses and rate

code hypotheses [28].

2.2.2.1. Coding Based on Spike Timing

2.2.2.1.1. Reverse Correlation The first option is that the information about the salience
of the object feature is encoded in the exact temporal structure of the output spike train. Let
us say that two neurons fire three spikes within 20 ms. The first neuron fires a spike train
with this temporal structure � ��, and the second neuron with this temporal structure � � �.
By means of the techniques of reverse correlation, it is possible to calculate which stimulus
exclusively causes which temporal pattern of which neuron. The main proponents of this
theory are Bialek and his coworkers, who have made its successful verification in the fly
visual system [29].

2.2.2.1.2. Time to the First Spike Let, at time instant t0, a stimulus arrive to the neural
network. Neurons that fire the first (let us say in a window of 10 ms) carry the information
about the stimulus features. The rest of neurons and the rest of impulses are ignored. This
theory is favored by S. Thorpe [30].

2.2.2.1.3. Phase Information about the presence of the feature is encoded in the phase
of neuron’s impulses with respect to the reference background oscillation. Either they are in
a phase lead or in a phase lag. The information can also depend on the magnitude of this
phase lead (lag). This coding is preferred by people investigating hippocampus [31].

2.2.2.1.4. Synchronization Populations of neurons that represent features belonging to
one object can be bound together by synchronous firing. Such a binding of features was
discovered in the laboratory of W. Singer in the cat visual cortex [32]. It was also detected
in the human cortex during perception [27].

Theoretical and Computational Models 9

2.2.2.2. The Rate Code

2.2.2.2.1. (Temporal) Average Rate This coding is still being considered for stationary
stimuli that last up to around 500 ms or longer, so neurons have enough time to count
(integrate) impulses over long time. Neurons that have the highest frequency signalize the
presence of the relevant feature.

2.2.2.2.2. Rate as a Population Average An average frequency is not calculated as a
temporal average but, rather, as a population average. One feature is represented by a pop-
ulation of many (10,000) neurons, for instance, in one cortical column. On the presence of
a feature, most of the neurons are activated. When we calculate the number of spikes in a
10-ms window of all these neurons and divide this number by the number of neurons acti-
vated, we will get approximately the same average frequency as when calculating a temporal
average rate of any of these neurons (provided they all fire with the same average rate). This
idea has been thoroughly investigated in Ref. [33]. It has been also shown, that by means of
population averaging we can get a reliable calculation of the neurons’ average rates even in
the case when they have a Poisson-like distribution of output spikes. Populations that relay
the highest number of spikes signal the presence of the relevant feature.
On seeing all these options, one gets inevitably confused. Every hypothesis has some

experimental support; thus, which one is correct, and which one is not? Is it possible that
different brain areas use different codes? In one area it is the spike-timing code and in
another area it is a rate code. Or does the brain switch between different codes according
to the task to be performed? These possibilities remain to be explored.
Let us reason now, However, that all these hypotheses do not have to be, in fact, mutually

exclusive. For instance, let us imagine that a population of neurons representing one feature
of an object has a synchronized firing. Those neurons that have the highest output rates have
also the shortest time to the first spike. Their synchronization guarantees that all of them
have the same phase difference with respect to the background oscillation. Actually, the
background oscillation might have helped to synchronize them. The information about the
intensity of a feature in the stimulus (feature salience) is encoded in the average frequency
of the whole population of neurons (within 10 ms) and is relayed on to the next population
of neurons in the processing hierarchy. An actual temporal pattern of spikes relayed by one
population of neurons indeed corresponds only to one stimulus. Thus, maybe the mentioned
options are only different angles under which we can see the same process.

3. ARTIFICIAL NEURAL NETWORKS
Artificial neural networks (ANNs) are massivelly parallel computational systems inspired by
biological neural networks. They can have different architectures and properties of their
processing elements. Illustration of a general architecture of an ANN is shown in Fig. 7.

Feedforward
connections

Feedback
connections

Lateral
connections

Figure 7. Formal neurons in ANNs are organized into layers (dashed rectangles). Connections between neurons
within an ANN can be of the feed-forward, feedback, or lateral type.

10 Theoretical and Computational Models

There are different variations derived from this general architecture; for instance, there can
be only feed forward connections between layers, or there can be only feedback connections
in the one and only layer with the feed forward input, or there can be feedback connections
allowed only between some layers, and so on.
In general, ANNs perform mappings of vectors fromm-dimensional input space on vectors

from n-dimensional output space. We can also say that ANNs learn how to associate vectors
from one space to vectors from another space. Firts of all, there are many models of ANNs,
each having different particular properties. However, they all are adaptible systems that can
reorganize their internal structure based on their experience in the process called training
or learning. ANNs are very often referred to as connectionist systems [34].
Basic processing elements (processing units) of ANNs are formal neurons based on the

rate code hypothesis of a neural code according to which the information being sent from
one neuron to another is encoded in the output rate of its spike train. Thus, the input–output
function of an ith element of an ANN is

oi�t	 = f

[∑
∀k

wik�t	 xk�t	

]
(1)

where oi� xk�wik ∈ � are the output rate of the ith neuron, input rate of the kth input, and
the synaptic weight between the kth and ith element, respectively. The function f is the so-
called activation or transfer function of a neuron. It can be linear or nonlinear, continuous
and differentiable, or binary, depending on which ANN model we are working with.
Different models of ANNs differ with respect to their architecture, transfer functions of

their elements, and the rules used to modify the weights between neurons in the process of
learning [5].

3.1. General Classification Scheme

Let us introduce a general classification scheme of ANNs that will lead to explanation of
their properties, capabillities, and drawbacks [34].

3.1.1. General Notions
Most of the known ANN training algorithms are influenced by a concept introduced by
Donald Hebb [15]. He proposed a model for unsupervised learning in which the synap-
tic strength (weight) is increased if both the source and the destination neurons become
simultaneously activated. It is expressed as

wij�t + 1	 = wij�t	+ c oi�t	 oj�t	 (2)

where wij�t	 is the weight of the connection between the ith and jth neuron in the network
at the moment t, and oi and oj are the output signals of the neurons i and j at the same
moment t. The weight wij�t+ 1	 is the adjusted weight at the next time time moment (t+ 1).
Usually some kind of weights normalization is applied after each adjustment to prevent
growth to infinity.
In general terms, a connectionist system {S, W, P, F, J, L} that is defined by its structure

S, its connection weights W , its parameter set P , its function F , its goal function J , and a
learning procedure L, learns if the system optimizes at least part of its structure S and its
function F when observing events z1� z2� z3� � � � from the problem space Z.
Through a learning process, the system improves its reaction to the observed events and

captures useful information that may be later represented as knowledge.
The goal of a learning system is defined as to find the minimum of an objective function

J �S	 named “the expected risk function” [2, 6]. The function J �S	 can be represented by a
loss function Q�Z� S	 and an unknown probability distribution ��Z	.
Most of the learning systems optimize a global goal function over a fixed part of the

structure of the system. In NN, this part is a set of predefined and fixed number of connection
weights (i.e., the set number of elements in the set W). As an optimization procedure, some
known statistical methods for global optimization are applied [6]; for example, the gradient

Theoretical and Computational Models 11

descent method. Final structure S is expected to be globally optimal (i.e., optimal for data
drawn from the whole-problem space Z).
In the case of a changing structure S and changing (e.g., growing) part of its connec-

tions W , where the input stream of data is continuous and its distribution is unknown, the
goal function could be expressed as a sum of local goal functions J ′, each one optimized in a
small subspace of Z′ ⊂ Z as data are drawn from this subspace. While the learning process is
taking place, the number of dimensions of the problem space Z may also change over time.
These scenarios would be reflected in different models of learning, as is explained next.

3.1.2. Different Models of Learning in Connectionist Systems
There are many methods for learning that have been developed for connectionist archi-
tectures (for a review, see Ref. [1]). It is difficult and quite risky to try to put all the
existing methods into a clear classification structure (which should also assume “slots” for
new methods), but it is necessary to define the scope of the evolving connectionist systems
paradigm.
A connectionist classification scheme is graphically represented in Table 1. and is explained

below. On the one hand, this scheme is a general one, as it is valid not only for connectionist
learning models but also for other learning paradigms; for example, evolutionary learning,
case-based learning, analogy-based learning, and reasoning. On the other hand, the scheme
is not a comprehensive one, as it does not present all existing connectionist learning models.
It is only a working classification scheme needed for the purpose of this work.
A (connectionist) system that learns from observations z1� z2� z3� � � � from a problem

space Z can be designed to perform learning in different ways. The classification scheme in
Table 1 outlines the main questions and issues and their alternative solutions when construct-
ing a connectionist learning system. Now, let us offer an explanation of individual issues and
alternatives.

1. What space has the learning system developed in?
a. The learning system has developed in the original problem space Z: The structural ele-
ments (nodes) of the connectionist learning system are points in the d-dimensional
original data space Z. This is the case in some clustering and prototype learning
systems. One of the problems here is that if the original space is high dimensional
(e.g., a 30,000 gene expression space) it is difficult to visualize the structure of the
system and observe some important patterns. For this purpose, special visualization
techniques, such as principle component analysis (PCA), or Sammon mapping, are
used to project the system structure S into a visualization space V .

b. The learning system has developed in its own machine space M : The structural ele-
ments (nodes) of the connectionist learning system are created in a system (machine)
space M , different from the d-dimensional original data space Z. An example is the
self-organizing map (SOM) neural network [35]. SOMs develop in a two-, three-, or
more dimensional topological spaces (maps) from the original data.

2. Is the space open?
a. An open problem space is characterized by unknown probability distribution P�Z	
of the incoming data and a possible change in its dimensionality. Sometimes the
dimensionality of the data space may change over time, involving more, or fewer,
dimensions; for example, adding new modalities to a person identification system.

b. A closed problem space has a fixed dimensionality and either a known distribution
of the data or a distribution that can be approximated in advance through statistical
procedures.

3. Is learning online?
a. Batch-mode, offline learning: In this case, a predefined learning (training) set of
data P = �z1� z2� � � � � zp is learned by the system through propagating this data
set several times through the system. Each time, the system optimizes its structure
W , based on the average value of the goal function over the whole data set P .
Many traditional algorithms, such as the back-propagation algorithm, use this type
of learning [36, 37].

12 Theoretical and Computational Models

Table 1. A general classification scheme of ANN models.

Issue Alternatives

What space has the learning system developed in? (a) The learning system has developed in the original
data space Z

(b) The learning system has developed in its own
machine space M

Is the space open? (a) An open data space
(b) A closed space that has a fixed dimensionality

Is learning online? (a) Batch-mode, offline learning
(b) Online, pattern mode, incremental learning
(c) Combined online and offline learning

Is learning lifelong? (a) Single-session learning
(b) Lifelong learning

Are there desired output data and in what form? (a) Unsupervised learning
(b) Supervised learning
(c) Reinforcement learning
(d) Combined learning

Is evolution of populations of individuals over gen-
erations involved in the learning process?

(a) Individual, development-based learning
(b) Evolutionary learning, (population-based learning

over generations)
(c) Combined

Is the structure of the learning system of a fixed
size, or it is evolving?

(a) Fixed-size structure
(b) Dynamically changing structure

How structural modifications in the learning sys-
tem partition the problem space?

(a) Global partitioning (global learning)
(b) Local partitioning (local learning)

What knowledge representation is facilitated in the
learning system?

(a) No explicit knowledge representation is facilitated
in the system

(b) Memory-based knowledge
(c) Statistical knowledge
(d) Analytical knowledge
(e) Symbolic knowledge
(f) Combined knowledge
(g) Meta-knowledge
(h) “Consciousness” (the system knows about itself)
(i) “Creativity” (e.g., generating new knowledge)

If symbolic knowledge is represented in the system,
of what type is it?

(a) Propositional rules
(b) First-order logic rules
(c) Fuzzy rules
(d) Semantic maps
(e) Schemata
(f) Meta-rules
(g) Finite automata
(h) Higher-order logic

If the systems’ knowledge can be represented as
fuzzy rules, what type of fuzzy rules are they?

(a) Zadeh-Mamdani fuzzy rules
(b) Takagi-Sugeno fuzzy rules
(c) Other types of fuzzy rules (e.g., type 2 fuzzy rules)

Is learning active? (a) Active learning in terms of data selection, filtering
and searching for relevant data

(b) Passive learning—the system accepts all incoming
data

Reprinted with permission from [34], N. Kasabov, “Evolving Connectionist Systems. Methods and Applications in Bioinformatics,
Brain Study and Intelligent Machines.” Springer, London, 2003. © 2003, Springer-Verlag.

b. Online, pattern mode, incremental learning: Online learning is concerned with learn-
ing each data example separately as the system operates (usually in a real time),
and the data might exist only for a short time. After observing each data example,
the system makes changes in its structure (the W parameters) to optimize the goal
function J . A typical scenario for online learning is when data examples are drawn
randomly from a problem space and fed into the system one by one for training.
Although there are chances of drawing the same examples twice or several times, this

Theoretical and Computational Models 13

is considered as a special case, in contrast to the offline learning, when one example
is presented to the system many times as part of the training procedure. Methods
for online learning in NN are studied in Refs. [38–40]. In Ref. [41], a review of some
statistical methods for online learning, mainly gradient descent methods applied on
fixed-size connectionist structures, is presented.
Some other types of learning, such as incremental learning and lifelong learning,

are closely related to online learning.
Incremental learning is the ability of a NN to learn new data without fully destroy-

ing the patterns learned from old data and without the need to be trained on either
old or new data. According to Schaal and Atkeson [42], incremental learning is
characterized by the following features:

• Input and output distributions of data are not known, and these distributions
may change over time

• The structure of the learning system W is updated incrementally
• Only limited memory is available, so that data have to be discarded after they
have been used.

Online learning, incremental learning, and lifelong learning are typical adaptive
learning methods. Adaptive learning is aiming at solving the well-known stabil-
ity/plasticity dilemma, which means that the system is stable enough to retain pat-
terns learned from previously observed data while being flexible enough to learn
new patterns from new incoming data.
Adaptive learning is typical for many biological systems and is also useful in

engineering applications, such as robotic systems and process control. Significant
progress in adaptive learning has been achieved as a result of the adaptive res-
onance theory (ART) [4] and its various models, which include unsupervised
models (ART1–3, FuzzyART) and supervised versions (ARTMAP, FuzzyARTMAP-
FAM) [43].

c. Combined online and offline learning: In this mode the system may work for some
of the time in an online mode, after which it switches to offline mode, and so forth.
This is often used for optimization purposes, when a small “window” of data from
the continuous input stream can be kept aside, and the learning system that works in
an online mode can be locally or globally optimized through offline learning on this
window of data through “window-based” optimization of the goal function J �W	.

4. Is the learning process lifelong?
a. Single-session learning: The learning process happens only once over the whole set P
of available data (and it may even take many iterations during training). After that,
the system is set in operation and never trained again. This is the most common
learning mode in many existing connectionist methods.

b. Lifelong learning: Lifelong learning is concerned with the ability of a system to learn
from continuously incoming data in a changing environment during its entire exis-
tence. Growing as well as pruning may be involved in the lifelong learning process,
as the system needs to restrict its growth while always maintaining a good learning
and generalization ability.

5. Are there desired output data, and in what form are they available? The availability of
examples with desired output data (labels) that can be used for comparison with what
the learning system produces on its outputs defines four types of learning.
a. Unsupervised learning: There are no desired output data attached to the examples

z1� z2� z3� � � � . The data are considered as coming from an input space Z only.
b. Supervised learning: There are desired output data attached to the examples

z1� z2� z3� � � � . The data are considered as coming in �x� y	 pairs from both an input
space X and an output space Y that collectively define the problem space Z (Fig. 8).
The connectionist learning system associates data from the input space X with data
from the output space Y .

14 Theoretical and Computational Models

(desired
output)

X
Signal Error

| yj– oj |

Input Layer Hidden Layer Output Layer

yjOjWij
WkiXk

hi

Figure 8. Illustration of a multilayer perceptron and supervised learning by means of the error back-propagation
algorithm. Back-propagated error is proportional to the difference between the desired and actual output.

c. Reinforcement learning: In this case, there are no exact desired output data, but some
hints about the “goodness” of the system reaction are available. The system learns
and adjusts its structural parameters from these hints. In many robotic systems,
a robot learns from the feedback from the environment that may be used as a
qualitative indication of the correct movement of the robot.

d. Combined learning: This is the case in which a connectionist system can operate in
more than one of the above learning modes.

6. Is evolution of populations of individuals over generations involved in the learning process?
a. Individual, development-based learning: A system is developed independently and is
not part of a development process of a population of individual systems.

b. Evolutionary learning population-based learning over generations: Here, learning is
concerned with the performance of not only an individual system but also, a popu-
lation of systems that improve their performance through generations. The best
individual system is expected to emerge—to evolve from such populations.
Evolutionary computation (EC) methods, such as genetic algorithms (GA), have

been widely used for optimizing ANN structures [44–46]. Such ANNs are called evo-
lutionary neural networks. They use ideas from Darwinism. Most of the evolutionary
computation methods developed so far assume that the problem space is fixed; that
is, the evolution takes place within a predefined problem space, and this space does
not change dynamically. Therefore, these methods do not allow for modeling real,
online adaptation. In addition, they are very time consuming, which also prevents
them from being used in real-world applications.

7. Is the structure of the learning system of a fixed size, or it is evolving?
Here we will refer again to the bias/variance dilemma (see, e.g., Refs. [4, 47, 48]).

With respect to an ANN structure, the dilemma states that if the structure is too small,
the ANN is biased to certain patterns, and if the NN structure is too large, there
are too many variances that may result in overtraining, poor generalization, and so
forth. To avoid this problem, an ANN structure should change dynamically during the
learning process, thus better representing the patterns in the data and the changes in
the environment.
a. Fixed-size structure: This type of learning assumes that the size of the structure S is
fixed (e.g., number of neurons, number of connections) and that through learning,
the system changes some structural parameters (e.g., W—the values of connection
weights). This is the case in many multilayer perceptron ANNs trained with the
back-propagation algorithm [2, 6, 36, 37, 49–51].

b. Dynamically changing structures: According to Heskes and Kappen [52], there are
three different approaches to dynamically changing structures: constructivism, selec-
tivism, and a hybrid approach.
Connectionist constructivism is about developing ANNs that have a simple initial

structure and that grow during its operation through inserting new nodes. This the-
ory is supported by biological facts (see Ref. [40]). The insertion can be controlled

Theoretical and Computational Models 15

either by a similarity measure of input vectors or by the output error measure, or
by both, depending on whether the system performs an unsupervised or supervised
mode of learning. A measure of difference between an input pattern and already
stored patterns is used for deciding whether to insert new nodes in the adaptive
resonance theory models ART1 and ART2 [4] for unsupervised learning. There are
other methods that insert nodes based on the evaluation of the local error. Such
methods are growing cell structure and growing neural gas [39]. Other methods
insert nodes based on a global error to evaluate the performance of the whole ANN.
One such method is the Cascade–Correlation Method [53]. Methods that use both
similarity and output error for node insertion are used in Fuzzy ARTMAP [43] and
also in EfuNN (Evolving Fuzzy NN) [34].
Connectionist selectivism is concerned with pruning unnecessary connections in

a NN, which starts its learning with many, in most cases redundant, connections
[54, 55]. Pruning connections that do not contribute to the performance of the sys-
tem can be done by using several methods: Optimal-Brain Damage [56], Optimal
Brain Surgeon [41], and Structural Learning with Forgetting [57].

8. How do structural modifications affect the partitioning of the problem space? When a
connectionist model is created, either in a supervised or in an unsupervised mode, the
nodes and the connections partition the problem space Z into segments. Each segment
of the input sub-space is mapped onto a segment from the output sub-space in case of
a supervised learning. The partitioning in the input sub-space imposed by the model
can be one of the following two types:
a. Global partitioning (global learning): Learning causes global partitioning of the space.
Partitioning hyperplanes can be modified either after every example is presented
(in the case of online learning) or after all examples are presented for one iteration
(in the case of a batch-mode learning).
Through the gradient descent learning algorithm, the problem space is partitioned

globally. This is one of the reasons why global learning in multilayer perceptrons suf-
fers from the catastrophic forgetting phenomenon [58, 59]. Catastrophic forgetting
(also called unlearning) is the inability of the system to learn new patterns without
forgetting previously learned patterns. Methods to deal with this problem include
rehearsing of the NN on a selection of past data or on generated new data points
from the problem space [58].
Other techniques that use global partitioning are support vector machines (SVMs)

(see Ref. [60]) for a comparative study of ANN, fuzzy systems, and SVM). Through
learning, the SVMs optimize the positioning of the hyperplanes to achieve maximum
distance from all data items on both sides of the plane.

b. Local partitioning (local learning): In the case of a local learning, the structural
modifications of the system affect the partitioning of only a small part of the space
in which the current data example is drawn from. Examples are given in Fig. 9a
and 9b, where the space is partitioned by circles and squares into a two-dimensional
space. Each circle or square is the subspace defined by a neuron. The activation
of each neuron is defined by local functions imposed on its subspace. An example
of such local functions is kernels, as shown in Fig. 9a. Kernels K are defined by
formulas as given below

K�x	 = exp�−x2/2	√
2&

while
∑

K�x	 = 1 for all x ∈ Z (3)

Other examples of local partitioning are when the space is partitioned by hyper-
cubes and fractals in a three-dimensional space.
Before creating a model, it is important to choose which type of partitioning

will be more suitable for the task in hand. In the evolving connectionist systems
presented later, the partitioning is local. Local partitioning is easier to adapt in an
online mode, faster to calculate, and does not cause catastrophic forgetting.

16 Theoretical and Computational Models

X

X

X

Data points

Kernels

Circles

Squares

(a) (b)

Figure 9. Partitioning of the problem space Z by (a) circles and (b) squares into a two-dimensional space. Reprinted
with permission from [34], N. Kasabov, “Evolving Connectionist Systems. Methods and Applications in Bioinfor-
matics, Brain Study and Intelligent Machines.” Springer, London, 2003. © 2003, Springer-Verlag.

9. What knowledge representation is facilitated in the learning system? It is a well-known
fact that one of the most important characteristics of the brain is that it can retain and
build knowledge. However, it is not known yet how exactly the activities of the neurons
in the brain are transferred into knowledge.
For the purpose of the discussion in this chapter, knowledge can be defined as the

information learned by a system that the system can interpret in different ways and can
use in inference procedures to obtain new facts and new knowledge.
Traditional ANNs and connectionist systems have been known to be poor facil-

itators of representing and processing knowledge, despite some early investigations
[61, 62]. However, some of the issues of knowledge representation in connectionist sys-
tems have already been addressed in the so-called knowledge-based neural networks
(KBNNs) [63–65]. KBNNs are ANNs that are prestructured in a way that allows for
data and knowledge manipulation, which includes learning, knowledge insertion, knowl-
edge extraction, adaptation, and reasoning. KBNNs have been developed either as a
combination of symbolic artificial intelligence (AI) systems and NN [66], or as a com-
bination of fuzzy logic systems and NN [67–71]. Rule insertion and rule extraction
operations are examples of how a KBNN can accommodate existing knowledge along
with data, and how it can “explain” what it has learned. There are different methods
for rule extraction that are applied to practical problems [72–77].
Generally speaking, learning systems can be distinguished on the basis of the type of

knowledge they represent.
a. No explicit knowledge representation is facilitated in the system: An example for such
connectionist system is the traditional multilayer perceptron network trained with
the backpropagation algorithm [36, 37, 49, 51, 78].

b. Memory-based knowledge: The system retains examples, patterns, prototypes, and
cases; for example instance-based learning [79], case-based reasoning systems [80],
and exemplar-based reasoning systems [81].

c. Statistical knowledge: The system captures conditional probabilities, probability dis-
tribution, clusters, correlation, principal components, and other statistical parame-
ters [5].

d. Analytical knowledge: The system learns an analytical function f : X? Y , that rep-
resents the mapping of the input space X into the output space Y . Regression
techniques and kernel regressions in particular are well established [5, 82].

e. Symbolic knowledge: Through learning, the system associates information with prede-
fined symbols. Different types of symbolic knowledge can be facilitated in a learning
system, as discussed further below.

Theoretical and Computational Models 17

f. Combined knowledge: The system facilitates learning of several types of knowledge.
g. Metaknowledge: The system learns hierarchical level of knowledge representation
in which metaknowledge is also learned; for example, which piece of knowledge is
applicable at what time.

h. “Consciousness” of a system: The system becomes “aware” of what it is, what it can
do, and where its position among the rest of the systems in the problem space is.

i. “Creativity” of a system: An ultimate type of knowledge would be such knowledge
that allows the system to act creatively, to create scenarios, and possibly to reproduce
itself; for example, a system that generates other systems (programs) and improves
in time based on its performance in the past.

10. What type of symbolic knowledge is facilitated by the system? If we can represent the
knowledge learned in a learning system as symbols, different types of symbolic knowl-
edge can be distinguished.

• Propositional rules
• First-order logic rules
• Fuzzy rules
• Semantic maps
• Schemata
• Meta-rules
• Finite automata
• Higher-order logic.

11. If the systems’ knowledge can be represented as fuzzy rules, what types of fuzzy rules
are facilitated by the system? Different types of fuzzy rules can be used; for example,
Zadeh-Mamdani fuzzy rules [83, 84], Takagi-Sugeno fuzzy rules [85], and other types
of fuzzy rules (e.g., type-2 fuzzy rules; for a comprehensive reading, see Ref. [86]).
Generally speaking, different types of knowledge can be learned from a process or

from an object in different ways, all involving the human participation. These ways
include direct learning by humans, simple problem representation as graphs, analytical
formulas, using ANN for learning and rule extraction, and so forth these forms can be
viewed as alternative and possibly equivalent forms in terms of final results obtained
after a reasoning mechanism is applied on them. Elaborating analytical knowledge in
a changing environment is a very difficult process involving changing parameters and
formulas with the changing data. If evolving processes are to be learned in a system
and also understood by humans, neural networks that are trained in an online mode
and their structure are interpreted as knowledge are the most promising models at
present.

12. Is the learning process active? Humans and animals are selective in terms of processing
only important information. They are searching actively for new information [87, 88].
Similarly, we can have two types of learning in an intelligent system: active learning
in terms of data selection and filtering, and searching for relevant data, and passive
learning, when the system accepts all incoming data.

3.1.3. Brief Overview of Major Problems With Existing Learning Systems
Despite the successfully developed and used ANNs, fuzzy systems, GAs, hybrid systems, and
other methods and techniques for adaptive training, there are a number of problems with
them. The main problems are listed below.

a. Difficulty in preselecting the system architecture: Usually an ANN model has a fixed
architecture (e.g., a fixed number and organization of neurons and connections). This
makes it difficult for the system to adapt to new data of unknown distribution. A fixed
ANN architecture would definitely prevent the ANN from learning in a lifelong learn-
ing mode.

b. Catastrophic forgetting: When an ANN learns a new item, it forgets the old ones. This
phenomenon was explained in the global learning paradigm above.

18 Theoretical and Computational Models

c. Excessive training time required: Training an ANN in a batch mode usually requires many
iterations of propagating data through the ANN structure. This may not be acceptable
for an adaptive online system that would require a fast adaptation.

d. Lack of knowledge representation facilities: Many of the existing ANN architectures cap-
ture statistical parameters during training but do not have linguistic meaning. This
problem is called the “black box” problem. It occurs when only limited information is
learned from the data, and essential aspects, which may be more appropriate and more
useful for the future work of the system, are missed forever.

To overcome these problems, improved and new connectionist and hybrid methods and
techniques are required both in terms of learning algorithms and system development.

3.2. Evolving Connectionist Systems

3.2.1. Evolutionary Computation
Evolutionary computation (EC) is concerned with population-based search and optimization
of individual systems through generations of populations [89–92]. In other words, some
property (or properties) of an individual will be improved not only through an individual
development but also through natural selection. Methods of EC in principle include two
stages: a stage of creating a new population of individuals, and a stage of development of
the individual systems, so that a system develops and evolves through interaction with the
environment that is also based on the genetic material embodied in the system.
The most popular among the EC techniques are the GAs. They are computational models

for the optimization of complex combinatorial and organizational problems with many vari-
ants, by employing analogy with nature’s evolution. GAs were introduced for the first time in
the work of John Holland [91]. They were further developed by him and other researchers
[89–92].
The terms used in the GA are analogous to the terms used to explain the evolution

processes. They are:

• gene: a basic unit, which defines a certain characteristic (property) of an individual;
• chromosome: a string of genes, used to represent an individual, or a possible solution
to a problem in the solution space;

• population: a collection of individuals;
• crossover (mating) operation: substrings of different individuals are taken and new strings
(offsprings) are produced;

• mutation: random change of a gene in a chromosome;
• fitness (goodness) function: a criterion that evaluates how good each individual is;
• selection: a procedure of choosing a part of the population that will continue the process
of searching for the best solution while the other parts of the individuals “die.”

The main steps of a GA are outlined here:

1. Initialize a population of n individuals P
2. REPEAT

2a {apply a crossover operation between the individuals from P to create an offspring
set of individuals R}
2b {apply a fitness function to evaluate the fitness of the individuals in R}
2c {apply a selection criteria to select the fittest individuals from R in a new set P}
2d {apply a mutation operator on the individuals from P}

UNTIL {an individual from P has reached a desired fitness or end of the procedure is reached}
When using the GA method for a complex multioptional optimization problem, there is no need
for in-depth problem knowledge, or a need for many data examples stored beforehand. What is
needed here is merely a “fitness” or “goodness” criterion for the selection of the most promising
individuals (they are partial solutions to the problem). This criterion may require a mutation as
well, which is a heuristic approach of a “trial-error” type. This implies keeping (recording) the
best solutions at each of the stages.

Theoretical and Computational Models 19

The simple genetic algorithms introduced by John Holland are characterized by: simple,
binary genes (i.e., the genes take values of 0 and 1 only); simple, fixed single-point crossover
operation, in which the crossover operation is done by choosing a point where a chromosome
is divided into two parts swapped with the two parts taken from another individual (see
Fig. 10); and fixed-length encoding (i.e., the chromosomes had a fixed length of six genes).
The main issues in using genetic algorithms relate to the choice of genetic operations

(crossover, selection, mutation).
Genetic algorithms comprise a great deal of parallelism. Thus, each of the branches of

the search tree for best individuals can be used in parallel with the others. This allows for
an easy realization of the genetic algorithms on parallel architectures.
Genetic algorithms are search heuristics for the “best” instance in the space of all possible

instances. The following issues are important for any genetic algorithm.

• The encoding scheme, that is, how to encode the problem in terms of genetic algorithms
(what variables to choose as genes, how to construct the chromosomes, etc).

• The population size—how many possible solutions should be kept for further
development;

• The crossover operations—how to combine old individuals and produce new, more
prospective ones;

• The selection criteria;
• The mutation operator—when and how to apply mutation.

In short, the major characteristics of the genetic algorithms are the following.
First, they are heuristic methods for search and optimization. As opposed to the exhaustive

search algorithms, the GAs do not produce all variants to select the best one. Therefore,
they may not lead to the perfect solution but, rather, to one, which is closest to it taking
into account the time limits. But nature itself is imperfect too (partly because the criteria
for perfection keep changing), and what seems to be close to perfection according to one
“goodness” criterion may be far from it according to another.
Second, they are adaptable, which means that they have the ability to learn, to accumulate

facts and knowledge without having any previous knowledge. They begin only with a “fit-
ness” criterion for selecting and storing individuals (partial solutions) that are “good” and
dismissing those which are “not good.”
GAs can be incorporated in learning modules as part of an expert system or of other

information processing systems.
Other EC techniques include evolutionary strategies (these techniques use only one chro-

mosome and a mutation operation, along with a fitness criterion, to navigate in the solution
(chromosomal) space); evolutionary programming—These are EC techniques applied to the
automated creation and optimization of sequence of commands (operators) that constitute
a program (or an algorithm) to solve a given problem [90].
The theory of GA and the other EC techniques includes different methods for selection

of individuals from a population, different cross-over techniques, and different mutation
techniques.
Selection is based on fitness. A common approach is proportional fitness (i.e., “if I am

twice as fit as you, I have twice the probability of being selected.”) Roulette wheel selection
gives chances to individuals according to their fitness evaluation. Other selection techniques
include tournament selection (every time of selection, the roulette wheel is turned twice,

OffspringsParents

Figure 10. Schematic illustration of the operation of single-point crossover in GA. Parenting individuals exchange
parts (in this case one half) of their chromosomes to create exactly two offsprings.

20 Theoretical and Computational Models

and the individual with the highest fitness is selected), rank ordering, and so on [93]. An
important feature of the selection procedure is that fitter individuals are more likely to be
selected. The selection procedure can also involve keeping the best individuals from the
previous generation (if this principle was used by the nature, Michelangelo would have been
alive today, he is one of the greatest artists ever, with the best genes in this respect). This
operation is called elitism.
After the best individuals are selected from a population, a cross-over operation is applied

between these individuals. Different single or multiple-point crossover operations can be
used. Then the selected individuals undergo mutation.
Mutation can be performed in the following ways: For a binary string, just randomly “flip”

a bit; for a more complex structure, randomly select a site, delete the structure associated
with this site, and randomly create a new substructure
Some EC methods just use mutation (no crossover; e.g., evolutionary strategies). Normally,

however, mutation is used to search in a “local search space,” by allowing small changes in
the genotype (and, therefore, hopefully in the phenotype). In the field of ANNs, optimal
values of parameters (weights, architecture, etc.) can be sought not only through learning
but also through evolution; that is, through the process of selection and crossover of the
best individual neural networks. This process can be combined with individual learning to
lead to the Baldwin effect [94]. The genotypes after Baldwinian learning remain unchanged;
however, learning can influence indirectly the selection process by altering the fitness of
individuals, and thus eventually evolution is affected [95].

3.2.2. Artificial Intelligence Versus Emerging Intelligence
Many authors see intelligence as a set of features or fixed properties of mind that are stable
and static. According to this approach, intelligence is genetically defined, given, rather than
developed.
Intelligence is also seen as a constant and continuous adaptation. Darwin’s contemporary

H. Spencer proposed in 1855 the law of intelligence, stating that “the fundamental condition
of vitality is that the internal state shall be continually adjusted to the external order” (see
Ref. [96], p. 14). Intelligence is “the faculty of adapting oneself to circumstances” according
to Henri Simon and Francis Binet, the authors of the first IQ test (see Ref. [97]).
In Ref. [98], intelligence is defined as “the human capacity to acquire knowledge, to

acquire a set of adaptations and to achieve adaptation.”
Knowledge representation, concept formation, reasoning, and adaptation are obviously

the main characteristics of intelligence, on which all authors agree [99, 100]. How these
features can be implemented in a computer model is the main objective of the area of AI.
AI develops methods, tools, techniques, and systems that make possible the implemen-

tation of intelligence in our computer models. This is a “soft” definition of AI, which is
in contrast with the first definition of AI (the “hard” one) given by Alan Turing in 1950.
According to the Alan Turing’s test for AI, if a person communicates in natural language
with another person or an artificial system behind a bar without being able to distinguish
between the two, and even more, without being able to identify whether it is a male or a
female, as the system should be able to fool the human in this respect, then the system
behind the bar can be considered an AI system. The described test points to an ultimate
goal of AI that is understanding concepts and a language on the one hand, and to a silly
task of fooling people on the other hand, rather than toward showing how one can achieve
the goal.
Many techniques of AI prove to be useful to a point but do not cope very well with the

dynamic nature and the combinatorial complexity of many problems from life sciences and
engineering. Table 2 shows graphically different levels of evolving processes in the human
brain that cannot be modeled by the use of existing AI methods.
In a general sense, information systems should help trace and understand the dynamics of

the processes, automatically evolve “rules” that would change over time, “take a shortcut” in
the complex problem spaces, and improve all the time. These requirements define a subset
of AI, which can be called emerging intelligence (EI). The emphasis here is not on the
achievement of the ultimate goal of AI as defined by Turing but, rather, on creating systems

Theoretical and Computational Models 21

Table 2. Different levels of evolving processes in the human brain that cannot be mod-
eled by the use of existing AI methods.

1. Evolutionary development
Function examples: genome evolution, creation of new individuals and species

2. Brain level
Function examples: cognition, speech and language, consciousness

3. Neural network level
Function examples: sound perception, visual image processing

4. Whole cell, neuronal level
Function examples: neuronal processes of activation and growth

5. Molecular level Function examples:
DNA translation into RNA, RNA transcription into proteins

Reprinted with permission from [34], N. Kasabov, “Evolving Connectionist Systems. Methods
and Applications in Bioinformatics, Brain Study and Intelligent Machines.” Springer, London, 2003.
© 2003, Springer-Verlag.

that learn all the time, improve their performance, and become more and more intelligent.
A constructivist working definition of EI is given below. It emphasizes the dynamic and
knowledge-based structural and functional self-development of a system.
EI is a feature of an information system that develops its structure and functionality

in a continuous, self-organized, adaptive, and interactive way from incoming information,
possibly from many sources, and performs intelligent tasks typical for humans (e.g., adaptive
pattern recognition, concept formation, languages learning, and intelligent control).
David Fogel [101], in his highly entertaining and highly sophisticated book Blondie 24—

Playing at the Edge of AI, describes a case of EI as a system that learns to play checkers online
without using any instructions and improves after every game. The system uses connectionist
structure and evolutionary algorithms, along with statistical analysis methods.

3.2.3. Framework for Evolving Connectionist Systems
Evolving connectionist systems (ECOS) are multimodular connectionist architectures that
facilitate modeling of evolving processes and knowledge discovery [34].
An evolving connectionist system is a neural network or a collection of such networks

that operate continuously in time and adapt their structure and functionality through a
continuous interaction with the environment and with other systems.
The adaptation is defined through a set of parameters that is subject to change during the

system operation, an incoming continuous flow of information with unknown distribution,
and a goal (rationale) criteria (also subject to modification) that is applied to optimize the
performance of the system over time.
If we refer to the general framework of a learning system {S, W, P, F, L, J}, as discussed

previously, in ECOS, the set of parameters P can be regarded as a chromosome of “genes,”
and both developmental learning and evolutionary computation can be applied for the sys-
tem’s optimization.
ECOS comprises a small subset of all the connectionist models and systems that follow

the working classification scheme discussed above. They evolve either in the problem data
space or in their own system space. They learn in any of the learning modes: unsupervised,
supervised, reinforced or combined with the following specific characteristics:

1. They evolve in an open space.
2. They learn in an online, pattern mode, with incremental learning, and possibly through
one pass of the incoming data through the system.

3. They learn in a lifelong learning mode.
4. They learn both as individual systems and as evolutionary population systems.
5. They use constructive learning and have evolving structures.
6. They learn and partition the problem space locally, thus allowing for a fast adaptation
and tracing the evolving processes over time.

7. They facilitate different types of knowledge; mostly a combination of memory-based,
statistical and symbolic knowledge. The evolving connectionist models presented in

22 Theoretical and Computational Models

the first part of this book facilitate Zadeh–Mamdani fuzzy rules (EFuNN, Chapter 3;
HyFIS, Chapter 5), Takagi–Sugeno fuzzy rules (DENFIS, Chapter 5), and type 2 fuzzy
rules (Chapter 5) in Ref. [34].

Each evolving connectionist system consists of four main parts: data acquisition, preprocess-
ing and feature evaluation, connectionist modeling part, and knowledge acquisition.
Table 3 is a generalized algorithm of the functioning of an ECOS [34]. An online pro-

cessing of all this information makes it possible for the ECOS to interact with users in an
intelligent way. If man–system interaction can be achieved in this way, this processing can
be used to extend system–system interactions as well.
Modeling evolving processes is a difficult task, as in many cases it is not well defined in

terms of global optimization and goal function. However, it is vital that a variety of methods
be developed that can be applied to the number of challenging real-life applications.

4. GENE INFORMATION PROCESSING
In living systems, many dynamic, adaptive, evolving processes are observed at different levels
and different stages of the development that are involved in a complex interaction. At a
molecular level and a cell level, the DNA, the RNA, and the protein molecules evolve and
interact in a continuous way. The genes form dynamic gene networks (GNs) that define the
complexity of the living organism [7]. It is not just the number of the genes in a genome,
but the interaction between them that makes one organism more complex than another.
The confirmation that there might be only about 30,000 protein-coding genes in the human
genome is one of the key results of the monumental work of the human genome project
[102]. There is a mere one-third increase in gene numbers from a rather unsophisticated
nematode (Caenorhabditis elegans, with about 20,000 genes) [103] to humans (and other
mammals). In fact, the genomes of all mammals are so similar that it is hard to understand
how they can produce such different animals. If their genes are alike, it is probably changes
in when, where, and how active they are that drives the differences between species.

Table 3. Generalized ECOS algorithm, introduced in [34].

Set some preliminary parameter values for the ECOS parameters (chromosomes)
REPEAT {in a lifelong learning mode}
IF input, or input-output data is available DO
Read input data (or input- output data pairs if such are available)
Evaluate the input-output features:

(a) add new ones if necessary;
(b) select the current most appropriate ones for the task

Propagate input data through the NN modules and evaluate the similarity of the input data to
the modules
If there is not sufficient similarity—create new modules, or create new connections in an

existing module
Calculate the output of the system
Calculate a feedback from the output to the system through:

A supervised mode of learning, if output error values are calculated, or
A reinforcement mode of learning—if just hints about the correctness of the output values

are available, or
Report the output values if the system is in a recall mode

Modify the structure of ECOS based on the feedback
Extract and report the current knowledge learned by the ECOS, e.g. through rule extraction
techniques
Optimize the ECOS structure based on some accumulated statistical and ECOS parameters
(possibly EC methods)
ELSE
Apply inner structural and functional learning for structure improvement (e.g., sleep learning)
UNTIL {the system is stopped, or interrupted}

Reprinted with permission from [34], N. Kasabov, “Evolving Connectionist Systems. Methods and Applications in
Bioinformatics, Brain Study and Intelligent Machines.” Springer, London, 2003. © 2003, Springer-Verlag.

Theoretical and Computational Models 23

4.1. Genes and Cellular Processes

DNA is a chemical chain that is present in the nucleus of each cell of an eukaryotic organ-
ism, and it consists of ordered double-helix pairs of small chemical molecules (bases): ade-
nine (A), cytosine (C), guanidine (G), and thymidine (T), linked together by a deoxyribose
sugar phosphate nucleic acid backbone.
The central dogma of molecular biology (see Fig. 11) states that the DNA is transcribed

into RNA, which is translated into proteins [104].
DNA contains millions of base pairs, but only 5% or so is used for the production of

proteins, and these are the segments from the DNA that contain genes. Each gene is a
sequence of base pairs that is used in the cell to produce proteins. Genes have length of
hundreds to thousands of bases.
RNA has a similar structure to DNA, but here thymidine is substituted by uridine (U).

In pre-RNA, only segments that contain genes are extracted from the DNA. Each gene
consists of two types of segments: exons, which are segments translated into proteins, and
introns, which are segments that are considered redundant and do not take part in the
protein production. Removing the introns and ordering only the exon parts of the genes in
a sequence is called splicing, and this process results in the production of messenger RNA
(or mRNA) sequences.
mRNAs are directly translated into proteins. Each protein consists of a sequence of amino

acids, each of them defined as a base triplet, called a codon. From one DNA sequence many
copies of mRNA are produced; the presence of certain gene in all of them defines the level
of the gene expression in the cell and can indicate what and how much of the corresponding
protein will be produced in the cell.
The above description of the central dogma of the molecular biology is very much a

simplified one, but it will in understanding the rationale behind using connectionist and
other information models in bioinformatics.
Genes are complex chemical structures, and they cause dynamic transformation of one

substance into another during the whole life of an individual, as well as throughout the life of
the human population over many generations. When genes are “in action,” the dynamics of
the processes in which a single gene is involved are very complex, as this gene interacts with
many other genes and proteins and is influenced by many environmental and developmental
factors.
Modeling these interactions, learning about them, and extracting knowledge is a major

goal for bioinformatics. Bioinformatics is concerned with the application of the methods
of information sciences for the analysis, modeling, and knowledge discovery of biological
processes in living organisms.
The whole process of DNA transcription, gene translation, and protein production is

continuous, and it evolves over time. Proteins have 3D structures that unfold over time,
governed by physical and chemical laws. Proteins make some genes to express and may

DNA

mRNA (after splicing)

pre-mRNA

protein

intronexon

Figure 11. DNA is transcribed into RNA, which is translated into proteins—the central dogma of molecular biology.

24 Theoretical and Computational Models

suppress the expression of other genes. The genes in an individual may mutate, change
slightly their code, and therefore express differently at a next time. Thus, genes may change,
mutate, and evolve in a life time of a living organism.

4.2. Computational Models of Gene Information Processing

In a single cell, the DNA, the RNA and the protein molecules interact in a continuous way
during the process of the RNA transcription from DNA (genotype), and the subsequent
RNA to protein (phenotype) translation [105–109]. A single gene interacts with many other
genes in this process, inhibiting, directly or indirectly, the expression of some of them, and
promoting others at the same time. This interaction can be represented as a gene regulatory
network (GRN) [7, 8, 110–115]. Our challenge is to create computational models of GRN
from both dynamic data (e.g., gene expression data of thousands of genes over time, and
also from protein data) and from static data (e.g., DNA), under different external inputs
(diseases, drugs, etc.). A large amount of data on gene interactions for specific genomes,
as well as on partial models, is available from public domain databases such as GenBank
and PubMed (http://www.ncbi.nlm.nih.gov/), KEGG (http://www.genome.ad.jp/kegg/), Stan-
ford Microarray Database, and many more [116]. Collecting both static and time course
gene expression data from up to 30,000 genes is now a common practice in many biological,
medical, and pharmaceutical laboratories in the world through the introduction of microar-
ray technologies (see, e.g, www.ebi.ac.uk/microarray). Sophisticated information and math-
ematical methods are needed for the analysis, modeling, and discovery of GRN from this
data.
Several generic information methods for modeling and for the discovery of variable inter-

action networks from time course data have been proposed and used in the domain of GRN
modeling. Among them are statistical methods that include correlation techniques, linear
regression, Bayesian networks, and hidden Markov models [9, 115, 117–119]; neural networks
[120, 121]; evolutionary computation, and genetic algorithms in particular [116, 122, 123];
directed graphs [105, 116, 117]; Petri nets [116]; and ordinary and partial differential equa-
tions [8]. There have also been specific methods developed for the purpose of cell modeling
[8, 124, 125]. A detailed survey of the elements and the pathways in the control of gene
expression and the principles of their computational modeling can be found, for instance, in
the books [8, 110, 113, 116] and in the review papers [126, 127]. With respect to the taxon-
omy of GRN models, their principles and descriptions, exhaustive reviews can be found for
instance in Refs. [127, 128].
In Ref. [129], an evolving connectionist system (ECOS) is incrementally evolved from

incoming data X(t0), X(t1), X(t2	� � � � , representing the values of all, or some, of the gene
expression variables or their clusters. Consecutive vectors X(t) and X(t+k) are used as input
and output vectors, respectively, in an ECOS model, as shown in Fig. 12a. After training
an ECOS on the data, rules are extracted through IF–THEN representation of the rule
nodes [e.g., IF x1(t) is High (0.87) and x2(t) is Low (0.3) THEN x3(t + k) is High (0.6)
and x5(t + k) is Low (0.2)]. Each rule represents a transition between the current and next
state of the variables, as shown in Fig. 12b, where each rule is shown as an arrow. All rules
together form a representation of the GRN. Figure 12b shows two trajectories, N1 and N2,
that represent two GRNs, derived under different conditions, in the 2D PCA (principal
component analysis) coordinate space of all n variables. By modifying a threshold for rule
extraction, one can extract in an incremental way stronger or weaker patterns of relationships
between the variables [77].
Using another ECOS model [130], other types of variable relationship rules can be

extracted [e.g.: IF x1(t) is (0.63 0.70 0.76) and x2(t) is (0.71 0.77 0.84) and x3(t) is (0.71
0.77 0.84) and x4(t) is (0.59 0.66 0.72) THEN x5�t + k	 = 1�84 − 1�26x1�t	 − 1�22x2�t	 +
0�58x3�t	 − 0�3x4(t)], where the cluster for which the value of x5, as defined in the rule
above, is a fuzzy cluster represented through triangular membership functions defined as
triplets of values for the left, center, and right points of the triangle on a normalization
range of Ref. [131]. The fuzzy representation allows for models to deal with imprecise data
[10]. The rules extracted from the ECOS form a representation of the GRN (see Fig. 12c).

Theoretical and Computational Models 25

X(t) X(t+k)

PCA2

PCA1
x1

x2

xn

x1

x2 x4

x5

x1

x2

x3

N2

N1

xn

(a) (b) (c)

Figure 12. (a) A hypothetical ECOS for GRN modeling; (b) state transitions (rules, represented as arrows) in the
two PCA dimensional space of the n variables; (c) part of a GRN extracted from an ECOS model.

Rules may change with the addition of new data, thus making it possible to identify stable
versus dynamic parts of the GRN. The relationship between variables from Fig. 12c can be
represented by a simple linear, or a complex nonlinear, relationship function.

5. NEURO-GENETIC INFORMATION PROCESSING
Let us consider the differences between humans and chimpanzees. After sequencing ∼3 mil-
lion letters of the chimp genome and comparing them with the human draft, Svante Pääbo
of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, and his
group reasoned that DNA sequence cannot be the cause of such species variation only 1.3%
of letters are different [132]. These letters belong mainly to the genes expressed in the brain.
Then the researchers and the team of U.S. scientists measured the levels of gene activity in
the brains of humans and chimps. Chimp and human brain transcription patterns are very
different. The human brain has accelerated usage of genes, with ∼90% of the studied genes
being more highly expressed than in the chimp brain [133], and mainly the up-regulation
of genes involved in synaptic transmission and plasticity (learning and memory), energy
metabolism, and growth. Higher levels of such a neuronal genetic activity are likely to have
important consequences in cognitive and behavioral capacities of humans.
However, to understand these genetic differences, we also need to know what is going

on in a chimp’s mind; after all, we know that chimpanzees and bonobo chimpanzees have
quite impressive language and learning skills [134] (see also http://www.gsu.edu/∼wwwlrc/
biographies/kanzi.html). Therefore, it is important to study the neuro-genetic interactions in
all species to compare them with humans.
In September 2003, the news spread that the Microsoft cofounder Paul G. Allen has

donated $100 million to launch a private research organization in Seattle devoted to deci-
phering the links between our genes and our brain (Allen Brain Atlas Project, http://www.
nba.com/blazers/news/Allen_Institute_for_Brain_Scie-84505-41.html). It is rather a heroic
task, considering that approximately 6000 genes are thought to be expressed only in the
brain, with many more that are expressed in the brain and also in other parts of the body
as well.
Therefore, it will be crucial to study, both theoretically and experimentally, the conse-

quences of mutated genes on the activity of neural networks and on the neurological and
mental deficits that can follow. It is how the links can be established, determining which
gene(s) and which interactions between genes are responsible for which neuronal, and even-
tually which mental, function.

5.1. Neuro-Genetic Processes in the Brain

Complex faculties of brains, such as, for example, intelligence, are under the influence of
both genetic and environmental factors, but what does it actually mean, for instance, for
intelligence to be under the influence of genes? What are the nature and rules of this

26 Theoretical and Computational Models

dependence? There is vast scientific evidence that intelligence (like other mental faculties,
processes, states, etc.) depends on the normal functioning of brain neural networks, and it is
the set-up of brain neural networks that is under the influence of genes. Whole-brain devel-
opment from conception is guided by the complex sequence of switching on and off many
different genes operating in their own complex and intricate networks (GRNs). Through pro-
tein synthesis, genes determine the structure and connectivity of the brain, including all the
biochemical processes involved in information processing and the mere survival of brain cells.
For the correct brain function, there is interplay between genetic and epigenetic factors,

like signals from outside of neurons, either from other neurons or other cells in the brain
(i.e., glia) or from somewhere else in the body (e.g., hormones). Proteins, molecules, and
ions acting on neurons from outside can and do act on the genome to influence its activity.
It is how the environment exerts its influence on the structure of brain neural networks.
What is the nature of the questions we can ask?

• Can we perform a reverse engineering of brain genetic networks? That is, can we
identify causal regulatory interactions between genes from time-dependent multigene
expression measurements?

• What are the ways that genes can determine the function of brain neural networks?

Thus, in the first research area on genes and the CNS (central nervous system), researchers
have applied GRN inference techniques to an extensive survey of gene expression in CNS
development. Detailed cluster analysis has uncovered waves of expression for about 112
genes that characterize distinct phases of the development of spinal cord and hippocampus
[114, 135]. Thus, the first area of research covers the monitoring of the activity of many genes
in parallel and the use of the models of GRN to help and guide the inference of regula-
tory connections between genes, resulting in a gene-interaction diagram of gene-interaction
pathways. There is still a long way to go before all 6000 genes are processed in a similar way
but with better techniques and better theoretical and computational models.
The second area of study is to reveal the consequences of genes mutation on neural and

mental functions (see Table 4) [136]. It is crucial to study, both theoretically and experi-
mentally, the consequences of mutated genes on the activity of neural networks and on the
neurological and mental deficits that can follow. It is how the links can be established; that
is, which genes and which interactions between genes are responsible for which neuronal,
and eventually which mental, function. We can see that the detailed pathogenesis of these
diseases is at this time unknown. This is the area into which computational models can bring
new insights.

5.2. Computational Modeling of Neuro-Genetic Processes

The genes, encoded in the DNA, that are transcribed into RNA and then translated into
proteins in each cell contain important information related to the brain activity. A spe-
cific gene from the genome relates to the activity of a neuronal cell in terms of a specific
function. However, the functioning of the brain is much more complex than that. The inter-
action between the genes is what defines the functioning of a neuron. Even in the presence
of a mutated gene in the genome that is known to cause a brain disease, the neurons
can still function normally provided a certain pattern of interaction between the genes is
maintained—a certain state of the GN [137]. In contrast, if there is no mutated gene in the
genome, certain abnormalities in brain functioning can be observed as defined by a certain
state of the interaction between the genes [11]. The above-cited and many other observations
point to the significance of modeling a neuron and a neuronal ensemble at the gene level to
predict the state of the ensemble. The process of modeling the gene interaction with the goal
of brain understanding is a significant challenge to biologists, mathematicians, information
and computer scientists, brain scientists, and researchers from many other areas.

5.2.1. Principles of a General Neuro-Genetic Model
In Ref. [127], a computational model of GRN of early neurogenesis in Drosophila is
developed with the use of artificial neural networks of a Hopfield type, where each gene
(gene product) is a node in a recurrent network and the values of connections express the

Theoretical and Computational Models 27

Table 4. Single and multiple genes related to some brain functions and abnormalities [136].

Mutations of Location of
genes identified genes on

Disease so far chromosomes Brain abnormality Symptoms

Alzheimer PS2 (AD4) 1 plaques made of fragmented
brain cells surrounded by
amyloid-family proteins,
tangles of cytoskeleton
filaments

progressive inability to
remember facts and events
and later to recognize
friends and family

disease (AD) PS1 (AD3) 14
? 19
? 21

Amyotrophic SOD1 21 progressive degeneration of
motor neuron cells in the
spinal cord and brain

loss of motor control which
ultimately results in paraly-
sis and death

lateral sclerosis
(ALS)

Angelman
syndrome (AS) derived

UBE3A maternally mutations in UBE3A disrupt
protein break down during
brain development

mental retardation, abnormal
gait, speech impairment,
seizures, frequent laughing,
smiling, and excitability

chromosome
15 (segment
15q11–13)

Epilepsy (many
forms)

Multiple Multiple abnormal cell firing in the
brain

recurring seizures

Fragile X
syndrome

FMR1 X impaired synaptic function of
glutamatergic synapses

the most common inherited
form of mental retardation

Huntington
disease (HD)

HD gene 4 dilatation of ventricles and
atrophy of caudate nucleus

degenerative neurological
disease that leads to
dementia

Williams
syndrome

LIM kinase 7 ? high competence in language,
music and interpersonal
relations, with low IQ

and elastin
coding
sequences

sign and strength of their interactions. Here a model is presented [138] that is based on two
sets of essential genes—a set of genes Ggen that defines generic neuronal functions, and a
set of genes Gspec that defines specific neuronal functions (e.g., epileptic behavior). Consider
a function that describes measurement of GABA (e.g., GABAA) in the synaptic cleft. The
measurement of cross-membrane potential using a patch-clamp procedure provides a func-
tion of time during an event that probes spiking properties of the neuron when a certain
voltage is delivered to the neuron.
The two sets of genes together form a set G = �g1� g2� � � � � gn that will be used, and a

GN of this set will be defined in the model. An example of a GN of four genes is given in
Fig. 13. The expression level of each gene gj�t +)t	 is a function of the gene expression
levels of the rest of the genes G�t	. As a simple model, we will assume that this function is
a linear function

gj�t +)t	 = wj� 0 +wj� 1g1�t	+ · · · +wj�ngn�t	 (4)

The square matrix of gene connection weights W represents the GN. This model can be run
for consecutive time moments.
Here we use the gene instead of proteins, using a standard assumption that if a gene is

up-regulated, more proteins defined by this gene will be produced in the neuronal cell.
A set of neuronal functions (parameters) P = �p1� p2� � � � � pm from a neural network

model is related to particular genes, so that each parameter pj is a function of the expression
of several (or in the partial case, one) genes. For simplicity in our model, we will assume
that one parameter pj depends on one gene gk through a liner function

pj�t +)t	 = zj� 0 + zj� kgk�t	 (5)

The parameter vector Z defines the relationship between the selected genes G and the
spiking characteristics of a neuron.

28 Theoretical and Computational Models

0.5

3
1

2

4

0.3
–0.6

–0.7

–0.4
–0.2

0.5

0.7
0.8

Figure 13. A hypothetical example of a GN comprising of four genes related to both generic and specific functions
of a neuron. The genes are connected with arcs that represent the relationship (both sign and strength) between
the level of expression of this gene at time moment (t) and the next time moment (t +)t).

This generic neuro-genetic (NGM) model can be run continuously over time in the fol-
lowing way:

1. Define the initial expression values of the genes G, G(t = 0) in the neuron and the
matrix W of the GN if that is possible.

2. Run the GN and define the next moment state of the gene set G�t+)t	 using Eq. (4).
3. Define the values of the parameters P from the gene state G using Eq. (5).
4. Define the spiking activity of neuron(s) (taking into account all external inputs to the
neural network).

5. Go to step 2.

We assume that the same matrix W defines the GN of each neuron in a SNN. The spiking
activity of all neurons are defined using the algorithm in the section below for a time inter-
val T , thus allowing us to calculate the probability distribution function (PDF) of the spiking
activity of neurons in the spiking neural network (SNN).

5.2.2. Using a Genetic Algorithm to Find the Values of
Parameters of a Neuro-Genetic Model

We assume that the functioning of a neural network is evaluated as its PDF of neural activity,
thus making it possible to observe and model different brain functions such as epilepsy;
alpha, beta, and gamma states; learning; memorizing; sleeping; and so forth. Usually, EEG
data are available to test these models. In general, the functioning of a neural network can
be expressed and evaluated in other terms; for instance, metabolic or other activity terms.
The task for us is to define a set of parameter values for W and Z so that the SNN has

a desired PDF of neural activity, denoted here as PDF∧. To solve this problem with the use
of the above-described model, we can apply the methods of EC and, in particular, a GA
method [116, 139, 140] with a fitness function of PDF = PDF∧ within a margin of tolerance.
Parameter estimation is a very difficult task in inferring GN models, mainly because of

the lack of observation data relative to the number of genes involved. In this respect, EC
that are robust, global optimization methods become important tools to accurately inference
a GN.
EC, inspired by the Darwin theory of evolution, searches with a swarm of points based

on the objective function (say, the output error) feedback of these points. It has been used
for parameter estimation or optimization in many engineering applications. Unlike classical
derivative-based (like Newton) optimization methods, EC is more robust against noise and
multimodality in the search space. In addition, EC does not require the derivative informa-
tion of the objective function and is thus applicable to complex, black box problems.
These characteristics make EC highly suitable for identifying parameters of GN models

for three reasons. First, the derivative information of the underlying model (e.g., Petri Net)
is usually not available. Second, data are scarce or missing (causing multimodality) and noisy,
requiring a robust, global optimization algorithm that is not easily misled by suboptima

Theoretical and Computational Models 29

and noise. Third, qualitative inference of parameters is difficult with such small number of
observations relative to the large number of genes involved.
In the GA implementation here, two chromosomes of parameters will be used—W and

Z, so that for every generation (a set of values) of these chromosomes, the SNN is run for
the time period of T and the PDF is evaluated. Then it is compared with the desired PDF∧,
and if the fitness function is not satisfied, the process continuous with modified values for
the parameters W and Z according to the selected GA strategy.

5.2.3. Example of a Neural Network Model With Parameters
Related to Gene Net

A spiking model of a neuron—an element of the SNN—can be, for instance, inspired by
the spike-response model (SRM) of a neuron [28, 141]. Neuron i receives input spikes from
presynaptic neurons i ∈ ,i, where ,i is a pool of all neurons presynaptic to neuron i (see
Fig. 14). The state of neuron i is described by the state variable ui�t	 that can be interpreted
as a total PSP at the membrane of soma. When ui�t	 reaches the firing threshold �i�t	,
neuron i fires (i.e., emits a spike; see Fig. 15a). The moment of �i�t	 crossing defines a firing
time ti of an output spike. The value of the state variable ui�t	 is the sum of all postsynaptic
potentials, i.e. (see Fig. 15b)

ui�t	 =
∑
j∈,i

∑
tj∈Fj

Jij.ij �t − tj −)ax
ij 	 (6)

The weight of synaptic connection from neuron j to neuron i is denoted by Jij . It takes
positive (negative) values for excitatory (inhibitory) connections, respectively. Depending on
the sign of Jij , a presynaptic spike generated at time tj increases (or decreases) ui�t	 by
an amount .ij�t − tj −)ax

ij 	. The term)ax
ij is an axonal delay between neurons i and j that

increases with Euclidean distance between neurons.
The positive kernel .ij�t − tj −)ax

ij 	 = .ij�s	 expresses an individual PSP evoked by a
presynaptic neuron j on neuron i. A double exponential formula can be used (see Fig. 15c)

.
synapse
ij �s	 = Asynapse

[
exp

(
− s

2
synapse
decay

)
− exp

(
− s

2
synapse
rise

)]
(7)

where 2
synapse
decay/rise are time constants of the rise and fall of an individual PSP, A is

the PSP’s amplitude, and synapse = fast_excitation, fast_inhibition, slow_excitation, and
slow_inhibition, respectively. These types of PSPs are based on neurobiological data
[142, 143].

spiking
neuron l

spiking
neuron i

Wil

Wij

spiking
neuron j

neuron
pool
Γj

input j

input l

input i
time

time

time

Figure 14. In response to input series of spikes from the pool of presynaptic neurons ,i, a neuron i generates its
own series of output spikes.

30 Theoretical and Computational Models

uj(t)
ϑi (t–tJ)

time (ms) time (ms)

εij (t–tJ–∆ax)

time (ms)

tj
2tj

1

ϑ0

ϑ0

∆ax

uj(t)

tj

(a) (b)

(c)

Figure 15. Spiking neuron model. (a) When the state variable ui�t	 of a spiking neuron reaches the firing threshold
�i�t	 at time ti, a neuron fires an output spike. However, an actual firing threshold rises after each output spike
and decays back to the initial value. (b) Subthreshold temporal summation of individual postsynaptic potentials.
(c) The kernel .ij �t − tj −)ax

ij 	 describes an individual PSP evoked by the presynaptic spike fired at time tj after
some axonal delay)ax

ij .

Immediately after firing an output spike at ti, neuron’s firing threshold �i�t	 increases m
times and then returns to its initial value �0 in an exponential fashion (see Fig. 15a).

�i�t − ti	 = m× �0 exp
(
− t − ti

22
decay

)
(8)

where ��
decay is the time constant of the threshold decay. In such a way, absolute and relative

refractory periods are modeled.
External inputs from the input layer are added to the right-hand side of Eq. (5) at each

time step, thus incorporating the background noise or the background oscillations. Each
external input has its own weight J ext_inputik and .k�t	, such that

u
ext_inpu
i �t	 = J

ext_input
ik .ik�t	 (9)

It is optional to add some degree of Gaussian noise to the right-hand side of Eq. (6) to
obtain a stochastic neuron model instead of a deterministic one.
Figure 16 illustrates the basic architecture of a SNN. Spiking neurons within the network

can be either excitatory or inhibitory. There can be as many as 10–20% of inhibitory neurons

Neural network

gaussian lateral connections

W O
ij

σij

Input layer

one–to–one feedforward connections

Figure 16. Architecture of the spiking neural network (SNN). About as many as 10–20% of neurons are inhibitory
neurons that are randomly positioned on the grid (filled circles). Excitatory and inhibitory lateral connections
decrease in strength with distance according to the Gaussian distribution. There are one-to-one feed-forward con-
nections from the input layer.

Theoretical and Computational Models 31

positioned randomly on the rectangular grid of N neurons. Lateral connections between
neurons have weights that decrease in value with distance from neuron i, for instance,
according to a Gaussian formula, whereas the connections between neurons themselves can
be established at random.
Figure 17 illustrates a record of activity of the introduced SNN. It is useful to keep a

record of spiking activities of all neurons individually and in total, as well as the record of
the total membrane potential, which is in fact proportional to EEG [144]. Various analytical
tools are developed, for instance, for evaluation of the degree of synchrony between neurons
[141] and for the evaluation of frequency spectra, like the fast Fourier transform and others
[141, 145]. Presented SNN belongs among the simplest tools. There are much more detailed
models of spiking neurons than SRM or the so-called integrate-and-fire (I&F) model neu-
rons. These more detailed models include, for instance, the various ion receptor and channel
kinetics [142, 146], and also include multicompartmental neuron models in which the effect
of spatial—not only temporal—summation of PSPs on the neuron input surface is taken into
account [147, 148].

5.2.4. Example of Relation of Genes to Particular Neural
Network Parameters

Let us take as an example of the set of genes Gspec that define specific neuronal functions
(e.g., epileptic behavior)—the set of genes that are presumably mutated in individuals suf-
fering from the Childhood Absence Epilepsy (CAE). CAE is an idiopathic (i.e., arising from
an unknown cause), generalized, nonconvulsive epilepsy. The main features are absence
seizures. A typical absence is a nonconvulsive epileptic seizure, characterized by a brief
(4–20 s) impairment of consciousness. This may happen up to ∼200 times a day. Absence
seizures occur spontaneously (i.e., they are not evoked by sensory or other stimuli [11, 149]).
Absence is accompanied by a generalized, synchronous, bilateral, 2.5–4-Hz spike and slow-
wave discharge (SWD) in the EEG. SWDs can start anywhere in the cortex, and from there
they quickly spread to the entire cortex and thalamus [150].
Table 5 the genes that are most probably mutated in CAE, their coded proteins, the

neuronal function or functions these proteins are responsible for, related parameters in the
SNN, and a putative alterations in these functions, as well as changes in SNN parameters.
Putative changes in the neural function can be derived from numerous studies performed on
humans, rats, and mice [11, 142, 143, 149, 151–155]. It should be pointed out that other types
of idiopathic epilepsies like the frontal lobe epilepsy (ADNFLE), temporal lobe epilepsy
(TLE), juvenile myoclonic epilepsy (JME), adult myoclonic epilepsy (AME), and so forth

time (ms)

T
ot

al
 #

of
 s

pi
ke

s
N

eu
ro

n
#

E
E

G

(a)

(b)

(c)

Figure 17. Temporal evolution of the network activity. (a) Total number of spikes generated by all neurons at
each time step. (b) Traces of each neuron spiking activities. (c) Total sum of individual membrane potentials as a
measure proportional to EEG.

32 Theoretical and Computational Models

Table 5. List of genes putatively mutated in CAE, their coded proteins, neuronal function these proteins are respon-
sible for, related parameters in the SNN, and a putative alteration in this function: ? means increase, ? means
decrease.

Mutated Neuronal Function and
Gene Protein its putative Alteration SNN Parameters

GRIK1 Ionotropic GluR5 (Kainate
receptor 2 for glutamate)

Fast excitation ? or ?
(depending on the place in
the brain)

Afast_exc� 2
fast_exc
decay/rise? or ?

GABRB3 GABAA receptor 33 subunit Fast inhibition? Afast_inh� 2
fast_inh
decay/rise?

GPHN Gephyrin Fast inhibition? Afast_inh� 2
fast_inh
decay/rise?

CHRNA4 nAChR 44 subunit Both fast and slow inhibition? J inh
ij ?

OPRM1 6-Opioid receptor type 1 Firing threshold? �0� 2
�
decay?

are connected to different channelopathies and receptoropathies [153, 156]; that is, to gene
mutations different from CAE, so the presented table applies only to CAE.
A more detailed model of a neuron including the receptor and channel kinetics will enable

us to link mutated genes to the parameters at a more detailed level. Still, it will be a hard
task to determine quantitatively the values of coefficients of mutual interactions between
genes themselves and between genes and their coded proteins [i.e., the values of coefficients
in Eqs. (2) and (3)]. Here we have proposed GA as a means of such optimization; however,
these values also can be obtained from experimental data if they are available. In any case,
experimental data will serve as an ultimate test of neuro-genetic theoretical and computa-
tional models when applied to particular problems, such as, for instance, epilepsy. Once a
functional neuro-genetic model of a particular neurological disease is developed, then the
effects of genetic and other parameter changes can be simulated and predicted by means
of the theoretical computational model. Before any neuro-genetic causal cures are going to
be administered, mutated genes should be identified and their interactions with other genes
and neuronal functions known to avoid any unwanted consequences of the perspective gene
therapy. The gene therapy proper is another nontrivial issue. Once it is known what should
be added or removed from the cell genome, reliable nanotechnology must be developed for
carrying out this operation. This applies not only for possible genetic cures of epilepsy but
also for any other neurological or mental disorder.

6. CONCLUSIONS AND FUTURE DEVELOPMENT
Nanotechnology has a tremendous potential for the cure of brain diseases. This approach
requires a deep understanding of chemical and information processes in the brain, in single
neurons and in the nuclei of these neurons, and especially in how these processes relate
to each other. In this respect, there is a need for theories and computational models to
model and predict the outcome of brain abnormalities and their treatment. Neuro-genetic
modeling is a promissing approach that will be further developed and applied. A new field
of nanomedicine can be developed in the future to deal with nanotechnology in medicine
and health care [157, 158].
In between, many nanotechnical problems must be solved. For instance, the brain, similar

like other tissues, responds to alien substances with a healing process. For instance, various
neural probes (usually composed of silicon) become encapsulated with glial scar tissue, which
can impede with normal neuron function. From a nanomaterial point of view, nanophase
materials can influence interaction with proteins and other molecules that take part in cell
processes in many unwanted ways [159]. Another area of future study and possible appli-
cation will be the development of nanoscale logic networks and nanochips [160, 161]. They
will lead not only to an unprecedented miniaturization of conventional computers but also
to miniaturization of neurocomputers and neurochips. It is not only about implementation
of classical ANNs in hardware but also about the development of the so-called neuromor-
phic systems. Neuromorphic systems are implementations in silicon of sensory and neural
systems whose architecture and design are based on neurobiology that can compete with

Theoretical and Computational Models 33

human senses and pattern-recognition systems and run in real time [162, 163]. Researchers
in this area also work on developing communication between living vertebrate neurons and
electronic systems [162].
Although a lot is known about the brain, issues about its functioning, representation, and

processing of information are still subjects of an intense research. Applicability of nano-
technology will depend not only on the nanotechnological progress itself but also on the
progress in understanding the brain, its dynamical behavior, and how normal and disturbed
neural functions affect the brain dynamics. The nature of brain dynamics is still unknown.
Some researchers find evidence of chaos, whereas some are doubtfull [164]. The main pro-
ponents of a chaotic dynamic, Freeman [165] and Tsuda [166], argue in favor of chaotic
itinerancy based on EEG and other neurophysiological data. According to the picture of
chaotic itinerancy, a complex system such as the (human) brain evolves by steps along a
trajectory in the state space. Each step corresponds to a shift from one basin of attrac-
tion to another. Attractors represent classes for abstraction and generalization. Thus, the
brain states evolve aperiodically through sequences of attractors. In a closed system, the next
attractor would be chosen solely by internal dynamics. In an open system, such as the brain,
external inputs interfere with internal dynamics. Moreover, because of the changes induced
by learning, trajectories continually change. Chaotic itinerancy occurs in sequence of cortical
states marked by state transitions that appear in temporal discontinuities in neural activity
patterns [165].
Experimental EEG data show that the entire cerebral cortex is constantly wandering in

the fractal distributions of phase transitions that give the 1/f 4 form of the temporal and
spatial frequency spectra (with 4 ∈ �1� 3	, [165]). From this type of frequency spectrum, it
appears that the brain maintains a state of self-organized criticality (SOC) [167]. The SOC
state can form the basis of the brain is capacity to rapidly adjust to new external and internal
stimuli. State changes resembling phase transitions occur continually everywhere in cortex at
scales ranging from milimeters to ∼0�1 m. Local neural activity can trigger a massive state
change.
However, several issues of caution should be pointed out. In spite of the compelling evi-

dence for SOC in the brain, the nature of the critical state is still unknown in neurobiological
interpretation. The spatial and temporal power spectral densities (PSDs) often show the
1/f 4 form; however, more often this form is broken down as a result of distortions by clin-
ically defined peaks. Therefore, the measurements of 4 vary widely. Aperiodic oscillations
giving the 1/f 4 PSD are commonly referred to as chaotic. However, the brain activity is not
at all consistent with low-dimensional deterministic chaos [164, 168]. It is high dimensional,
noisy, non-Gaussian, and nonstationary [165]. Therefore, the conditions for the assessment
of this type of dynamics are difficult to be met. Moreover, brains are open systems driven
by stochastic input. Thus, it seems that the brain activity can hardly conform to the mathe-
matical definitions of chaos. Whether the term chaotic itinerancy (or any other term from
the chaotic vocabulary) is appropriate to describe state transitions in brain and cortex in
particular remains open to challenge. Thus, the complex spatio-temporal activity data from
the brain still await explanation.
Another issue that is unresolved at present and that will be highly relevant when it will

be possible to nanotechnologically enter the brain is the issue of consciousness and other
mental phenomena. Neurobiologists are trying to identify the so-called neural correlates
of consciousness and to gather experimental data in support of the stream of transient
semiglobal coherencies in brain electrical activity being (somehow) the basis for conscious-
ness [169–171]. In his influential book Shadows of the Mind, physicist Roger Penrose brings
the problem of explaining consciousness to the domain of physics [172]. His critics question
the competence of physics ever having anything of importance to say about mental phe-
nomena in general, and consciousness in particular (http://psyche.cs.monash.edu.au/psyche-
index-v2.html#som). The grounds for this criticism vary, ranging from computational to
neurobiological arguments. In his response to this critique [173], Penrose states that he cer-
tainly does not expect to find any answers in (contemporary) subatomic physics. Instead,
he has been arguing for a new physics, for a radical upheaval in the very basis of physical
theory. According to him, at present, any scientific (including physical) theory does not help

34 Theoretical and Computational Models

us to come to terms with the puzzle of mentality, including consciousness within such a
physically determined universe. Even at this point, the point of mystery of mentality, there
is not a general agreement among scientists. Some think that there is no mystery at all
and that the consciousness and other mental phenomena emerge from a particular underly-
ing basis, be it the specific computations [174] or specific properties of the brain processes
[175]. In another influential book written on consciousness [176], philosopher and math-
ematician, David J. Chalmers clearly argues that consciousness and mentality are indeed
genuinly puzzling and are not explainable by present theories. If one takes consciousness
seriously, Chalmers says, one has to go beyond a strict materialist framework. The funda-
mental laws linking the physical and the experiential are yet to be discovered, although he
attempts to define and search for them. Penrose also tries to link together the physical and
experiential, and he sees the link in a new physical theory based on the union of Einstein’s
general relativity with quantum theory. However, he writes [173], we do not yet know the
very form this new theory must take. It may have a character very different from that of a
traditional physical theory. Penrose does not believe that any real progress will be achieved
toward solving the mysteries of how mental phenomena fit in with the physical universe
until there are some important changes in our picture of physical reality. However, already
at this point, Chalmers asks why quantum processes (or any other specific physical pro-
cesses) in microtubules (or any other brain substructures) should give rise to consciousness,
any more than specific computational processes [177]. What all scientists agree on is that
mentality is causally linked to the brain, whether its basis is particular computations or par-
ticular biological or physical processes. Brain nanotechnology will interfere with all these
processes; therefore, a potential danger lies here for unforeseen consequences. However,
nanotechnology by targeted and controlled manipulation of selected molecules might help
in the search for those very crucial material phenomena in the brain that might be causally
linked to consciousness and subjective experience. In any case, we expect that serious ethical
issues will have to be dealt with in the future brain nanotechnology.

REFERENCES
1. M. Arbib, Ed., “The Handbook of Brain Theory and Neural Networks,” 2nd edn. MIT Press, Cambridge, MA,
2003.

2. S. Amari, Proc. IEEE 78, 1143 (1990).
3. T. Kohonen, Proc. IEEE 78, 1464 (1990).
4. G. Carpenter and S. Grossberg, “Pattern Recognition by Self-Organizing Neural Networks.” MIT Press,
Cambridge, MA, 1991.

5. C. M. Bishop, “Neural Networks for Pattern Recognition.” Oxford Univ. Press, Oxford, 1995.
6. S. Amari and N. Kasabov, Eds., “Brain-Like Computing and Intelligent Information Systems.” Springer-Verlag,
Singapore, 1998.

7. P. Baldi and S. Brunak, “Bioinformatics—A Machine Learning Approach,” 2nd edn. MIT Press, Cambridge,
MA, 2001.

8. J. Bower and H. Bolouri, Eds., “Computational Modelling of Genetic and Biochemical Networks,” MIT Press,
Cambridge, MA, 2001.

9. H. de Jong, J. Comput. Biol. 9, 67 (2002).
10. N. Kasabov, “Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering,” MIT Press,

Cambridge, MA, 1996.
11. V. Crunelli and N. Leresche, Nat. Rev. Neurosci. 3, 371 (2002).
12. H.-H. Ropers, M. Hoeltzenbein, V. Kalscheuer, H. Yntema, B. Hamel, J.-P. Fryns, J. Chelly, M. Partington,

J. Gecz, and C. Moraine, Trends Genet. 19, 316 (2003).
13. Y. Zhang, F. Schlachetzki, and W. M. Pardridge, Mol. Ther. 7, 11 (2003).
14. E. R. Kandel, J. H. Schwartz, and T. M. Jessell, “Principles of Neural Science,” 4th edn. McGraw-Hill,

New York, 2000.
15. D. Hebb, “The Organization of Behavior.” Wiley, New York, 1949.
16. W. C. Abraham, B. Logan, J. M. Greenwood, and M. Dragunow, J. Neurosci. 22, 9626 (2002).
17. H. Z. Shouval, M. F. Bear, and L. N Cooper, Proc. Natl. Acad. Sci. USA 99, 10831 (2002).
18. H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, Science 275, 213 (1997).
19. W. C. Abraham and M. F. Bear, Trends Neurosci. 19, 126 (1996).
20. E. Bienenstock, L. N. Cooper, and P. Munro, J. Neurosci. 2, 32 (1982).
21. P. Jedlicka, Bratislava Med. Lett. 103, 137 (2002).
22. L. Benuskova, M. E. Diamond, and F. F. Ebner, Proc. Natl. Acad. Sci. USA 91, 4791 (1994).
23. L. Benuskova, V. Rema, M. Armstrong-James, and F. F. Ebner, Proc. Natl. Acad. Sci. USA 98, 2797 (2001).

Theoretical and Computational Models 35

24. T. V. P. Bliss, Nature 401, 25 (1999).
25. A. Kral, R. Hartmann, J. Tillein, S. Heid, and R. Klinke, Cerebral Cortex 12, 797 (2002).
26. J. J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982).
27. E. Rodriguez, N. George, J.-P. Lachaux, J. Martinerie, B. Renault, and F. J. Varela, Nature 397, 434 (1999).
28. W. Maass and C. M. Bishop, Eds., “Pulsed Neural Networks.” MIT Press, Cambridge, MA, 1999.
29. F. Rieke, D. Warland, R. de Ruyter van Steveninck, and W. Bialek, “Spikes—Exploring the Neural Code,”

MIT Press, Cambridge, MA, 1996.
30. M. Fabre-Thorpe, A. Delorme, C. Marlot, and S. Thorpe, J. Cogn. Neurosci. 13, 171 (2001).
31. J. Huxter, N. Burgess, and J. O’Keefe, Nature 425, 828 (2003).
32. P. Fries, P. R. Roelfsema, A. K. Engel, P. Koenig, and W. Singer, Proc. Natl. Acad. Sci. USA 94, 12699 (1997).
33. M. N. Shadlen and W. T. Newsome, J. Neurosci. 18, 3870 (1998).
34. N. Kasabov, “Evolving Connectionist Systems. Methods and Applications in Bioinformatics, Brain Study and

Intelligent Machines.” Springer-Verlag, London, 2003.
35. T. Kohonen, “Self-Organizing Maps,” 2nd edn. Springer-Verlag, Berlin, 1997.
36. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Eds., Learning internal representations by error propa-

gation, “Parallel Distributed Processing: Explorations in the Microstructure of Cognition” (D. E. Rumelhart
and J. L. McClelland, Eds.). MIT Press/Bradford Books, Cambridge, MA, 1986.

37. P. Werbos, Proc. IEEE 87, 10 (1990).
38. J. S. Albus, Trans. ASME J. Dynam. Syst. Meas. Control 27, 220 (1975).
39. B. Fritzke, Adv. Neural Information Processing Syst. 7, 625 (1995).
40. D. Saad, Ed., “On-Line Learning In Neural Networks.” Cambridge Univ. Press, Cambridge, 1999.
41. B. Hassibi and D. G. Stork, in “Advances in Neural Information Processing Systems” (D. S. Touretzky and

Morgan Kaufmann, Eds.), Vol. 4, pp. 164–171. San Francisco, CA, 1992.
42. S. Schaal and C. Atkeson, Neural Comput. 10, 2047 (1998).
43. G. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B. Rosen, IEEE Trans. Neural Networks 3,

698 (1991).
44. X. Yao, Intl. J. Neural Syst. 4, 203 (1993).
45. D. B. Fogel, “Evolutionary Computation—Toward a New Philosophy of Machine Intelligence.” IEEE Press,

New York, 1995.
46. M. Watts and N. Kasabov, in “Proceedings of the 5th International Conference on Neural Information

Processing” (S. Usui and T. Omori, Eds.), Vol. 2, pp. 793–796. IOS Press, Kitakyushu, 1998.
47. S. Grossberg, J. Stat. Phys. 1, 319 (1969).
48. S. Grossberg, “Studies of Mind and Brain.” Reidel, Boston, 1982.
49. F. Rosenblatt, “Principles of Neurodynamics,” Spartan Books, New York, 1962.
50. M. Arbib, “The Metaphorical Brain—An Introduction to Cybernetics as Artificial Intelligence and Brain

Theory,” Wiley Interscience, New York, 1972.
51. M. Arbib, “Brains, Machines and Mathematics.” Springer, Berlin, 1987.
52. T. M. Heskes and B. Kappen, in “Mathematic Foundations of Neural Networks,” pp. 199–233. Elsevier,

Amsterdam, 1993.
53. C. Fahlman and C. Lebiere, “The Cascade-Corelation Learning Architecture, in Advances in Neural Infor-

mation Processing Systems,” (D. Turetzky and M. Kaufmann, Eds.), Vol. 2, 1990.
54. G. A. Rummery and M. Niranjan, in Cambridge University, Engineering Department, 1994.
55. A. Sankar and R. J. Manmone, IEEE Trans. Comput. 42, 291 (1993).
56. Y. LeCun, J. S. Denker, and S. A. Solla, in “Advances in Neural Information Processing Systems” (D. S.

Touretzky and Morgan Kaufmann, Eds.), pp. 598–605. San Francisco, CA, 1990.
57. M. Ishikawa, Neural Networks 9, 501 (1996).
58. A. Robins, Connection Sci. 8, 259 (1996).
59. D. Miller, J. Zurada, and J. H. Lilly, in “Proceedings of the IEEE International Confference on Neural

Networks,” Vol. 1, pp. 448–454. 1996.
60. V. Kecman, “Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic

Models (Complex Adaptive Systems).” MIT Press, Cambridge, MA, 2001.
61. G. E. Hinton, Artificial Intelligence 40, 185 (1989).
62. G. E. Hinton, Artificial Intelligence 46, 1 (1990).
63. G. G. Towell and J. W. Shavlik, Machine Learning 13, 71 (1993).
64. G. G. Towell and J. W. Shawlik, Artificial Intelligence 70, 119 (1994).
65. I. Cloete and J. Zurada, Eds., “Knowledge-Based Neurocomputing.” MIT Press, Cambridge, MA, 2000.
66. G. G. Towell, J. W. Shawlik, and M. Noordewier, “Refinement of Approximate Domain Theories by

Knowledge-Based Neural Networks,” in Proceedings of 8th National Conference AI AAA’90, pp. 861–866,
1990.

67. T. Furuhashi, K. Nakaoka, and Y. Uchikawa, “A new Approach to Genetic Based Machine Learning and an
Efficient Finding of Fuzzy Rules,” Proceedings of WWW’94 Workshop, pp. 114–122, 1994.

68. R. Jang, IEEE Trans. Syst. Man Cybernetics 23, 665 (1993).
69. T. Yamakawa, H. Kusanagi, E. Uchino, and T. Miki, “A new Effective Algorithm for Neo Fuzzy neuron

Model,” Proceedings of the 5th IFSA World Congress, pp. 1017–1020, 1993.
70. W. Hauptmann and K. Heesche, “A Neural Network Topology for Bidirectional Fuzzy-Neuro Transformation,”

Proceedings of FUZZ-IEEE/IFES, pp. 1511–1518, 1995.
71. N. Kasabov, Neurocomputing 13, 95 (1996).

36 Theoretical and Computational Models

72. Y. Hayashi, in “Advances in Neural Information Processing Systems” (R. P. Lippman, J. E. Moody, and D. S.
Touretzky, Eds.), Vol. 3, pp. 578–584. Morgan Kaufmann, San Mateo, CA, 1991.

73. N. Kasabov, Fuzzy Sets Syst. 82, 2 (1996).
74. W. Duch, R. Adamczak, and K. Grabczewski, Neural. Proc. Lett. 7, 211 (1998).
75. N. Kasabov, in “Methodologies for the Conception, Design and Application of Soft Computing” (T. Yamakawa

and G. Matsumoto, Eds.), pp. 271–274. World Scientific, Singapore, 1998.
76. S. Mitra and Y. Hayashi, IEEE Trans. Neural Networks 11, 748 (2000).
77. N. Kasabov, IEEE Trans. Syst. Man Cybernetics B. Cybernetics 31, 902 (2001).
78. S. Amari, IEEE Trans. Electronic Comput. 16, 299 (1967).
79. D. W. Aha, D. Kibler, and M. K. Albert, Machine Learning 6, 37 (1991).
80. M. T. Mitchell, R. Keller, and S. Kedar-Cabelli, Machine Learning 1, 47 (1997).
81. S. L. Salzberg, “Learning with Nested Generalized Exemplars.” Kluwer, Boston, MA, 1990.
82. S. Haykin, “Neural Networks—A Comprehensive Foundation.” Prentice Hall, Engelwood Cliffs, NJ, 1994.
83. L. A. Zadeh, Information Control 8, 338 (1965).
84. E. Mamdani, IEEE Trans. Comput. 26, 1182 (1997).
85. T. Takagi and M. Sugeno, IEEE Trans. Syst. Man Cybernetics 15, 116 (1985).
86. J. M. Mendel, “Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions.” Prentice Hall,

New York, 2001.
87. J. G. Taylor, “The Race for Consciousness.” MIT Press, Cambridge, MA, 1999.
88. W. Freeman, “Neurodynamics.” Springer-Verlag, London, 2000.
89. D. E. Goldberg, “Genetic Algorithms in Search, Optimisation and Machine Learning.” Addison-Wesley, Read-

ing, PA, 1989.
90. J. Koza, “Genetic Programming.” MIT Press, Cambridge, MA, 1992.
91. J. H. Holland, “Adaptation in Natural and Artificial Systems.” Univ. of Michigan Press, Ann Arbor, 1975.
92. J. H. Holland, “Emergence.” Oxford Univ. Press, Oxford, 1998.
93. D. Fogel, L. Fogel, and V. Porto, Biol. Cybernetics 63, 487 (1990).
94. J. M. Baldwin, Am. Nat. 30, 441 (1896).
95. V. Kvasnicka and J. Pospichal, in “Advances in Soft Computing—Engineering Design and Manufacturing”

(R. Roy, T. Furuhashi, and P. K. Chawdhry, Eds.), pp. 481–496. Springer-Verlag, London, 1999.
96. K. Richardson, “The Making of Intelligence.” Phoenix, London, 1999.
97. A. Newell and H. A. Simon, “Human Problem Solving.” Prentice Hall, Engelwood Cliffs, NJ, 1972.
98. H. C. Plotkyn, “The Nature of Knowledge.” Penguin, London, 1994.
99. E. Rosch and B. B. Lloyd, Eds., “Cognition and Categorization.” Lawrence Erlbaum, Mahweh, NJ, 1978.

100. E. E. Smith and D. L. Medin, “Categories and Concepts.” Harvard Univ. Press, Cambridge, MA, 1981.
101. D. Fogel, “Blondie 24 Playing at the Edge of AI.” Morgan Kaufmann, San Diego, CA, 2002.
102. J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, and G. G. Sutton, Science 291, 1304 (2001).
103. C. Elegans, Sequencing Consortium, Science 282, 2012 (1998).
104. F. Crick, Nature 227, 561 (1970).
105. S. Kauffman, J. Theoret. Biol. 44, 167 (1974).
106. J. L. deRisi, V. R. Iyer, and P. O. Brown, Science 275, 680 (1997).
107. B. Sobral, in “From Jay Lush to Genomics: Visions for Animal Breeding and Genetics” (J. M. Dekkers, S. J.

Lamont, M. F. Rothschild, Eds.). Iowa State Univ. Press, Ames, 1999.
108. P. A. Pevzner, “Computational Molecular Biology: An Algorithmic Approach.” MIT Press, Cambridge, MA,

2000.
109. J. R. Koza, W. Mydlowec, G. Lanza, J. Yu, and M. A. Keane, “Reverse Engineering of Metabolic Pathways

from Observed Data using Genetic Programming,” in Proceedings of the Pacific Symposium on Biocomputing,
Vol. 6, pp. 434–445. 2001.

110. J. Collado-Vides and R. Hofestadt, Eds., “Gene Regulation and Metabolism. Post-Genomic Computational
Approaches.” MIT Press, Cambridge, MA, 2002.

111. L. Hunter, Can. Artificial Intelligence 35, 10 (1994).
112. J. Dow, G. Lindsay, and J. Morrison, “Biochemistry Molecules, Cells and the Body.” Addison-Wesley, Boston,

MA, 1995.
113. J. Collado-Vides, B. Magasanik, and T. F. Smith, Eds., “Integrative Approaches to Molecular Biology.” MIT

Press, Cambridge, MA, 1996.
114. P. D’Haeseleer, X. Wen, S. Fuhrman, and R. Somogyi, “Linear Modeling of mRNA Expression Levels during

CNS Development and Injury,” Proceedings of the Pacific Symposium on Biocomputing, Vol. 4, pp. 41–52.
Hawaii, 1999.

115. P. D’Haeseleer, S. Liang, and R. Somogyi, Bioinformatics 16, 707 (2000).
116. G. Fogel and D. Corne, “Evolutionary Computation for Bioinformatics.” Morgan Kaufmann, San Francisco,

CA, 2003.
117. T. Akutsu, S. Miyano, and S. Kuhara, “Identification of Genetic Networks from a Small Number of Gene

Expression Patterns under the Boolean Network Model,” Proceedings of the Pacific Symposium on Biocom-
puting, Vol. 4, pp. 17–28. Hawaii, 1999.

118. S. Gomez, S. Lo, and A. Rzhetsky, Genetics 159, 1291 (2001).
119. A. Lindlof and B. Olsson, Information Sci. 146, 103 (2002).
120. J. Vohradsky, J. Biol. Chem. 276, 36168 (2001).
121. J. Vohradsky, FASEB J. 15, 846 (2001).

Theoretical and Computational Models 37

122. S. Ando, E. Sakamoto, and H. Iba, “Evolutionary Modelling and Inference of Genetic Networks,” Proceedings
of the 6th Joint Conference on Information Sciences, pp. 1249–1256. Cary, NC, 2002.

123. Mimura and H. Iba, “Inference of a Gene Regulatory Network by Means of Interactive Evolutionary Com-
puting,” Proceedings of the 6th Joint Conference on Information Sciences, pp. 1243–1248. Cary, NC, 2002.

124. K. W. Kohn and D. S. Dimitrov, in “Computer Modeling and Simulation of Complex Biological Systems”
(S. S. Iyengar, Ed.), pp. 101–123. CRC Press, Boca Raton, FL, 1998.

125. J. Vides, B. Magasanik, and T. Smith, “Integrated Approaches to Molecular Biology.” MIT Press, Cambridge,
MA, 1996.

126. M. A. Savageau, Chaos 11, 142 (2001).
127. G. Marnellos and E. D. Mjolsness, in “Modeling Neural Development” (A. vanOoyen, Ed.), pp. 27–48. MIT

Press, Cambridge, MA, 2003.
128. L. F. A. Wessels, E. P. vanSomeren and M. J. T. Reinders, in “Proceedings of the Pacific Symposium on

Biocomputing,” p. 508–519. Hawaii, 2001.
129. N. Kasabov and D. Dimitrov, in “Proceedings of the ICONIP’2002—International Conference on Neuro-

Information Processing.” IEEE Press, Singapore, 2002.
130. N. Kasabov and Q. Song, DENFIS: IEEE Trans. Fuzzy Syst. 10, 144 (2002).
131. T. MathWorks, “Neural Network Toolbox User’s Guide,” Vol. 4. The Math Works Inc., 2001.
132. W. Enard, P. Khaitovich, J. Klose, S. Zoelner, F. Heisig, and S. Paabo, Science 296, 340 (2002).
133. M. Caceres, J. Lachuer, M. A. Zapala, J. C. Redmond, L. Kudo, D. H. Geschwind, D. J. Lockhart, T. M.

Preuss, and C. Barlow, Proc. Natl. Acad. Sci. USA 100, 13030 (2003).
134. S. Savage-Rumbaugh and R. Lewin, “Kanzi: The Ape at the Brink of the Human Mind.” Wiley, New York,

1994.
135. R. Somogyi, S. Fuhrman, and X. Wen, in “Computational Modeling of Genetic and Biochemical Networks”

(J. M. Bower and H. Bolouri, Eds.), pp. 119–157. MIT Press, Cambridge, MA, 2001.
136. In “Genes and Disease.” National Centre for Biotechnology Information (NCBI), 2003; http://www.ncbi.nlm.

nih.gov/books/bv.fcgi?call=bv.View..ShowSection&rid=gnd.chapter.75.
137. R. Morita, E. Miyazaki, C. G. Fong, X.-N. Chen, J. R. Korenberg, A. V. Delgado-Escueta, and K. Yamakawa,

JH8, Biochem. Biophys. Res. Comm. 248, 307 (1998).
138. L. Benuskova, S. G. Wysoski, and N. Kasabov, “Neuro-Genetic Model of Spiking Neural Networks,” in prepa-

ration (2004).
139. J. H. Holland, “Adaptation in Natural and Artificial Systems.” Univ. of Michigan Press, Ann Arbor, MI, 1975.
140. D. E. Goldberg, “Genetic Algorithms in Search, Optimization and Machine Learning.” Addison-Wesley, Read-

ing, MA, 1989.
141. W. Gerstner and W. M. Kistler, “Spiking Neuron Models.” Cambridge Univ. Press, Cambridge, 2002.
142. A. Destexhe, J. Neurosci. 18, 9099 (1998).
143. A. V. Semyanov, Neurophysiology 34, 71 (2002).
144. J. W. Freeman, “Mass Action in the Nervous System.” Academic Press, New York, 1975.
145. W. J. Freeman, M. D. Holmes, B. V. Burke, and S. Vanhatalo, Clin. Neurophysiol. 114, 1053 (2003).
146. P. Kudela, P. J. Franaszcuk, and G. K. Bergey, Biol. Cybernetics 88, 276 (2003).
147. K.-H. Yang, P. J. Franaszczuk, and G. K. Bergey, Biol. Cybernetics 89, 242 (2003).
148. J. M. Bower and D. Beeman, “The Book of GENESIS: Exploring Realistic Neural Models with the GEneral

NEural SImulation System,” 2nd ed. TELOS/Springer-Verlag, New York, 1998.
149. C. Marini, L. A. Harkin, R. H. Wallace, J. C. Mulley, I. E. Scheffer, and S. F. Berkovic, Brain 126, 230 (2003).
150. H. K. M. Meeren, J. P. M. Pijn, E. L. J. M. VanLuijtelaar, A. M. L. Coenen, and F. H. LopesdaSilva, J. Neurosci.

22, 1480 (2002).
151. A. Contractor, G. T. Swanson, A. Sailer, S. O’Gorman, and S. F. Heineman, J. Neurosci. 20, 8269 (2000).
152. R. A. Deisz, Neuropharmacology 38, 1755 (1999).
153. R. M. Gardiner, Epilepsy Res. 36, 91 (1999).
154. G. E. Homanics, T. DeLorey, L. L. Firestone, J. J. Quinlan, and A. Handforth, Proc. Natl. Acad. Sci. USA 94,

4143 (1997).
155. S. Jones, S. Sudweeks, and J. L. Yakel, Trends Neurosci. 22, 555 (1999).
156. O. K. Steinlein and J. L. Noebeles, Curr. Opin. Genet. Dev. 10, 286 (2000).
157. R. A. Freitas, “Nanomedicine, Volume I: Basic Capabilities.” Landes Bioscience, Georgetown, TX, 1999.
158. R. A. Freitas, “Nanomedicine, Volume IIA: Biocompatibility.” Landes Bioscience, Georgetown, TX, 2003.
159. T. J. Webster, M. C. Waid, J. L. McKenzie, R. L. Price, and J. U. Ejiofor, Nanotechnology 15, 48 (2004).
160. A. S. Sadek, K. Nikolic, and M. Forshaw, Nanotechnology 15, 192 (2004).
161. G. Bauer, J. Hassmann, H. Walter, J. Haglmueller, C. Mayer, and T. Schalkhammer, Nanotechnology 15, 1289

(2004).
162. L. S. Smith and A. Hamilton, Eds., “Neuromorphic Systems: Engineering Silicon from Neurobiology,” Progress

in Neural Processing. World Scientific Publishing, London, 1998.
163. P. Tikovic, M. Voros and D. Durackova, J. Elec. Eng. 52, 68 (2001).
164. J. Theiler, Phys. Lett. A 196, 335 (1995).
165. W. J. Freeman, Chaos 13, 1 (2003).
166. I. Tsuda, Behav. Brain Sci. 24, 793 (2001).
167. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).
168. L. Benuskova, M. Kanich, and A. Krakovska, in “Proceedings of the World Congress on Neuroinformatics”

(F. Rattay, Ed.). ARGESIM/ASIM-Verlag, Vienna, 2001.

38 Theoretical and Computational Models

169. C. Koch and F. Crick, in “Large-Scale Neuronal Theories of the Brain” (C. Koch and J. L. Davis, Eds.). MIT
Press, Cambridge, MA, 1994.

170. W. Singer, in “Understanding Representation in the Cognitive Sciences” (A. Riegler, M. Peschl, and
A. vonStein, Eds.). Kluwer Academic/Plenum Publishers, New York, 1999.

171. G. M. Edelman and G. Tononi, “Consciousness. How Matter Becomes Imagination.” Penguin Books, London,
2000.

172. R. Penrose, “Shadows of the Mind: A Search for the Missing Science of Consciousness.” Oxford Univ. Press,
Oxford, 1994.

173. R. Penrose, Beyond the Doubting of a Shadow, PSYCHE: 2 (1996); http://psyche.cs.monash.edu.au/v2/psyche-
2-23-penrose.html.

174. D. C. Dennett, “Consciousness Explained.” Penguin Books, New York, 1991.
175. J. Searle, “Consciousness and Language.” Cambridge Univ. Press, Cambridge, MA, 2002.
176. D. J. Chalmers, “The Conscious Mind: In Search of a Fundamental Theory.” Oxford Univ. Press, Oxford,

1996.
177. D. J. Chalmers, Minds, Machines, and Mathematics, PSYCHE: 2 (1996); http://psyche.cs.monash.edu.au/v2/

psyche-2-09-chalmers.html.

