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Abstract. This paper investigates a robust kernel approximation
scheme for support vector machine classification with indefinite kernels.
It aims to tackle the issue that the indefinite kernel is contaminated by
noises and outliers, i.e. a noisy observation of the true positive definite
(PD) kernel. The traditional algorithms recovery the PD kernel from the
observation with the small Gaussian noises, however, such way is not
robust to noises and outliers that do not follow a Gaussian distribution.
In this paper, we assume that the error is subject to a Gaussian-Laplacian
distribution to simultaneously dense and sparse/abnormal noises and
outliers. The derived optimization problem including the kernel learning
and the dual SVM classification can be solved by an alternate iterative
algorithm. Experiments on various benchmark data sets show the robust-
ness of the proposed method when compared with other state-of-the-art
kernel modification based methods.

Keywords: Robust kernel approximation · Indefinite kernel learning ·
Support vector machine

1 Introduction

Kernel methods [1], such as support vector machine (SVM), have been broadly
applied in computer vision, bioinformatics, and so on. They often employ a so-
called kernel function K(xi,xj) to intuitively compute the similarity between
two samples xi and xj . If the similarity matrix derived by the kernel function K
is positive semi-definite (PSD), then it can be served as a kernel matrix K1 in
standard kernel methods. To be specific, such positive definite kernel methods
are applicable to the support vector machine (SVM) method with remarkable
classification performance. In this case, the optimization problem of SVM can
be formulated as a convex quadratic programing and well analysed with solid
theoretical foundations in the Reproducing Kernel Hilbert Spaces (RKHS).
1 The kernel matrix K associated to a positive definite kernel K is PSD.
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However, in real-life applications, many potential kernels could be indefi-
nite, such as hyperbolic tangent kernels, a kernel within the Kullback-Leibler
divergence, and the protein sequence similarity measures derived from Smith
Waterman and BLAST score [2]. In these cases, the derived kernel matrix K
is no longer guaranteed to be PSD due to the following two reasons. First,
the kernel matrix generated by a certain similarity measure takes advantage of
domain-specific structure in data and often display excellent empirical classifi-
cation performance without any positiveness requirement of the kernel matrix.
Second, the similarity measurements are easily affected by noises and outliers,
which often results in an indefinite kernel matrix. In the next we will introduce
the way to tackle such indefinite kernels in these situations, especially for SVM.

To fully exploit the implicit information carried by indefinite kernels in SVM,
many algorithms have been proposed in the literature to solve it. One widely
used method is kernel approximation, which aims to convert the indefinite kernel
matrix to a PSD one by the spectrum modification scheme. For example, “flip”
[3] takes the absolute value of all eigenvalues, “clip” [4] neglects the nonnegative
eigenvalues and sets them to zero, and in the “shift” [5] method, all eigenval-
ues plus a positive constant until the smallest one is zero. However, the above
three unsophisticated methods actually change the infinite kernel a lot, and thus
some important information involved within it might be lost. Comparatively, a
substitutable method [6] aims to seek for a PSD kernel matrix K as the opti-
mal approximation to the indefinite one K0. In that sense, the indefinite kernel
can be considered as a noise-distributed realization of a positive definite kernel.
In [6,7], a joint optimization formulation is proposed to simultaneously learn
a proxy kernel and the (dual) SVM classification problem. The corresponding
objective function in the above two methods adopts a well-known loss, namely
the least square error function to obtain a PSD approximation. The implicit
rationale of using such loss is that the noise is subject to a Gaussian distribution
with small mean and variance. Nevertheless, real data may contain many unde-
sirable noises and outliers not limited to a Gaussian distribution, which makes
such loss not appropriate to accommodate the practical use.

Motivated by the above issue, this paper introduces a robust PSD kernel
approximation into indefinite learning. The main contributions of our method
are summarized as follows:

1. A robust PSD kernel approximation is incorporated into the indefinite SVM
framework within a Gaussian-Laplacian distribution noise assumption.

2. An alternate iterative algorithm is proposed to learn a robust PSD ker-
nel approximation and solve the (dual) SVM problem with convergence
guarantees.

Numerous experiments on various data sets demonstrate the effectiveness of the
proposed robust PSD kernel approximation method.
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2 Robust Approximation in SVM with Indefinite Kernels

In this section, we firstly review the regularized formulation of indefinite SVM
presented in [6], and then introduce the proposed robust approximation method.

2.1 Review: Indefinite SVM

Let K ∈ S
n be a given kernel matrix and y ∈ {−1,+1}n be the vector of labels,

with the label matrix Y = diag(y) ∈ R
n×n, where S

n is the set of symmetric
matrices. Based on the above definitions, the SVM dual form is defined by:

min
α

1
2
α�YKYα − 1�α

s.t. 0 ≤ α ≤ C1, α�y = 0
, (1)

with the variable α ∈ R
n, where C is the fixed tradeoff parameter and 1 ∈ R

n

denotes the all-one vector. Suppose that only an indefinite kernel matrix K0 ∈ S
n

is given, Luss and d’ Aspremont [6] proposed the following max-min method
to simultaneously learn a proxy PSD kernel matrix K for K0 and the SVM
classification problem:

max
α

min
K�0

1�α − 1
2
α�YKYα + ρ‖K − K0‖2F

s.t. α�y = 0, 0 ≤ α ≤ C1
, (2)

where ρ is a regularization parameter. Observe that, the inner minimization
problem is a convex conic program on K, and the outer optimization problem
is also convex. As a result, Eq. (2) is a concave maximization problem subject
to linear constraints and thus is a convex problem of α. Specifically, the inner
kernel learning optimization problem can be equivalent to a projection to a
semi-definite cone, which arrives at:

min
K�0

−1
2
α�YKYα + ρ‖K − K0‖2F (3)

Given α, the optimal solution to this problem is then given by:

K∗ =
(
K0 +

1
4ρ

Yαα�Y
)
+

(4)

where K+ is the positive part of the matrix K, i.e., K+ =
∑

i max(0, λi)pip�
i ,

where λi and pi are the ith eigenvalue and eigenvector of the matrix K, respec-
tively. And then, plugging this solution into Eq. (2), we can get the optimization
problem associated with α. Thereby, the learning proxy PSD kernel matrix K
and SVM classification problem can be simultaneously learned by solving α.
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2.2 Robust Approximation

In another view, the kernel learning in Eq. (3) aims to fit a PSD kernel K to
a noisy observation K0, namely K0 = K + E, where E is defined as the error
or residual term. The used Frobenius norm in Eq. (3) indicates that the error
E = K0 − K follows the Gaussian distribution (eij ∼ N (0, σ2

N )2). However,
such solution only resists on Gaussian noises and can hardly tackle outliers and
other undesirable noises. To remedy this defect, in our method, we assume that
the error E = E1 + E2 is modeled as an additive combination of two indepen-
dent components: an i.i.d Gaussian noise matrix E1 and an i.i.d Laplacian noise
matrix E2

3), where the Gaussian component models small dense (non-sparse)
noise and the Laplacian (sparse) one aims to handle outliers [8]. Therefore, we
incorporate the error term E into Eq. (3) with a uniform framework:

min
K�0,E

−1
2
α�YKYα + ρ‖K − K0 − E‖2F + γ‖E‖1 , (5)

where γ controls the sparsity of the error matrix E. By such modeling, the
error matrix E, as a mixture Gaussian-Laplacian distribution, comprehensively
considers the diversity of noises and outliers in real-life data. Accordingly, by
combining the kernel approximation problem demonstrated in Eq. (5) and the
dual SVM classification problem, the final optimization problem can be formu-
lated as:

max
α

min
K�0,E

1�α − 1
2
α�YKYα + ρ‖K − K0 − E‖2F + γ‖E‖1

s.t. α�y = 0, 0 ≤ α ≤ C1
. (6)

Several optimization algorithms for such convex optimization problem have been
well investigated, such as the analytic center cutting plane method [6] and the
projection gradient method with Nesterov’s smooth optimization [7]. However,
due to the non-smooth regularization term ‖·‖1, the above gradient based meth-
ods cannot be directly applied to solve this optimization problem. In this paper,
we introduce an alternate iterative algorithm to tackle this non-smooth term
and then solving the inner optimization problem. To be specific, Eq. (5) can be
reformulated as the following formula:

min
K�0,E

O(K,E) = ‖K − (K0 +
1
4ρ

Yαα�Y�) − E‖2F + γ‖E‖1 . (7)

Given the solution E(t) at t-th iteration, the solution K(t+1) can be solved by a
semi-definite programming, which arrives at:

K(t+1) =
(
K0 +

1
4ρ

Yαα�Y + E(t)
)
+

. (8)

2 The probability density function of a Gaussian random variable x is defined as

fN (x) = 1√
2πσN

exp
(−

√
2x2

σ2
N

)
.

3 The probability density function of a Laplacian random variable x is defined as

fL(x) = 1√
2σL

exp
(−

√
2|x|
σL

)
.
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Given the learned kernel K(t) at t-th iteration, the optimal error matrix E(t+1)

can be solved by the shrinkage thresholding algorithm [9]:

[E(t+1)]ij = S
(γ

2
,
[
K(t) − K0 − 1

4ρ
Yαα�Y

]
ij

)
, (9)

where the shrinkage operator is defined as S(ε, x) = sgn(x) ·max(|x| − ε, 0), and
sgn(·) is a sign function. Finally, the algorithm to learn the PSD kernel K and
the error E is summarized in Algorithm 1.

Algorithm 1. Algorithm for K∗ and E∗.
Input: A given α, the indefinite kernel matrix K0, the regularization

parameters are ρ = 10 and γ = 1.
Output: The optimal K∗ and E∗.

1 Set: stop error ε = 10−4.
2 Initialize i = 0, E with random positive values, and a symmetric matrix K.

3 Compute the objective function value O(i)(K(i),E(i)).
4 Repeat

5 K(i+1) :=
(
K0 + 1

4ρ
Yαα�Y + E(i)

)
+
;

6 [E(i+1)]ij = S
(

γ
2
,
[
K(i) − K0 − 1

4ρ
Yαα�Y

]
ij

)
;

7 Compute the current objective function value O(i+1)(K(i+1),E(i+1));
8 i := i + 1;

9 Until ‖O(i+1)−O(i)‖2
‖O(i)‖2

≤ ε;

Next we discuss the convergence analysis of Algorithm 1. The optimization
algorithm for minimizing the objective function O(K,E) is essentially iterative.
In order to prove the convergence, it is necessary to show that O(K,E) is non-
increasing under the optimization steps listed in Algorithm 1. It is clear that
the objective function O(K,E) satisfies:

O(K(i+1),E(i)) = argmin
K

O(K,E(i)) ≤ O(K(i),E(i)) ,

O(Ki+1,E(i+1)) = argmin
E

O(K(i+1),E) ≤ O(K(i+1),E(i)) ≤ O(K(i),E(i)) .

(10)
which completes the proof. After obtaining the optimal K∗ and E∗, the learned
PSD kernel K∗ can be used for solving the dual variable α. Therefore, the
algorithm for learning K∗ and α is summarized in Algorithm 2. Specifically,
such iteration algorithm converges very fast, usually within 15 iterations.

Remark: If the outer iteration number T is fixed to 1 (i.e., without iteration
in the outer loop), Algorithm 2 with a warm start outputs the similar optimal
result with the iteration version. Hence, such setting does not largely decrease
the final performance with a high computational efficieny.
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Algorithm 2. Algorithm for α∗, K∗ and E∗.
Input: The training set label Y, the indefinite kernel matrix K0

Output: The optimal α∗

1 Set the maximum iteration number T = 3.
2 Initialize i = 0, E with random positive values, a symmetric matrix K, and a

random nonnegative vector α.
3 Repeat

4 Obtain K(i+1) and [E(i+1)]ij by Algorithm 1;

5 Solve α with the learned kernel K(i+1) by SMO algorithm [10];
6 i := i + 1;

7 Until i ≥ T ;

3 Experiments

In this section, we compare the proposed method with other methods using SVM
given an indefinite similarity measure. These algorithms are tested on several
benchmark data sets from the UCI repository [11] including Monks1, Monks3,
and SPECT, and two data sets from USPS handwritten digits dataset [12] using
the indefinite Simpson score (SS).

3.1 Experiments Setup

The compared kernel approximation algorithms includes three spectrum mod-
ification methods flip, clip, and shift, and two PSD kernel learning based
approaches SVM-PG [13] and SVM-SMM [7]. Specifically, SVM with the origi-
nal indefinite kernel, as a baseline method, is also taken into comparison (In this
case, SVM would converge but the solution is only a stationary point and is not
guaranteed to be optimal).

For each data set, we randomly pick up the half of the data for training
and the rest for test. Specifically, for all methods, the parameter C is tuned by
five-fold cross-validation on the training set: one of these five subsets is used for
validation in turn and the remaining ones for training. The stopping error is set
to 10−4.

3.2 Generalization on the Noisy Kernel

To verify the effectiveness of the proposed method robust to kernels with noises,
an indefinite kernel is added with small noises, i.e. K0 := K − 0.1Ê, where
the noisy matrix Ê is randomly generated by zero mean and identity covari-
ance matrix, and specifically, we randomly select some elements fixed to a large
number (i.e. 10000). For USPS-3-5-SS and USPS-4-6-SS, the kernel matrix K is
derived from the indefinite Simpson score (SS) in [13]. For Monks1, Monks3, and
SPECT data sets, the kernel function K is chosen as a Gaussian kernel, which
follows with the same setting in [7].
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Table 1 provides statistics including the minimum and maximum eigenvalues
of the training kernels, i.e. λmin and λmax. Observe that, the USPS data uses
highly indefinite kernels while the UCI data use kernels that are nearly positive
semi-definite. The classification performance of our method and other algorithms
are evaluated by accuracy4 and recall5 as shown in Table 1. One can see that the
proposed method achieves a promising performance on the USPS data, Monks3,
and SPECT with the highest accuracy and recall. The results on these data sets
demonstrate that the proposed method is robust to noises and outliers, and it
tackles the highly indefinite kernel better than the nearly PSD one.

Discussion: Apart from kernel approximation, there are also two kinds of algo-
rithms to tackle such indefinite kernels. One approach is to directly solve the cor-
responding non-convex problem via some non-convex optimization algorithms.
For example, in [14], the authors utilize the concave-convex procedure (CCCP)
[15] algorithm for SVM with indefinite kernels. The other solution to such prob-
lem is to learn indefinite kernels in the Reproducing Kernel Krĕın Spaces (RKKS)
[16–18] with theoretical guarantees.

Table 1. Data set statistics and performance on the noisy kernel. The best scores are
highlighted by bold.

Dataset USPS-3-5-SS USPS-4-6-SS Monks1 Monks3 SPECT

λmin, λmax -34.76 453.6 -37.30 413.2 -0.72 11.43 -0.74 11.93 -0.53 9.16

Measure Accuracy Recall Accuracy Recall Accuracy Recall Accuracy Recall Accuracy Recall

SVM 74.90 72.73 90.08 88.49 51.61 62.07 57.38 55.17 74.47 79.36

Flip 95.73 95.45 97.90 98.65 58.73 46.88 62.90 54.55 71.74 76.74

Clip 95.47 94.50 97.78 98.42 55.56 48.39 56.45 65.63 70.53 72.94

Shift 90.43 92.11 94.28 93.68 52.38 47.50 53.23 55.17 73.68 76.09

SVM-PG [6] 96.25 96.65 97.90 98.87 61.29 79.31 70.49 58.62 67.37 68.18

SVM-SMM [7] 94.67 92.67 93.67 96.67 59.68 88.89 67.21 45.95 68.09 70.93

Ours 97.67 98.33 98.0 98.87 52.38 62.96 70.97 82.14 74.74 81.61

4 Conclusion

This paper proposes a robust PSD kernel approximation scheme in indefinite ker-
nel learning. The Gaussian and Laplacian noise assumption makes our method
more flexible to tackle the indefinite kernel with a noisy instance of a true kernel.
The corresponding robust kernel learning problem can be solved by an alternate
iterative algorithm with a semi-definite programming and a soft-threshold oper-
ator with theoretical guarantees. Quantitative comparisons with other state-of-
the-art kernel approximation based methods on several data sets have demon-
strated the effectiveness and robustness of the proposed method.

4 Accuracy is defined as the percentage of total instances predicted correctly.
5 Recall is the percentage of true positives that were correctly predicted positive.
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