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1. INTRODUCTION
A major goal of computational biology is to discover knowledge or to enhance knowledge
discovery for biological systems through computation. Computational biology, a term coined
from analogy to the role of computing in the physical sciences, is now coming into its own
as a major element of contemporary biological and biomedical research [1]. Information
and computational sciences provide essential tools for the next-generation biological science
efforts, from focusing the direction of experimental studies to providing knowledge and
insight that cannot otherwise be obtained. Going beyond the revolution in biology reflected
in the successes of the genome project and driven by the power of molecular biology tech-
niques, computational approaches will provide an underpinning for the integration of broad
disciplines for development of a quantitative systems approach to understanding the mech-
anisms determining the life of the cell and organism. Another aspect of the integration
of computation and biology is that biological systems can be viewed as special computing
devices. This view emerges from considerations of how information is stored in and retrieved
from the genes. Genes can only specify the properties of the proteins they code for, and any
integrative properties of the system must be “computed” by their interactions. This provides
a framework for analysis by simulation and sets practical bounds on what can be achieved
by reductionist models [2].
Recent advances in many areas of biology, especially in genomics, are heavily rooted in

engineering technology, from the capillary electrophoresis units used in large DNA sequenc-
ing projects to the photolithography and robotics technology used in chip manufacture, to
the confocal imaging systems used to read those chips, to the beam and detector technology
driving high-throughput mass spectroscopy. Further advances in materials science and nano-
technology promise to improve the sensitivity and cost of these technologies greatly in the
near future [3]. Current research makes it possible to look at biological phenomena on a
scale not previously possible: all genes in a genome, all transcripts in a cell, and all metabolic
processes in a tissue.
These modern approaches produce massive quantities of data. GenBank, for example,

now accommodates more than 1010 nucleotides of nucleic acid sequence data and continues
to more than double in size every year. New technologies for assaying gene expression pat-
terns, protein structure, protein–protein interactions, and so forth will provide even more
data. How to handle these data, make sense of them, and render them accessible to biol-
ogists working on a wide variety of problems is the challenge facing computational biology
and bioinformatics seeking to integrate computer science with applications derived from
molecular biology.
One core aspect of research in computational biology focuses on database development:

how to integrate and optimally query data from genomic DNA sequence, spatial and temporal
patterns of mRNA expression, protein structure, immunological reactivity, clinical outcomes,
publication records, and other sources. A second focus involves pattern-recognition algo-
rithms for such areas as nucleic acid or protein sequence assembly, sequence alignment for
similarity comparisons or phylogeny reconstruction, motif recognition in linear sequences or
higher-order structure, and common patterns of gene expression. Both database integration
and pattern recognition depend absolutely on accessing data from diverse sources and on
being able to integrate, transform, and reproduce these data in new formats.
Computational biology is a fundamentally collaborative discipline, owing its very existence

to the availability of rich and extensive data sets for analysis, integration, and manipulation.
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Data accessibility and usability are therefore critical, raising concerns about data release
policies—what constitutes primary data, who owns this resource, when and how data should
be released, and what restrictions may be placed on further use.

2. COMPUTATIONAL GENOMICS AND PROTEOMICS

2.1. DNA Sequencing

DNA (deoxyribonucleic acid) is a nucleic acid polymer consisting of individual units termed
nucleotides. Each nucleotide consists of one of four distinct nucleosides (deoxypentose sugar
plus one of four bases (adenine [A], guanine [G], cytosine [C], and thymine [T])) and a
phosphate group. Thymine is replaced by uracil (U) in RNA (ribonucleic acid). With respect
to similarity in structure, nucleosides are divided in two classes: pyrimidines and purines.
Nucleosides A, T, G, and C are capable of being linked together to form a long chain.
The bases along the polymer can interact with complementary bases in the other strand:
Adenine is capable of forming hydrogen bonds with thymine (A:T), and cytosine can pair
with guanine (C:G). Thus, the DNA consists of two antiparallel strands and can be written,
for instance, as

� � � A T C G C G T T A G C T A G C T � � �
� � � � � � � � � � � � � � � �

� � � T A G C G C A A T C G A T C G A � � �

The main steps of DNA sequencing are the following: purified fragments of DNA are
denatured to a single chain, and then one strand is hybridized to an oligonucleotide primer
with small amounts of one of four chain-terminating nucleotides. After synthesis, the mix-
ture, consisting of DNA fragments ending with one of the nucleotides, is electrophoresed
to separate fragments by size. After this, one can calculate the probable order of the bands
and predict the sequence. For the sequencing of larger molecules of DNA, the molecules
are first randomly sheared, the fragments are sequenced then, and finally the sequence of
the large molecule is assembled from the overlaps found.
After sequencing, the information about the sequence can be submitted to one of the data

banks, including GenBank at the National Center of Biotechnology Information, National
Library of Medicine, Washington, DC (http://www.ncbi.nlm.nih.gov/Entrez); the European
Molecular Biology Laboratory (EMBL) Outstation at Hixton, England (http://www.ebi.
ac.uk/embl/index.html); and the DNA DataBank of Japan (DDBJ) at Mishima, Japan (http://
www.ddbj.nig.ac.jp/). A more extensive list of the data banks can be found in DBCAT (Pub-
lic Catalog of Databases) located at http://www.infobiogen.fr/services/dbcat/. Different data
banks may have different formats for storing the data, but most of them have the same
features: sequence name and identification code, source organism, keywords to look up this
entry, dates of entry and modification, and so forth.

2.2. DNA and RNA Structures

A nucleoside is one of the four DNA bases attached covalently to the sugar. The sugar in
deoxynucleosides is 2′-deoxyribose, and ribose in ribonucleosides. The four different nucle-
osides of DNA are deoxyadenosine (dA), deoxyguanosine (dG), deoxycytosine (dC), and
deoxythymidine (dT). A nucleotide is a nucleoside with one or more phosphate groups cova-
lently attached to the 3′- or 5′-hydroxyl group or groups. The DNA backbone is a polymer
with an alternating sugar–phosphate sequence. DNA is a normally double-stranded macro-
molecule with two polynucleotide chains (the double-helical nature of DNA was discovered
in 1953 [4]). These chains are noncovalently held together by weak intermolecular forces
and form a DNA molecule. Two DNA strands form a helical spiral, winding around a helix
axis in a right-handed spiral with two polynucleotide chains running in opposite directions.
The sugar–phosphate backbones wind around the helix axis. The bases of the individual
nucleotides are on the inside of the helix. For DNA duplexes, the right-handed double helix
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has 10 pairs per complete turn. Within the DNA double helix, the adenine:thymine base
pair has two hydrogen bonds, compared to three in the guanine:cytosine pair. The two base
pairs are required to be identical in dimensions by the Watson–Crick model. High-resolution
X-ray crystallographic analysis of the ribodinucleoside monophosphate duplexes (G:C and
A:U) showed that the distances between the glycosidic carbon atoms in the base pairs are
close (10.67 and 10.48 Å, respectively).
RNA molecules are polynucleotides containing ribose sugars connected by phosphodiester

linkages. Although RNA is generally single-stranded, double-stranded RNA molecules can
be formed where uracil participates in a U:A pair. Single-stranded RNA have a tendency to
fold back on themselves to form double-stranded structures like stacked double-helixes for
the regions with paired bases and different loops (bulge, hairpin, internal, and multibranch)
for unpaired bases. These elements form the RNA secondary structure.
Prediction of RNA secondary structure requires intensive computational resources.

Usually, RNA resultant structure corresponds to the local minima of the free energy, and
overall free energy of the molecular folded is the sum of the energies of the stacked base
pairs and loops. However, the molecular environment and folding pathway, which can have
a significant effect on this structure, should be accounted.
In Structurelab [5], dynamic programming algorithm and genetic algorithm were used for

determination of the folding of the RNA molecules. This system allows researchers to pur-
sue interactively and methodically a multiperspective analysis of RNA structure (multiple
and individual). It uses various software modules and hardware complexes [6]. Secondary
structure representation of RNA molecular structures is based on LISP’s nested list nota-
tions, for instance [N(H)(H)(BH)(H)(H)(H)(BBBIH)], where the symbols are H, hairpin
loop; B, bulge loop; I, internal loop; and M, multibranch loop.
Other packages that can be used for secondary structure prediction and presentation are

mfold, http://www.bioinfo.rpi.edu/∼zukerm/rna/, http://bioweb.pasteur.fr/seqanal/interfaces/
mfold-simple.html, http://biotools.idtdna.com/mfold/, http://www.bioinfo.rpi.edu/applications/
mfold/old/rna/form1.cgi; RNAfold, http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi; ESSA,
http://www.inra.fr/bia/T/essa/Doc/essa_home.html; and CARD, http://rrna.uia.ac.be/card.
html.

2.3. Protein Sequencing

Proteins are linear polymers of amino acids linked by a peptide bond. The primary structure
of the protein (protein sequence) determines the ultimate three-dimensional structure of the
protein. Amino acids are small molecules consisting of an amino group (NH2), a carboxyl
group (COOH), a hydrogen atom attached to the central carbon (�), and a side chain (or
R group) attached to the central carbon. There are 20 standard amino acids, which can
be grouped into classes based on the chemical properties conferred by their side chains.
Amino acids can be charged �+/−�, hydrophobic/hydrophilic, polar/nonpolar, and capable
of H-bonding—allowing for weak interactions. Amino acids can form peptide bonds with
each other through reaction of the carboxyl and amino groups.

2.4. Protein Structure

Protein structure is typically considered on several levels.
The primary structure is the sequence of amino acids that make up a protein. This

sequence determines the ultimate three-dimensional structure of the protein. The secondary
structure involved local folding of peptide, creating distinctive structures shared by many
proteins including alpha (�) helices and beta (�) pleated sheets. These structures were pre-
dicted theoretically before the experimental determination of protein structure, and they are
the only regular secondary structural elements present in proteins (there are also irregular
structural elements: loop and coil). Helix is created by a curving of the polypeptide backbone,
and sheet is formed by hydrogen bonds between adjacent polypeptide chains rather than
within a single chain. There are two configurations for both elements: rightward/leftward for
helix and parallel/antiparallel for sheet.
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The tertiary structure is a global, three-dimensional structure of the polypeptide chain.
At this level of structure, the side chains play a major role in creating the final structure.
Protein folding is the process of forming a final three-dimensional tertiary structure. It is
interesting to note that random polypeptide sequences almost never fold into an ordered
structure, so protein sequences were selected by the evolution to achieve reproducible stable
structure [7].
Finally, the quaternary structure is the way multiple subunits of a protein interact. Many

proteins are formed from more than one polypeptide chain (i.e., they exist as a noncovalent
association of two or more identical or different polypeptides folded independently). The
quaternary structure describes the way in which the different subunits are packed together
to form the overall structure of the protein. For example, the human hemoglobin molecule
is made of four subunits. Other examples of the combination of nonidentical subunits are
immunoglobulins and bovine hemoglobin.
One task that has been explored in the literature is predicting the secondary structure from

the primary one. Segments of a protein can have different shapes in their secondary struc-
ture, which is defined by many factors—one of them being the amino-acid sequence itself.
Protein secondary structure prediction can be performed by different packages, among

them

1. NNPREDICT (http://www.cmpharm.ucsf.edu/∼nomi/nnpredict.html) predicts using a
two-layer, feed-forward neural network and a separate program—a modification of the
Parallel Distributed Programming suite (see for details; see Refs. [8, 9]).

2. PHDsec (http://cubic.bioc.columbia.edu/predictprotein) predicts secondary structure
from multiple sequence alignments. Secondary structure is predicted by a system of
neural networks rating for the three states, helix, strand, and loop, at an expected
average accuracy greater than 72% [10–12].

3. PROFsec (http://cubic.bioc.columbia.edu/predictprotein) is an improved version of
PHDsec, a profile-based neural network prediction of protein secondary structure.

4. JPRED (http://jura.ebi.ac.uk:8888/) is a consensus method for protein secondary struc-
ture prediction [13].

Qian and Sejnowski [14] investigated the use of multilayer perceptrons (MLPs) for the
task of predicting the secondary structure based on available labeled data. In Ref. [15], an
Evolving Fuzzy Neural Network (EFuNN) is trained on the data from Ref. [14] to predict
the shape of an arbitrary new protein segment. A window of 13 aminoacids was used; there
were 273 inputs and three outputs, and 18,000 examples for training were used. The block
diagram of the EFuNN model is given in Fig. 1 (from Ref. [15]).
Prediction of the three-dimensional structure of proteins by homology modeling (described

in detail in the next section) is based on the similarity of primary sequences of the protein
being analyzed to those of a protein of experimentally determined structure (this method

aaa1

aaa13

x1

x1

x273

EFuNN
for protein secondary

structure prediction

Helix

Sheet

Coil (loop)

Figure 1. An artificial neural network model (in this case it is an evolving fuzzy neural network [15]) for the predic-
tion of the protein secondary structure. Reprinted with permission from [15], N. Kasabov, “Evolving Connectionist
Systems—Methods and Applications in Bioinformatics, Brain Study and Intelligent Machines.” Springer, New York,
2002. © 2002, Springer.
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assumes that significant identity between the two sequences exists). Algorithms for homology
modeling can be found in the following servers:

1. SWISS-MODEL(http://www.expasy.ch/swissmod/SWISS-MODEL.html), anAutomated
Protein Modeling Server running at the GlaxoWellcome Experimental Research in
Geneva, Switzerland (see, for details, http://www.expasy.ch/swissmod/SWISS-MODEL.
html and [16, 17]).

2. CPHmodels (http://www.cbs.dtu.dk/services/CPHmodels/), Centre for Biological
Sequence Analysis, The Technical University of Denmark, Denmark: Methods and
databases developed to predict protein structures include Sowhat, a neural network–
based method to predict contacts between C-alpha atoms from the amino acid sequence,
and RedHom, a tool to find a subset with low sequence similarity in a database (see
Ref. [18]).

3. 3D-JIGSAW Comparative Modelling Server (http://www.bmm.icnet.uk/∼3djigsaw/);
BioMolecular Modeling Group, Imperial Cancer Research Fund, London: an auto-
mated system to build three-dimensional models for proteins based on homologs of
known structure ([19–21])

4. SDSC1-SDSC Structure Homology Modeling Server (http://cl.sdsc.edu/hm.html) and
Databases and Tools for 3-D Protein Structure Comparison and Alignment (http://cl.
sdsc.edu/ce.html); San Diego Supercomputing Center, San Diego, CA [22, 23].

2.5. Searching for Motifs in Sequences

To find a motif (or pattern or consensus) in the sequence, one first needs to define it. Let
us consider a sequence as a vector of symbols

X = �x1	 x2	 � � � 	 xL�

where L is sequence length and all symbols xi belong to a finite set of symbols (or alphabet)

xi ∈ A = a1	 � � � 	 aK� i = 1	 � � � 	 L

For DNA sequences, the alphabet is simply set of four letters

A = A	 T 	G	C�

Searching for a functional motif can be considered like comparing two sequences: one is the
target sequence �S�, and the other is the motif �M�

S = �s1	 s2	 � � � 	 sLS
�

M = �m1	m2	 � � � 	mLM
�

having length LS and LM , respectively.
Let now assume that function wij = w�ai	 aj� expresses the weight of a combination of

two symbols in comparing sequences. The simplest equation for this function is

w�ai	 aj� =
{
1 ai = aj

0 ai �= aj

In this case, position j of the motif in target sequence can be found as a value giving
maximum for the following score

Qj =
LM∑
i=1

w�mi	 si+j−1� j = 1	 � � � 	 LS − LM + 1
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Motif can be also represented as a probability (frequency or weight) pi�aj� to find the jth
symbol aj from alphabet A in position i of the motif. Using the values of matrix 	pi�aj�	
(position weight matrix, PWM), the score value for each position can be calculated as

Qj =
LM∑
i=1

pi�si+j−1� j = 1	 � � � 	 LS − LM + 1

If for the ith position in the motif pi�mi� = 1 and equals 0 for all other symbols, then this
approach is equal to the simplest case of the weight function. Graphically, both methods
can be represented as shown in the Fig. 2. The matrix shown in this picture is a dot plot
(i.e., a visual representation of the similarity between two sequences). Each axis represents
one of the two sequences to be compared, and each cell represents weight or probability
function values. To calculate Qj for position j in a target sequence, one should summarize
the values on the diagonal, starting from the cell �1	 j�. For a case in which weight function
has a simplest representation (1 for the equal symbols and 0 for different ones) and the
values of this function are represented as empty and filled cells for 0 and 1, respectively,
then the whole diagonal will represent sequences sharing similarity. For sequences that share
only patches of similarity, diagonal stretches will be shown.
The method of dot matrix analysis was first described in Ref. [24]. It can be also useful for

finding inverted repeats and self-complimentary repeats. The use of an enhanced dot plot
for nucleic and protein sequences was described in Ref. [25]. An additional description of
the method can be found in Ref. [26].
The package for detection of patterns and structural motif in nucleotide sequences

(PatSearch) is described in Ref. [27]. It allows scanning for specific combinations of oligonu-
cleotide consensus sequences with defined order, orientation, and spacing, and it also
allows mismatches and mispairing below a user-fixed threshold (available at http://bighost.
area.ba.cnr.it/BIG/PatSearch). The possible pattern units for this package are as follows:
string, palindrome, hairpin loop, position weight matrix, repeat. It also uses logical patterns
such as “either/or” and length constraints for specific combination of pattern units.
The TRANSFAC database (available at http://www.gene-regulation.com) on eukaryotic

transcriptional regulation comprises data on transcriptional factors, their target genes and
regulatory binding sites [28], and tools for a matrix-based search of transcription-factors’
binding sites (MATCH). The algorithm of MATCH uses two values to score hints: the
matrix similarity score and the core similarity score, which is close to the MatInspector
algorithm [29].

2.6. Sequence Alignment

There are two main type of sequence alignment: pairwise (comparing two sequences) and
multiple sequence (comparing more than two sequences). Multiple-sequence alignment is
the procedure of comparing sequences by searching for the similarity in the subsets that are

S1 S2 S3 S4 SLS…
m1

m2

m3

mLM
QLM1

Q11

Q21

Q31 Q32 Q33 Q34

Q23 Q24Q22

Q12 Q13 Q14 Q1LS

Q2LS

Q3LS

QLM2 QLM3 QLM4 QLMLS

…
…
…

… … … … … … …
…

TARGET

M

O

T

I

F

Figure 2. Searching for the motif in target sequence. Arrow shows the direction of calculating the score function
Qj =

∑LM
i=1 Qi	 i+j−1, where Qij equals w�mi	 sj � or pi�sj �.
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in the same order in the sequences. Each subset can consist of one or more characters of
the sequence and the gap or gaps between them.
Comparison of two or more sequences has a lot of biological rationales. Among them is the

idea that gene sequences may have derived from common ancestral sequences, and thus the
changes in sequence (mutation, insertion, and deletion) can show us the evolutionary course
of the particular molecule. Another reason for multiple-sequence alignment is indicating
the regions of common origin that may in turn coincide with regions of similar structure or
similar function. Results of alignment can be used as a starting point for solving various tasks
(predicting de novo the secondary structure of proteins and other knowledge-based structure
predictions, resolving phylogenetic issues, and interpreting data from the human genome).
Let us have n sequences S1	 S2	 � � � 	 Sn, and have each sequence be represented as a vector

Si = �si
1	 s

i
2	 � � � 	 s

i
Li
� i = 1	 � � � 	 n

where Ni is the length of the ith sequence, and

si
j ∈ A = a1	 � � � 	 aK� for all i and j

Let us now assume that each sequence can be represented with gaps (insertions/deletion),
so

Si = �gi
0	 s

i
1	 g

i
1	 s

i
2	 g

i
2	 � � � 	 g

i
Li−1	 s

i
Li
	 gi

Li
�

where gi
j , j = 0	 � � � 	 Li are the gaps inserted in the ith sequence at jth place. Alignment

of n sequences can be represented as a matrix R = 	rij	, with the following properties:
rij ∈ A ∪ gap�, so the gap is included in the alphabet; each row matrix represents the ith
sequence with gaps ri = Si; and each column cannot consist only of gaps.
Score function for multiple alignments depends on the weight function [wij = w�ai	 aj�,

scoring matrix] and the so-called gap-penalty function. The latter describes the decrease
in score for gaps of given length and consists of the constant term-describing penalty for
opening the gap �a� and of the penalty for each element in gap �b�. The usual formula for
the penalty for the gap having length (so-called affine gap penalty) is

Q�g� = a+ bg

and one of its extensions

Q�g� =
{

a+ b�g − q� g > q

a g ≤ q

where q means that gap penalty for each element will be added only when gap size is greater
than q.
It is obvious that gap-penalty functions have to be appropriate to the weight function to

obtain a reasonable alignment. If the gap-penalty function is high enough with respect to
the scoring matrix values, final alignments will never have gaps. However, too-small values
of the gap-penalty function will lead to the alignment having gaps everywhere.
Two alignments can be compared using the same score function. The typical matrix of

alignment is represented in Fig. 3. It should be noted that several different alignments can
provide approximately the same alignment score.
A key element in evaluating the quality of a sequence alignment is the score matrix (or

substitution score matrix) wij = w�ai	 aj�, which assigns a score for aligning any possible
pair of sequence elements. The theory of amino acid substitution matrices is described in
Ref. [30] and is applied to DNA sequence comparison in Ref. [31].
Percent accepted mutation matrices (PAM, or Dayhoff amino acid substitution matrices)

list the probability of change from one amino acid to another in homologous proteins dur-
ing evolution. In deriving the PAM matrices, each change in the current amino acid at a
particular site is assumed to be independent of previous mutational events at that site [32],
so amino acid substitutions can be viewed as a Markov model. To calculate the values of
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AnCE - T F E Q Q L E D I F A D I R P L Y Q Q I H G Y V R F R L R K H Y G D A V V S E T G P I P M H L L G 260

ACE2 D M W G R F W T N L Y S L T V P F G Q K P N I D V T D A M V D Q A W D A Q R I F K E A E K F F V S V 318

tACE N M W A Q T W S N I Y D L V V P F P S A P S M D T T E A M L K Q G W T P R R M F K E A D D F F T S L 326

AnCE N M W A Q Q W S E I A D I V S P F P E K P L V D V S A E M E K Q A Y T P L K M F Q M G D D F F T S M 310

ACE2 G L P N M T Q G F W E N S M L T D P G N V Q K A V C H P T A W D L G K G - D F R I L M C T K V T M D 367

tACE G L L P V P P E F W N K S M L E K P T D G R E V V C H A S A W D F Y N G K D F R I K Q C T T V N L E 376

AnCE N L T K L P Q D F W D K S I I E K P T D G R D L V C H A S A W D F Y L I D D V R I K Q C T R V T Q D 360

ACE2 D F L T A H H E M G H I Q Y D M A Y A A Q P F L L R N G A N E G F H E A V G E I M S L S A A T P K H 417

tACE D L V V A H H E M G H I Q Y F M Q Y K D L P V A L R E G A N P G F H E A I G D V L A L S V S T P K H 426

AnCE Q L F T V H H E L G H I Q Y F L Q Y Q H Q P F V Y R T G A N P G F H E A V G D V L S L S V S T P K H 410

ACE2 L K S I G L L S P D F Q E D N E T E I N F L L K Q A L T I V G T L P F T Y M L E K W R W M V F K G E 467

tACE L H S L N L L S - S E G G S D E H D I N F L M K M A L D K I A F I P F S Y L V D Q W R W R V F D G S 475

AnCE L E K I G L L K - D Y V R D D E A R I N Q L F L T A L D K I V F L P F A F T M D K Y R W S L F R G E 459

ACE2 I P K D Q W M K K W W E M K R E I V G V V E P V P H D E T Y C D P A S L F H V S D D Y S F I R Y Y T 517

tACE I T K E N Y N Q E W W S L R L K Y Q G L C P P V P R T Q G D F D P G A K F H I P S S V P Y I R Y F V 525

AnCE V D K A N W N C A F W K L R D E Y S G I E P P V V R S E K D F D A P A K Y H I S A D V E Y L R Y L V 509

ACE2 R T L Y Q F Q F Q E A L C Q A A K H E G - - - - - - P L H K C D I S N S T E A G Q K L L 555

tACE S F I I Q F Q F H E A L C Q A A G H T G - - - - - - P L H K C D I Y Q S K E A G Q R L A 563

AnCE S F I I Q F Q F Y K S A C I K A G Q Y D P D N V E L P L D N C D I Y G S A R A G A A F H 553

Figure 3. Multiple sequence alignment of angiotensin-converting enzyme 2 (ACE2), testis-specific ACE2 (tACE),
and the Drosophila homolog of ACE2 (AnCE) using the program CLUSTALW. The sequence numbering is the
same as in the crystal structures. The N -glycosylation sites are underlined; colored in blue, the putative binding
residues in ACE2 are in boldface letters and boxed along with the corresponding aligned residues in tACE and
AnCE. The identical and similar residues are shown in black and gray backgrounds, respectively. Conserved residues
are in green, and the critical binding residues are in red.

Dayhoff matrices, amino acid substitutions that occur in groups of evolving proteins were
estimated using 1572 changes in 71 groups of protein sequences with at least 85% similarity.
There are several approaches related to PAM. They can be based on exhaustive matching

of the entire protein sequence database [33] or rapid generation of mutation data matrices
from protein sequences [34], as well as accounting for the different patterns of mutation at
low and high sequence divergence [35].
The BLOSSOM substitution matrix [36] is used for scoring protein sequence alignment

and is based ondifferent type of sequence analysis and a much larger data set then the
Dayhoff matrices. A 400 × 400 dipeptide substitution matrix that reports empirical proba-
bilities for the interconversion of all pairs of dipeptides in proteins undergoing divergent
evolution was presented in Ref. [37]. In Ref. [38], a mutation data matrix was calculated for
membrane spanning segments.
Detailed descriptions of the methods and algorithms for alignment of pair of sequences

and multiple sequence alignment can be found in Ref. [39].
In the late 1980s, fast algorithms for comparison DNA and protein sequences were

developed that are capable of searching sequence databases, evaluating similarity scores,
and identifying periodic structures based on local sequence similarity FASTP, FASTA, and
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LFASTA [40, 41]. These algorithms achieve much of their speed and selectivity by using a
look-up table to locate all identities between two sequences.
A new method, FastM, for the development of simple models of transcriptionally reg-

ulatory units was developed in Ref. [42]. It combines a search algorithm for individual
transcriptional factor binding sites (MatInspector, see Ref. [29]) with a distance correla-
tion function. The models are composed from various individual elements (hairpins, direct
repeats, short multiple repeats, and terminal repeats; see Ref. [43] for details). FastM now is
part of the GenomatixSuite, and the whole package (including ElDorado, a portal to explore
various genomes; Gene2Promoter, for retrieval and analysis of promoters; BiblioSphere, for
literature network mining; GEMS Launcher, Genomatix’ genome exploring and modeling
software package; MatInspector, the de facto standard for transcription-factor binding-site
search; and PromoterInspector, highly specific prediction of mammalian promoter regions)
is available at http://www.genomatix.de/cgi-bin/fastm2/fastm.pl.
A basic local alignment search tool (BLAST) for rapid sequence comparison was devel-

oped in 1990 [44]. It directly approximates alignments that optimize a measure of local
similarity, the maximal segment pair (MSP) score. The basic algorithm is simple and robust,
and it was applied in straightforward DNA and protein sequence database searches, motif
searches, gene identification searches, and the analysis of multiple regions of similarity in
long DNA sequences. A new generation of this algorithm for searching databases (gapped
BLAST and PSI-BLAST) is described in Ref. [45].

2.7. Proteomics

Understanding the structures, interactions, and functions of all of a cell’s or organism’s pro-
teins has been given a disciplinary title of its own: proteomics. The ultimate goal of pro-
teomics is to characterize the information flow through protein networks.
The word proteome, coined in 1994 as a linguistic equivalent to the concept of genome,

indicates proteins expressed by a genome. This term was coined by Marc Wilkins and
colleagues and appeared for the first time in 1995 [46]. The term “proteome” is used to
describe the complete set of proteins that is expressed, and modified following expression,
by the entire genome in the lifetime of a cell. It can be used also as a description of proteins
expressed by a cell at any stage. The generation of messenger RNA expression profiles is
referred to as transcriptomics, as they are based around the process of transcription, and
the mRNAs transcribed from a cell’s genome is the transcriptome.
The field of proteomics has rapidly expanded and includes diverse technologies:

• Two-dimensional gel electrophoresis and mass spectrometry-based methods for protein
profiling: These methods are currently the major experimental technologies for large-
scale and high-throughput analysis of proteomes focusing on the proteins’ identification
and on their qualitative and quantitative comparison.

• Protein microarrays: Proteome profiling is a very powerful tool in clinical medicine
for the identification of diagnostic markers. Clinical applications of proteomics can
also provide information on drug targets, the mechanism of drug action, and drug-
mediated toxicity.

• Yeast two-hybrid system [47]: Yeast two-hybrid assays are the main technology for large-
scale interaction network construction. They can detect interactions between two known
proteins or polypeptides. Two strategies (the matrix approach and the library-screening
approach) have been tested to find the most efficient way to explore interactions within
the proteome [48].

• Protein–protein interaction pathways and cell-signaling networks: This functional
proteomics approach involves the generation of large-scale protein–protein interaction
networks.

• High-throughput protein structural studies using mass spectrometry, nuclear magnetic
resonance, and X-ray crystallography: The majority of drug target molecules are pro-
teins, and for a large number of proteins, information on three-dimensional structures
is required for drug discovery. Although high-throughput X-ray and nuclear magnetic
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resonance methods hold much promise for protein three-dimensional structure deter-
mination in the future, at present the only efficient way to determine the structure is to
implement large-scale homology modeling programs to accompany structural proteomics
initiatives.

• High-throughput computational methods for protein three-dimensional structure and
function determination.

The two key steps in classical proteomics are the separation of proteins derived from
cells or tissues and their subsequent identification. One of the best methods of separation is
two-dimensional gel electrophoresis. In this method, spots of a prepared mixture of proteins
extracted from cells or tissues are applied to a polyacrylamide gel. The proteins, which can
number in the tens of thousands, are separated along the gel in one direction according
to two different properties: their molecular charge, by applying an electric field (isoelectric
focusing), and their molecular mass, using SDS–PAGE (polyacrylamide gel) electrophoresis.
A typical gel can reliably separate 2000 protein spots in this way, and the “best” ones can sep-
arate up to 11,000 protein spots. Proteins separated on the gel are stained using Coomassie
blue dye, silver stains, or fluorescent dyes or by radiolabeling, and the proteins are then
quantified using spectroscopic or radiographic techniques. Although two-dimensional gel
electrophoresis gives the highest resolution of all available methods, there are difficulties in
its using hydrophobic proteins, such as the cell-membrane-spanning receptor proteins (the
most attractive drug targets), which usually do not dissolve in solvents used for isoelectric
focusing (as well as proteins with very high relative molecular mass); low-abundance pro-
teins, which cannot be recognized on the background of high-abundance “housekeeping”
proteins (unfortunately, there is no amplification method for proteins, like there is a poly-
merase chain reaction method for genes); and proteins having very high molecular charges,
or very low molecular mass, which will not separate on gels.
After separation, identification of the proteins begins with their digestion into frag-

ments by specific proteases, and then the fragments are analyzed by mass spectroscopy in
a process called peptide mass fingerprinting. In this approach, proteins are identified by
comparing the mass of the peptide fragments with data predicted by genetic or protein
sequence information.
Any experiment that involves a limited number of proteins can avoid the step with the two-

dimensional gel separation by using other methods, such as high-performance liquid chro-
matography, gel filtration, or one-dimensional gel chromatography or microarray technology.
Protein microarray assays allow the identification and quantification of a large number

of proteins from a small amount of a sample. They can be used for the analysis of inter-
actions between proteins with other proteins, peptides, low–molecular weight compounds,
oligosaccharides, or DNA.
The protein microarray is powerful tool for diagnostic and therapeutic purposes as well as

for basic research. Array-based methods to study proteins allow high-throughput determina-
tion of protein functions in parallel [49]. It was demonstrated that a high-density antibody
microarray could be applied for the global analysis of expression profiles of proteins, and
different types of protein and peptide microarrays have been reported to be useful for
immunoassays and for analyzes of enzymatic activity [50–52].
The major advantages of protein array technologies are based on the following features of

the approach [53]: having a highly parallel and small solid-phase assay system, having a highly
sensitive system, being useful for very high throughput approaches, having low consumptions
of reagent samples, and having potentially attractive manufacturing costs.
The core technologies for protein microarrays currently practiced are surface chemistry for

immobilization of proteins or capture agents, capture molecules that are immobilized onto
a solid support and used for capturing target proteins or molecules, and systems to detect
protein–protein interactions based on fluorescence, chemiluminescence, mass spectrometry
(MS), and electrochemical or surface plasmon resonance (SPR). Capture on microarray can
be specific (affibodies, antibodies, aptamers, and antibody sandwich formation) or unspecific
based on electrostatic, van der Waals–hydrophobic, or metal–chelate interactions. Specific
interaction microarrays have been described for receptor–ligand, protein–protein, protein–
DNA, and enzyme–substrate interactions (see Ref. [54] for review).
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Several studies illustrate the application of functional proteomics for the identification of
regulated targets in specific pathways [55, 56].
Proteome profiling of microorganisms can also generates valuable knowledge that can be

used for the development of metabolic and cellular engineering strategies. This approach
includes the following steps [57]:

1. Obtain the proteome profiles of the microorganism under different conditions of
interest.

2. Analyze the proteome profiling results based on biological, biochemical, and biotech-
nological information.

3. Develop a rational strategy for the engineering of the microorganism.
4. Compare and analyze the results (phenotypes) obtained by employing the microorgan-

ism before and after engineering.
5. Repeat the above steps until the results are satisfactory.

Protein microarrays have been used for the screening of molecular markers and pathway
targets in patient-matched human tissue during disease progression. In contrast to protein
arrays, in which immobilized capture molecules are directed against certain target proteins
(e.g., an antibody), reverse-phase protein microarrays immobilize the whole repertoire of
sample proteins that represent the state of individual tissue cell populations undergoing
disease transitions.
Detailed review of the informatic tools for proteome profiling can be found in

Refs. [58–60]. Development of software for two-dimensional gel image analysis began
about 35 years ago [61–63] with further improvement that were made in the late 1980s
[64–68]. There are many commercially available packages now, including DeCyder 2D Anal-
ysis, ImageMaster 2D Elite, http://www1.amershambiosciences.com/; Delta2D, http://www.
decodon.com; GELLAB II+, www.scanalytics.com and http://www.lecb.ncifcrf.gov/gellab/
index.html; GeneData Impressionist system, http://www.genedata.com; ImagepIQ, http://
www.proteomesystems.com; Melanie 3, http://www.genebio.com; ProteinMine, http://www.
scimagix. com; and TotalLab, http://www.nonlinear.com/products/totallab. Some of the two-
dimensional gel image analysis packages can interact with automatic robotic systems.
Another approach used for identification of proteins is mass spectroscopy, and there are

three different methods for identification based on mass-spectrometric data:

1. Peptide mass fingerprint or peptide mass map analysis: comparisons of peptide molec-
ular weights determined by mass spectrometry with the theoretical masses of peptides
produced in silico by digestion of sequences in a target database [69–73]. Database
search tools include Mascot, http://www.matrixscience.com; Mowse, http://www.hgmp.
mrc.ac.uk; PeptideSearch, http://www.narrador.embl-heidelberg.de; and Pepťıdent,
http://www.expasy.ch.

2. Peptide sequence or peptide sequence tag query: peptide tandem mass spectrometry
(MS/MS) data are combined with amino acid sequence or composition data to identify
the protein from a protein or nucleotide sequence database [74, 75]. Database search
tools include TagIdent, www.expasy.ch, and MS-Seq, http://prospector.ucsf.edu.

3. MS/MS ion search analysis: uninterpreted MS/MS data from a series of peptides
in a complete LC-MS/MS run are matched with protein sequences in a protein- or
nucleotide-sequence database to identify proteins without any manual sequence inter-
pretation. The input data is usually a list of fragment ion mass and intensity val-
ues [73, 74]. Database search tools include PepFrag, http://prowl.rockefeller.edu, and
Sequest, http://fields.scripps.edu.

The isotope-coded affinity tag (ICAT) approach and tandem MS were applied [76, 77] to
quantitative protein profiling. Individual tandem MS spectra were searched against a human
sequence database, and a variety of recently developed, publicly available software applica-
tions were used to sort, filter, analyze, and compare the results. In particular, robust statistical
modeling algorithms were used to assign measures of confidence to both peptide sequences
and the proteins from which they were likely derived, which were identified via the database
searches. It was shown that these statistical tools allow the estimation of the accuracy of
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peptide and protein identifications made. Data flow for automated database searching and
statistical data analysis was represented in this work as follows: first, acquired MS/MS spectra
are submitted to SEQUEST [74] for searching protein sequence databases to identify pep-
tides and protein sequence matches for each recorded MS/MS spectrum; second, the search
results are then submitted to PeptideProphet, a statistical data modeling algorithm [78], and
this algorithm generates its own discriminant score for the peptide sequence assigned to each
MS/MS spectrum, based on the weighting of a number of parameters for the peptide, includ-
ing the various SEQUEST scores, the mass differential between the observed and calculated
mass for the sequence in question, and so forth, third, combined SEQUEST/PeptideProphet
output was displayed via the interface INTERACT, a Web-based application that allows the
user to view the data as well as sort or filter it according to a range of user-definable param-
eters [79] (among other things, INTERACT can list all MS/MS scan-file locations with their
assigned peptide sequences according to SEQUEST and their corresponding SEQUEST and
PeptideProphet score values); finally, ProteinProphet [80] takes the INTERACT data file
and derives a list of protein identifications and their corresponding scores from the observed
peptide data.
It is not uncommon to find that mass spectrometric data cannot be correlated with any

sequence in the database searched. This can happen for the following reasons [58]:

1. The sequence is absent in the database searched: the peptides may be derived from
novel proteins or from variants (allelic or strain- or species-derived variants) of known
proteins, or there may be errors in the reported sequence. De novo sequence analysis
of peptides from the MS/MS spectra may be used to determine related proteins using
homology-based database search methods (for instance, CIDentify [81], a homology-
based sequence database search program).

2. The presence of unexpected co- or posttranslational modifications or chemical
modifications (as artifacts of sample handling): FindMod (http://www.expasy.ch/
tools/findmod) can be applied for high-throughput determination of protein posttrans-
lational modification from peptide mass fingerprint data [82].

3. The peptide is produced by an unexpected or nonspecific cleavage.
4. The quality of the spectrum is poor or the spectrum originates from a nonpeptide con-

taminant. Purification and concentration of peptide samples before mass spectrometric
analysis can be applied to improve the quality of the spectrum.

3. COMPUTATIONAL STRUCTURAL BIOLOGY
Technical advances have expanded the applicability of existing methods in structural biology
and provide a basis for the discovery of general structural principles that underlie all cellular
processes [83]. A major goal of computational structural biology is to help reach this goal and
to predict structure and the structural basis of the function of biologically related molecules.
Of all major classes of biomolecules including proteins, DNA, RNA, carbohydrates, and
small molecules with biological activity, protein structures have been mostly studied com-
putationally because of their importance and the variety of structures known. In the rest of
this chapter, we will review the current state of three major areas in the structural biology of
proteins: prediction of three-dimensional structures from sequence including homology mod-
eling (for a recent review, see Ref. [84]) and fold recognition (recent review [85]); docking
of proteins with known structures; and simulation of protein dynamics, with an emphasis on
perhaps the most accurate methodology—homology modeling of protein three-dimensional
structure.
Comparative (homology) modeling remains the only computational biology method at

present that can provide models with a root-mean-square (rms) error lower than 2 Å. Com-
putational methods for protein structure prediction based on related proteins of known
structures were developed more than three decades ago [86]. Later, Greer outlined a basic
protocol that is still followed today [87, 88]. Most homology modeling methods consist of four
sequential steps [89]. The first step is to identify the proteins with known three-dimensional
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structures that are related to the target sequence. The second step is to align them with
the target sequence and to pick those known structures that will be used as templates. Any
corrections in the alignment are made at this stage. The third step is to build the model for
the target sequence given its alignment with the template structures. In the fourth step, the
model is evaluated using a variety of criteria. If necessary, the alignment and model build-
ing are repeated until a satisfactory model is obtained. The main difference between the
different comparative modeling methods is how the three-dimensional model is calculated
from a given alignment (step 3 above). Because of the importance of step 3, sometimes it is
divided into four stages [84]: backbone generation, loop modeling, side-chain modeling, and
model optimization.
The level of sequence identity that is critical for the success of the homology modeling can

be evaluated by sequence alignment programs such as BLAST, FASTA, and CLUSTALW.
The latter program is used for multiple alignment, and the results contain significant amounts
of additional information about the structural context that can be used to improve the
alignment. It is especially useful, for example, to position deletions or insertions in places in
which the sequences are widely divergent.
A widely used method is building a model by rigid-body assembly. The method constructs

the model from a few core regions and from loops and side chains, which are obtained from
dissected related structures. This assembly involves fitting the rigid bodies on the framework,
which is defined as the average of the C� atoms in the conserved regions of the fold. Another
method is based on the approximate positions of conserved atoms from the templates to
calculate the coordinates of other atoms. The third group of methods, modeling by sat-
isfaction of spatial restraints, uses either distance geometry or optimization techniques to
satisfy spatial restraints obtained from the alignment of the target sequence with homolo-
gous templates of known structure. In general, generation of the backbone is not difficult,
especially when two or more template structures are available so complementary regions
that are accurately determined are used.
The most significant problems in homology modeling remain the prediction of loop struc-

tures and side-chain modeling. The two main approaches for loop modeling are based on the
use of already determined structures of loops and true ab initio prediction by using energy
minimization or molecular dynamics techniques. These methods typically work relatively well
for relatively short loops containing not more than six to eight residues. Most successful
approaches for side-chain modeling are based on the use of libraries of common rotamers
extracted from high-resolution X-ray structures. The prediction accuracy is typically much
higher for residues in hydrophobic cores than for surface residues. This is mostly because of
the flexibility of the side chains at the surface that can adopt multiple conformations.
After building the model, it can be optimized by several methods including iterative

approaches. Such approaches are based on the idea of sequential prediction of loops and
side-chains orientation, as well as energy minimization. The success of such an approach
critically depends on the accuracy of the function describing the energy of the whole
molecule. At present, the accuracy is not sufficient for accurate prediction, and typically only
few hundred steps of energy minimization are used to avoid accumulation of small errors
that can lead to structures completely different than the real one. Another straightforward
approach is a molecular dynamics simulation of the model. Again, a major problem is the
lack of sufficient accuracy of the force fields used for simulation; more accurate force fields
are needed.
The best comparative techniques are able to produce models with good stereochemistry

and overall structural accuracy when the modeling alignment is correct. The errors in com-
parative models depend on the level of sequence similarity between template and target
sequences and on the errors in the template structure. They can be divided into five cat-
egories: side-chain errors, distortions and rigid-body changes in regions that are aligned
correctly (e.g., loops, helices), distortions and rigid-body changes in insertions (e.g., loops),
distortions in incorrectly aligned regions (loops and longer segments with low sequence
identity to the templates), and incorrect folding resulting from an incorrect choice of a tem-
plate. The consequence of these errors is that the comparative method can result in models
with a main-chain rms error as low as 1 Å for 90% of the main-chain residues if a sequence



Computational Biology 15

is at least 40% identical to one or more of the templates. In this range of sequence similarity,
the alignment is mostly straightforward to construct, there are not many gaps, and structural
differences between the proteins are usually limited to loops and side chains. When sequence
identity is between 30% and 40%, the structural differences become larger and the gaps in
the alignment are more frequent and longer. As a result, the main-chain rms error rises to
∼1.5 Å for about 80% of residues. The rest of the residues are modeled with large errors
because the methods generally cannot model structural distortions and rigid-body shifts and
cannot recover from misalignments. Insertions longer than about eight residues usually can-
not be modeled accurately at this times whereas shorter loops frequently can be modeled
successfully.
An example of homology modeling with implications for elucidations of mechanisms of

virus entry is described in more detail in the following. Enveloped viruses enter cells by
binding their envelope glycoproteins to cell-surface receptors, followed by conformational
changes leading to membrane fusion and delivery of the genome in the cytoplasm [90]. By
using homology modeling, we have recently analyzed the three-dimensional structure of the
angiotensin-converting enzyme 2 (ACE2) [91] that was recently identified as a functional
receptor for the SARS virus [92], and its binding site on the SARS-CoVS glycoprotein was
localized between amino acid residues 303 and 537 [93]. ACE2 is a homolog of the met-
alloprotease angiotensin-converting enzyme ACE [94, 95] and was found to be an essential
regulator of heart function [96]. ACE exists in two isoforms: somatic ACE, which has two
homologous domains each containing an active catalytic site, and testis-specific ACE (tACE),
which corresponds to the C domain of somatic ACE and has only one active site. ACE2
has a high level of similarity (sequence identities 43% and 35% and similarities 61% and
55%, respectively) to tACE and the Drosophila homolog of ACE (AnCE). Recently, the
crystal structures of tACE [97] and the Drosophila ACE homologue AnCE [98] have been
determined at resolutions of 2.0 and 2.4 Å respectively.
These crystal structures were used as templates to build an accurate (rms deviation [rmsd]

less than 0.5 Å) three-dimensional model of ACE2 by comparative (homology) modeling.
Based on the ACE2 model, an analysis of the receptor-binding domain (RBD) of the SARS-
CoV S glycoprotein, and similarity with other interactions of viral envelope glycoproteins
(Env) with receptors [99], we proposed a possible mechanism of the ACE2 function as a
receptor for the SARS virus. The analysis of the ACE2 model could also help in the design
of experiments to further elucidate the structure and the dual function of ACE2.
The sequences of ACE2, tACE and AnCE, were aligned using the multiple sequence

alignment program CLUSTALW [100]. The comparative modeling procedure COMPOSER
[101, 102] implemented in SYBYL6.9 (Tripos Inc., St. Louis, MO) was used to build a three-
dimensional model of the ACE2 structure. We used the tACE and AnCE structures to find
out topologically equivalent residues based on structural alignment, and the structurally con-
served regions (SCRs) were modeled. The structurally variable regions (loops) were modeled
by using loops either from the corresponding location of the homologous protein or from
the general protein database. The three-dimensional model of ACE2 was then subjected
to energy minimization by using standard Tripos force fields and was finally validated with
the PROCHECK program [103]. The coordinates were deposited to the protein data bank
(PDB) (code: 1RIX).
The sequences of both ACE2 and the S RBD were scanned against the PROSITE

[104] motifs to locate potential glycosylation sites. Six N -glycosylation sites with high
probability of occurrences on ACE2 were predicted by PROSITE. Fully surface-exposed
asparagine (N ) residues were found at five of these sites, which were modeled by attaching
N -acetylglucosamine moieties. Three N -glycosylation sites were found in the S RBD frag-
ment and were modeled similarly. The areas of solvent accessibility (ASAs) were calculated
with probe radius 1.4 Å by using the Lee and Richards’s algorithm [105]. Electrostatistic
potentials were calculated by using the program GRASP [106] with the following parameters:
a protein dielectric constant of 2.0, a solvent dielectric constant of 80, an ion exclusion radius
of 2.0 Å, a probe radius of 1.4 Å, and an ionic strength of 0.14 M. The calculated potentials
were displayed at the solvent-accessible surface. The visualization of solvent accessibility,
superpositioning of molecules, and calculation of surface hydrophobicity were performed by
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using InsightII. The hydrophobicity of the surface residues was calculated according to the
Kyte–Doolittle method [107] with a window size of 5 and hydrophobic and hydrophilic levels
of 0.7 and −2�4, respectively.
To begin to understand the interactions between the SARS-CoV S glycoprotein and its

recently identified receptor ACE2, we attempted to develop an accurate model of the
ACE2 three-dimensional structure. We found two proteins, tACE and AnCE, with available
high-resolution crystal structures and ACE2 sequence identities of 43% and 35% (sequence
similarities are 61% and 55%), respectively; the sequence alignment of ACE2 with tACE
and AnCE2 is shown in Fig. 3. Therefore, we have used homology modeling to build an
accurate three-dimensional model of ACE2, as described in the section on materials and
methods.
The architecture of the ACE2 model is very similar to the crystal structure of tACE

(Fig. 4A). The superposition of the ACE2 model structure with the template structures of
tACE and AnCE (Fig. 4B) shows very small deviation (rmsd less than 0.5 Å). A major
feature of the ACE2 structure (and the template structures) is a deep channel on the top
of the molecule that contains the catalytic site (Fig. 5A). A comprehensive analysis of the
structure and function of the catalytic site was very recently reported after our model was
completed [108]; here we will not discuss the enzymatic function of ACE2 but rather use
the enzymatic site location for reference purposes. The channel is surrounded by ridges
containing loops, helices and a portion of a � sheet. The long loop between N210 and Q221
that is missing in tACE and AnCE (Fig. 3) is on the ACE2 surface (Fig. 4B); note that
the orientation of ACE2 in Fig. 4A is different than in Fig. 4A show this loop. Potential
N -glycosylation sites were identified at six positions, 53	 90	 103	 322	 432, and 546, but only
two of them (53 and 90) were aligned with the tACE structure (Fig. 3). They shared the
pattern NXTX (except 103) and were modeled with a N -acetylglucosamine moiety (Fig. 5B).
The direction of the main chain is illustrated in Fig. 5C.
Interactions of viral attachment proteins with protein receptor molecules are mostly deter-

mined by complementarity in surface charge distribution, hydrophobic interactions, and
geometry; typically, carbohydrates are excluded from the binding sites [99]. In an attempt
to provide a working hypothesis for possible regions involved in the interaction of the S
glycoprotein with its receptor, we analyzed the ACE2 surface potential, solvent accessibility,
hydrophobicity, and carbohydrate distribution. The surface of the deep channel at the top
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Figure 4. Model of the angiotensin-converting enzyme 2 (ACE2) structure. (A) A ribbon representation of the
ACE2 model. The N and C termini are indicated. (B) Superposition of the ACE2 model structure with the crystal
structures of testis-specific ACE (tACE) and the Drosophila homolog of ACE (AnCE) based on the C�-atoms of
ACE2, tACE, and AnCE (ACE2, dark gray; tACE, light gray; and AnCE, black). The long loop inserted between
N210 and Q221 that is unique for ACE2 is indicated.
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Figure 5. Analysis of the angiotensin-converting enzyme 2 model structure. (A) SARS S protein, receptor-binding
domain model (fragment of amino acids 300–500 in S1 subunit). Ribbon diagram illustrating the receptor-binding
domain of SARS S protein model (aa 300–499).

of ACE2 and the surrounding ridges is highly negatively charged (Fig. 5A). These ridges
contain residues D136	E150	N154	D157	D292	D295, and D299, some of which have large
ASA values (e.g., D136	N154, and D157 have values of 109	 108, and 80 Å2, respectively;
Fig. 6). Comparison of these residues with the corresponding residues from ACE that do
not support fusion mediated by the S glycoprotein [92], and mouse ACE2 that binds to S
but with somewhat lower affinity than human ACE2 (M. Farzan, personal communication)
(Fig. 7), support the possibility that some of these residues contribute to specific binding.
The hydrophobicity analysis revealed distinct hydrophobic patches in close proximity to the
negatively charged ridges (Fig. 5D). There are at least three hydrophobic regions, comprising
different residues including Phe, Trp, and Tyr, that could contribute to binding, in addition
to the charged binding surface. All carbohydrate sites are topologically separate from the
electronegative surface at the top of the molecule (Fig. 5B).
The sequence similarity of the S glycoprotein from the SARS virus with S glycoproteins

from other coronoviruses or other proteins whose structures are available in the PDB is
about 20% or lower. The sequence similarity of the attachment glycoprotein (S1) from the
SARS-CoV to other coronanvirus S1 glycoproteins or other proteins with known three-
dimensional structures is even lower. Such low sequence similarity does not allow accurate
homology modeling. Because of the absence of significant sequence similarity, we built a
model by threading (data not shown) a fragment (amino acid residues 300–537) containing
the S RBD that we have recently identified [93]. The electrostatic analysis of the model
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Figure 6. Solvent-accessible surface areas (right column, in Angstroms squared) for angiotensin-converting enzyme
2 amino acid residues that are significantly exposed to solvent at the surface of the molecule. The cutoff for
significant surface exposure here is assumed to be 45% ratio value, defined as the ratio of side-chain surface area
to a “random coil” value per residue in the tripeptide Gly–X–Gly. The middle column represents the amino acid
residue number.

revealed mostly positive charges on the surface and, in particular, an electronegative loop
containing residues K439	R441	R444	H445, and K447. The hydrophobic analysis indicated
several patches of hydrophobic residues around the positively charged loop region. One must
note that although the size of the fragment is relatively small, the S RBD modeling has
limitations in the absence of a template structure or structures with high sequence identity.
Thus, the RBD model could significantly deviate or even be completely different from the
real structure. In this aspect, modeling of the much larger S1 and S2 units is even less reliable.
For example, a recent model [109] of S1 and S2 proposed putative-receptor (thought to be
CD13) binding regions located in S2 instead of S1, where RBDs of coronaviruses should be.
This is why we used our RBD model mostly as an illustration of possible complementary
charged surfaces, hydrophobic patches, and � sheets and complemented it with an analysis
of the secondary structure of the RBD fragment that also revealed the predominance of �

155   167   171   174    300  303   307
Human ACE     ASN-ASN-THR-LSY-ASP-GLU-LYS

 :       ·       ·      ·       |     :       · 
Human ACE2   ASP-GLU-ASN-ASP-ASP-ASP-ASP

  ·       |       ·        |       |      |      :
Mouse ACE2    LYS-GLU-THR-ASP-ASP-ASP-ASN

136   150   154   157   292   295   299

Figure 7. Conservation of amino acid residues in human angiotensin-converting enzyme (ACE), human ACE2, and
mouse ACE2 that could contribute to interactions with the S glycoprotein. Identities are marked by a pipe (�),
highly conservative replacements by a colon (:), and replacements with lower scores by a dot (·). The numbers
denote the amino acid residue positions in the sequence. Note that the similarity of these ACE2 residues with the
corresponding residues of mouse ACE2 is much higher than with the respective human ACE residues.
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sheets (data not shown). In progress are our experiments for the SARS-CoV S glycoprotein
RBD crystallization and determination of its three-dimensional structure.
Typically, virus receptors contain ridges that bind to cavities or to structures contain-

ing loops, cavities, and channels in the proteins mediating entry [99]. The model structure
of ACE2 indicates that some or most of the ridges surrounding the cavity at the top of
the molecule (Fig. 8) could serve as a likely binding region for the S glycoprotein for the
following reasons. First, the top of the molecule is far away of the membrane and is likely
to be easier to reach than membrane proximal regions. Second, protruding structures are
likely to be used for binding by viral proteins; they will also ensure geometric complemen-
tarity with concave surfaces, as the S RBD domain could be based on our illustrative model
(Fig. 8). Third, the negative charges of the ridges complement the positive charges of the
RBD. Fourth, the hydrophobic patches around the charges could contribute to binding.
Finally, the lack of carbohydrates at the top of the molecule could ensure high-affinity bind-
ing. Experiments currently in progress will determine the specific amino acid residues and
their relative contribution to the interaction of ACE2 with the S glycoprotein. The ACE2
model developed here, and this proposition of binding regions, could help in the design and
analysis of the experimental data and of the virus-binding function of ACE2.

4. COMPUTATIONAL CELL BIOLOGY

4.1. Introduction

As noted on the official Web site of the First International Symposium on Computational
Cell Biology [http://caboy.uchc.edu/conference/], “The formulation of hypotheses based on
complex experimental data is often impossible without the construction of computational
models. Computational cell biology is an emerging discipline that responds to the need for
computational methods to analyze and organize the abundance of experimental data on the
structure and function of the cell.”
Historically [110], mathematical biology has had limited success, turning in time into a

somewhat abstract discipline. Several examples of early success in mathematical modeling
in biology was demonstrated in following works: the Lotka–Volterra predator–prey model
in ecology [111, 112], Hodgkin–Huxley’s model of nerve conduction [113], Manfred Eigen’s

Fusion
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S1

S2

RBD

S protein binding site

Figure 8. Schematic representation of the interaction between angiotensin-converting enzyme 2 (ACE2) and the
SARS-CoV S glycoprotein receptor-binding domain (RBD) leading to binding and fusion. The RBD is depicted as
a surface containing a cavity that binds a ridge close to the deep channel containing the catalytic site.
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theory of molecular evolution [114], and the Gierer–Meinhardt theory of biological pattern
formation [115]. Extensions of these models were considered later by many biologists as a
mathematical refinement with limited practical utility (with some exceptions for the mathe-
matical models in neurobiology and cardiology). Theoretical and experimental biology have
grown largely apart, and the reason is that biology can rarely present simple experimental
system for the evaluation of theoretical models. Biological systems are complex and open,
and various factors can change the behavior of the system, so even simple computational
modeling requires continuous interaction between model building and experimental verifica-
tion. The interaction between theoretical models and experimental design can be represented
schematically, as shown in Fig. 9 (modified from more detailed diagrams [110, 116]).
The complexity of biological objects can be defined as a “large number of function-

ally diverse, and frequently multifunctional, sets of elements which interact selectively and
nonlinearly to produce coherent rather then complex behavior” [117]. Biological events
occurring at various levels (such as organism, tissue, cell, and molecular), and the complex-
ity of the system being modeled, lead to the need for integration of the different models.
For instance, for modeling transduction of the activation signal into a cell, one may need
to include gene regulatory network, models of proteins pathways, models of membrane,
diffusion of molecules and ions into cell, and so forth. Some of these models may be avail-
able for investigators, but they are most likely different in format, programming language,
and computing platforms, so one may need to develop the tools for unification of the
models and of communication between them. At present, there are two ongoing projects
for introducing standards in the model communication: System Biology Markup Language
(http://www.cds.caltech.edu/erato/sbml/docs) and CellML (http://www.cellml.org).
The next challenge related to the complex nature of biological systems is the interpre-

tation of the results of modeling, model prediction, and finding how the model should be
changed with respect to new experimental data. For a model consisting of hundreds of equa-
tions and parameters (even for smaller numbers), the problems such as fitting to the set
of experimental data, investigating and optimizing the model behavior, and correcting the
model design with respect to the experimental data are not trivial. One of the possible ways
to solve this problem is to identify the semiautonomous functional units in the model with
known parameters and system behavior. So building a complex model or estimating model
parameters can be accomplished in a stepwise or module-based manner. As an example, the
modeling of activation of MAP kinase through receptor tyrosine kinases and GTP-binding
protein RAS can include the modeling of three modules: RAS activation through signaling
from the epidermal growth factor (EGF) receptor, recruitment of adaptor proteins Shc and
Grb2, and activation of the exchange factor Sos; cascade of proteins kinases from Raf1 to
MAP; and modulation of Raf1 by an inhibitory phosphorilation event by protein kinase A
(PKA). All three modules have been modeled [118, 119] and can be combined in one sys-
tem. Another example of using the approach is represented in [120], where a simple model
of T-lymphocyte proliferation was combined with the model of viral hepatitis B, and then

Theoretical model
Acquisition of the new data

Correction of the model design

Experiment
Verification of the model prediction

Correction of the experimental design

Model predictions

New experimental data

Figure 9. Interaction between theoretical model and experiment. Reprinted with permission from [15], N. Kasabov,
“Evolving Connectionist Systems—Methods and Applications in Bioinformatics, Brain Study and Intelligent
Machines.” Springer, New York, 2002. © 2002, Springer.
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the final, rather simple, model, consisting of only 17 equations and about 70 parameters,
was fitted to the data describing the so-called “generalized picture” of hepatitis B [121]. In
this work, three functional units corresponding to cell proliferation of helper and effector
T-lymphocytes and production and consumption of soluble factors interleukin 1 and inter-
leukin 2 were used, and the model was fitted to the data in three steps. By analogy to how
biologists generally deal with the complexity of biological systems, this modeling approach
is based on a hierarchical view of the biological object, that is composed of functional units
with specific inputs and outputs. These units can communicate with other modules or units
and can themselves be composed of functional units.
Additional problems that arise in computational biology are the optimization of the com-

putational tools, improving the efficiency of existing algorithms, and creating new efficient
packages. Complex computational problems require better algorithm development and pow-
erful computers. It should be noted that it is not entirely a mathematical or computer prob-
lem, and in some cases, reconsideration of the underlying assumptions of the model and
reformulation of these assumptions (that will lead to the changing in model equations) may
provide significant improvement of the algorithm.
Another consistently raising (in the direction from experimental data toward theoretical

model) issue, mentioned in Ref. [122] is the need for cell biologists to produce more quan-
titative results about biological processes. Some of the data are often difficult to obtain, and
they have been insufficiently valued by biomedical researchers.

4.2. Computational Modeling for Cell Biology

There are five main phases of information processing and problem solving in most of the
bioinformatics systems (as in a detailed description of the interaction between theoretical
model and experimental design described above).

1. Data collection: Collecting biological samples and processing them, and primary pro-
cessing of the data (quantification of the experimental results, normalization, statistical
analysis of the data).

2. Analysis and extraction of the model features: Defining which features (parameters,
variables, modules, etc.) are more relevant and which, therefore, should be used
when creating a model for a particular problem (e.g., classification, prediction, deci-
sion making), making an assumptions model, and choosing the tools and algorithms
for modeling.

3. Modeling the problem: Defining inputs, outputs, and type of model (e.g., probabilistic,
rule-based, connectionist), training the model, and statistical verification.

4. Knowledge discovery in silico: Making calculation experiments, fitting model to the
data, and gaining new knowledge through the analysis of the modeling results and the
model itself.

5. Verifying the discovered knowledge in vitro and in vivo: Making biological experiments
in both laboratory and in real life to confirm the discovered knowledge or predicted
model behavior. Planning new experiments, changing experimental design, and collect-
ing a new data set (go to the first phase above).

It is not uncommon in bioinformatics to find that models are characterized by small data
sets (100 or fewer samples); static data sets, in which data do not change in time once the
set was used to create a model; and no need for online adaptation and training on new data.
For these tasks, the traditional statistical and artificial intelligence (AI) techniques are well
suited. The traditional, offline modeling methods assume that data is static and that no new
data are going to be added to the model. Before a model is created, data are analyzed and
relevant features are selected again in an offline mode. The offline mode usually requires
many iterations of data propagation for estimating the model parameters. Such methods
for data analysis and feature extraction use principle component analysis (PCA), correlation
analysis, offline clustering techniques (such as K-means, fuzzy C-means, etc.), self-organizing
maps (SOMs), and many more techniques. Many modeling techniques are applicable for
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these tasks; for example, statistical techniques (regression analysis, support vector machines),
AI techniques (decision trees, hidden Markov models, finite automata), and neural-network
techniques (MLP, LVQ, fuzzy neural networks).
Some of the modeling techniques allow for extracting knowledge (e.g., rules from the

models) that can be used for explanation or knowledge discovery. Such models are the
decision trees and the knowledge-based neural networks (KBNNs) [123].
Some of the tasks for data analysis and modeling in bioinformatics are characterized by

large data sets, which are updated regularly, a need for online learning and adaptation and
online new model creation from input data streams changing with time.
Knowledge adaptation based on a continuous stream of new data.
When creating models of complex processes in molecular biology, the following issues

must be considered: how to model complex interactions between genes and proteins—
between the human genome and the environment; modeling both stability and repetitiveness,
because genes are relatively stable carriers of information; and dealing with uncertainty
(when modeling gene expressions, there are many sources of uncertainty; among them are
alternative splicing [generation of different mRNA isoforms from a single transcript] and
mutation in genes caused by ionizing radiation, chemical contamination, replication errors,
viruses that insert genes into host cells, etc). Mutated genes are expressed differently and
may cause the production of different proteins. For large data sets and for continuously
incoming data streams that require the model and the system to rapidly adapt to new data, it
is more appropriate to use online, knowledge-based techniques and Evolving Connectionist
System (ECOS) in particular, as it will be demonstrated below.

4.3. Microarray Gene Expression Data Analysis and
Disease Profiling

One of the contemporary directions while searching for efficient drugs for many terminal
illnesses, such as cancer or HIV, is the creation of gene profiles of these diseases and the
subsequent finding of targets for treatment through gene-expression regulation. A gene pro-
file is a pattern of expression of a number of genes that is typical for all, or for some, of the
known samples of a particular disease. A disease profile would look like the following.

IF (gene A is highly expressed) AND
· · ·

(gene B is low expressed) AND
(gene C is very highly expressed)

THEN most probably this is cancer of type N

Having such profiles for a particular disease makes it possible to set early diagnostic
tests, so that a sample can be taken from a patient, the data related to the sample can be
processed, and a profile obtained. This profile can be matched against existing gene profiles,
and based on similarity, it can be predicted with certain probability whether the patient is in
an early phase of a disease or whether he or she is at risk of developing the disease in the
future with certain probability.
A methodology that consists of training an evolving system and extracting rules, which

are presented as disease profiles, is illustrated schematically in Fig. 10. Each profile is a
rule extracted from a trained ECOS, which on the figure is shown using colors: The higher
the level of a gene expression, the brighter the color. Five profiles are visualized in Fig. 10.
The first three represent a group of samples of class 1 (disease), the second two represent
class 2 (normal cases). Each column in the condition part of the rules (profiles) represents
the expression of one gene out of the 100 relevant genes used in this example.

4.3.1. Gene-Expression Data: A Biological Perspective
Microarray equipment is used widely at present to evaluate the level of gene expression
[124]. Each point (pixel, cell) in a microarray represents the level of expression of a single
gene. Five principal steps in the microarray technology are shown in Fig. 11. They are tis-
sue collection, RNA extraction, microarray gene-expression calculation, scanning and image
processing, and data analysis.
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Figure 10. The pathway from DNA to disease profiling: DNA is used to obtain RNA microarray gene expression
data; this data is used to train a model (a knowledge-based neural network in this case); profiles (rules) are extracted
from the trained model—each rule, presented as one row, represents a gene expression pattern (the “IF” part of the
rule) and the class (cancer or normal) associated with this pattern (the “THEN” part of the rule). Reprinted with
permission from [15], N. Kasabov, “Evolving Connectionist Systems—Methods and Applications in Bioinformatics,
Brain Study and Intelligent Machines.” Springer, New York, 2002. © 2002, Springer.

The recent advent of cDNA microarray and genechip technologies means that it is now
possible to simultaneously interrogate thousands of genes. The potential applications of this
technology are numerous and include identifying markers for classification, diagnosis, dis-
ease outcome prediction, therapeutic responsiveness, and target identification. Microarray
analysis might not identify unique markers (e.g., a single gene) of clinical utility for a dis-
ease because of the heterogeneity of the disease, but a prediction of the biological state of
disease is likely to be more sensitive when identifying clusters of gene expression (profiles)
[125].
For example, gene-expression clustering has been used to distinguish normal colon samples

from tumors from within a 6500-gene set, although clustering according to clinical parameters
was not undertaken [126]. Although distinction between normal and tumor tissue can be
easily made using microscopy, this analysis represented one of the early attempts to classify
biological samples through gene-expression clustering. The above data set is used in this
section to extract profiles of colon cancer and normal tissue, using an EFuNN [127]. Another
example of profiling is determining the distinction between two subtypes of leukemia; namely,
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) [128].
There are several traditional approaches to analyzing gene regulatory networks: logical

or binary, chemical kinetic, stochastic kinetic, and so forth. A detailed discussion of these
methods can be found in Refs. [118, 129–135].
Neural networks have already been used to create classification systems based on gene

expression data. In Ref. [136], multilayer perceptron neural networks were used to achieve
a classification of 93% of Ewings sarcomas, 96% of rhabdomyosarcomas, and 100% of
neuroblastomas. From within a set of 6567 genes, 96 genes were used as variables in the
classification system. Whether these results would be different using different classification
methods needs further exploration.

Tissue samples RNA Microarray Gene expression matrix Data analysis
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Figure 11. The pathway of the microarray technology: from DNA data to data analysis results.
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A methodology for profiling of gene expression data from microarrays is described in
Ref. [15]. It consists of the following phases:

1. Microarray data preprocessing: This phase aims at eliminating the low expressed genes,
or genes that are not expressed sufficiently across the classes (e.g., controlled vs. tumor
samples, or metastatic vs. nonmetastatic tumors, etc). Log transformation of the data
can be applied to reduce the range of gene expression data. An example of how this
transformation “squeezes” the gene expression values plotted in the two-dimensional
principal components is given in Fig. 12. There are only two samples used (two cell
lines) and only 150 genes, out of the 4000 on the microarray, that distinguish these
samples.

2. Selecting a set of significant differentially expressed genes across the classes: Usually,
the t-test is applied at this stage, with an appropriate threshold [137].

3. Finding subsets of both underexpressed and overexpressed genes from the selected
ones in the previous step: Statistical analysis of these subsets is performed.

4. Clustering of the gene sets from step 3 that would reveal preliminary profiles of jointly
overexpressed or underexpressed genes across the classes. An example of the hierarchi-
cal clustering of 12 microarray vectors (samples), each containing the expression of 50
genes after steps 1 to 3 were applied on the initial 4000-gene-expression data from the
microarrays, is given in Fig. 13 [(a) samples in two-dimensional Sammon’s projection
space of the 50-dimensional gene expression space; (b) the similarity between the sam-
ples (columns), based on the 50 selected genes, and the similarity between the genes
(rows) based on their expression in the 12 samples].

5. Building a classification model and extracting rules that define the profiles for each
class: The rules would represent the fine grades of the common expression level of
groups of genes. Through using thresholds, smaller or larger groups of genes can be
selected from the profile.

6. Further training of the model on new data and updating the profiles: With the arrival of
new labeled data (samples), the model needs to be updated (e.g., trained on additional
data) and possibly have modified rules (profiles) extracted.

Two data sets are used here to illustrate the above methodology, which explores evolving
systems for microarray data analysis.

4.3.2. Case Study: Gene Profiling of Two Classes of Leukemia
A data set of 72 classification examples for leukemia is used that consists of two classes and a
large input space—the expression values of 6817 genes monitored by Affymetrix arrays [128].
The two types of leukemia are AML and ALL. The latter type can be subdivided further into
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Figure 12. An illustration of the importance of the preprocessing phase in microarray gene expression data analysis
on two channel expression measurements taken from the same tissue. Each spot is the expression of a gene. It can
be seen from the figures on the left and on the right, respectively, that using log transformation of the values makes
the values from the two channels more similar to each other (closer to the desirable diagonal perfect match line).



Computational Biology 25

(a)
X3A2

X3A1

X3A3 X3B3

X3B1

X3B2

X6B3 X6B2

X6B1
X6A1 X6A2

X6A3

–1.5 –0.5

–0.5

0.5

0.5

–1.5

–2
–1

–1

1.5

1

0

0 1.51

1. Sammon's Component

2.
 S

am
m

on
's

 C
om

po
ne

nt

(b)

Figure 13. (a) Sammon’s projection of 50 gene-expression variables of 12 gene-expression vectors (samples, taken
from 12 tissue samples). (b) Hierarchical clustering of the data. The rows are labeled by the gene names, and
the columns represent different samples. The lines link similar items (similarity is measured as correlation) in a
hierarchical fashion.

T-cell and B-cell lineage classes. In Ref. [128], the data set was split into 38 cases (27 ALL
and 11 AML) for training and 34 cases (20 ALL and 14 AML) for validation of a classifier
system. The test set shows a higher heterogeneity with regard to tissue and age of patients,
making any classification more difficult. So, the tasks are to, find a set of genes distinguishing
ALL and AML, construct a classifier based on these data, and find a gene profile of each of
the classes.
After having applied points 1 and 2, 100 genes were selected. A preliminary analysis

on the separability of the two classes can be done through plotting the 72 samples in the
two-dimensional PCA space. PCA consists of a linear transformation from the original set
of variables (100 genes) to a new (smaller, two-dimensional) set of orthogonal variables
(principal components) so that the variance of the data is maximal and ordered according
to the principal components (see Fig. 14a).
The extracted rules for each class make up a profile of this class. One way of visually

representing of these profiles is illustrated in Fig. 14b, where rules were extracted from a
trained EFuNN with 100 genes.
To choose the model for gene-profiling and classification tasks, the gene-profiling task

requires that the model meets the following requirements: it can be continuously trained on

2.
P
rin
ci
pa
l c
om

po
ne
nt

(a)

8 6 4 2 0 2 4 6
6

4

2

0

2

4

6

1. Principal component

AML

ALL

T Cell ALL

B Cell ALL

(b)
RULE EXTRACTION Class I Class II

Rule 1
Rule 2

7
1
1
10
16
2

2

2

21
3
6

3
1
1
1

1

1

1
1
1

1

Rule 3
Rule 4
Rule 5
Rule 6
Rule 7
Rule 8
Rule 9
Rule 10
Rule 11
Rule 12
Rule 13
Rule 14
Rule 15
Rule 16
Rule 17
Rule 18
Rule 19
Rule 20
Rule 21
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new data, the knowledge-based model is extracted (knowledge in the form of profiles), and
the model gives an evaluation for the validity of the profiles.

4.4. Clustering the Time-Course Gene-Expression Data

The expression of genes in cell changes with time. Measuring the expression rate of each
gene over time gives the gene a temporal profile of its expression level. Genes can be grouped
together according to their similarity of temporal expression profiles.
This is illustrated here using case study data. To demonstrate the method, we used yeast

gene-expression data that are available in public databases. We analyzed the gene expres-
sion during the mitotic cell cycle of different synchronized cultures as reported by [138]
and by [139]. The data sets consisted of expression profiles for over 6100 open reading
frames (ORFs).
In this study we did not reduce the original data set by applying a filter in form of a

minimum variance. This leads to a higher number of clusters of weakly regulated genes,
however, it diminished the possibility of missing co-regulated genes during the clustering.
To find upstream regulatory sequences we used Hughes’ compiled set of upstream regions

for the ORFs in yeast (Church lab, http://atlas.med.harvard.edu/).
One of the reasons for cluster analysis of time-course gene-expression data is to infer

the function of novel genes by grouping them with genes of well-known functionality. This
is based on the observation that genes that show similar activity patterns over time (coex-
pressed genes) are often functionally related and controlled by the same mechanisms of
regulation (coregulated genes). The gene clusters generated by cluster analysis often relate
to certain functions (e.g., DNA replication or protein synthesis). If a novel gene of unknown
function falls into such a cluster, it is likely that this gene serves the same function as the
other members of this cluster. This “guilt-by-association” method makes it possible to assign
functions to a large number of novel genes by finding groups of coexpressed genes across a
microarray experiment [140].
Different clustering algorithms have been applied to the analysis of time-course gene-

expression data; k-means, SOM, and hierarchical clustering, to name just a few [140]. They
all assign genes to clusters based on the similarity of their activity patterns. Genes with
similar activity patterns should be grouped together, whereas genes with different activation
patterns should be placed in distinct clusters. The cluster methods used so far have been
restricted to a one-to-one mapping: one gene belongs to exactly one cluster. Although this
principle seems reasonable in many fields of cluster analysis, it might be too limited for
the study of microarray time-course gene-expression data. Genes can participate in different
genetic networks and are frequently coordinated by a variety of regulatory mechanisms. For
the analysis of microarray data, we may therefore expect that single genes can belong to
several clusters. Several researchers have noted that genes were frequently highly correlated
with multiple classes and that the definition of clear borders between gene-expression clus-
ters often seemed arbitrary [141]. This is a motivation to use fuzzy clustering to assign single
objects to several clusters.
A second reason for applying fuzzy clustering is the large noise component in microarray

data resulting from biological and experimental factors. The activity of genes can show
large variations under minor changes of the experimental conditions. Numerous steps in the
experimental procedure contribute to additional noise and bias. A usual procedure to reduce
the noise in microarray data is setting a threshold for a minimum variance of the abundance
of a gene. Genes below this threshold are excluded from further analysis. However, the exact
value of the threshold remains arbitrary because of the lack of an established error model
and the use of filtering as preprocessing.
Because we usually have little information about the data structure in advance, a crucial

step in the cluster analysis is selection of the number of clusters. Finding the “correct” num-
ber of clusters addresses the issue of cluster validity. This has turned out to be a rather
difficult problem, as it depends on the definition of a cluster. Without prior information, a
common method is the comparison of partitions resulting from different numbers of clusters.
For assessing the validity of the partitions, several cluster validity functionals have been intro-
duced [142]. These functionals should reach an optimum if the correct number of clusters
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is chosen. When using evolving clustering techniques, the number of clusters does not need
to be defined a priori.
In Ref. [15], an ESOM is evolved from the yeast gene temporal profiles used as input

vectors. The number of clusters did not need to be specified in advance (Fig. 15).
It can be seen from Fig. 15 that clusters 72 and 70 are represented on the ESOM as

neighboring nodes. The ESOM on the figure is plotted as a two-dimensional PCA projection.
Cluster 72 has 43 members (genes that have similar temporal profiles), cluster 70 has 61
members, and cluster 5 has only three genes as cluster members. New cluster vectors can be
created in an online mode if the distance between existing clusters and the new data vectors
are above a chosen threshold.

5. COMPUTATIONAL SYSTEMS BIOLOGY

5.1. Introduction

The aim of computational systems biology is to understand complex biological objects in
their entirety (i.e., at system level). It involves the integration of different approaches and
tools: computer modeling, large-scale data analysis, and biological experimentation. One of
the major challenges of the systems biology is the identification of the logic and dynamics
of gene-regulatory and biochemical networks.
In Ref. [143], general systems theory was applied to biology, psychology, economics, and

social science. In the view of this work, old-fashioned science “tried to explain observable
phenomena by reducing them to an interplay of elementary units investigatable inde-
pendently of each other.” However, contemporary science empowers the importance of
“wholeness,” which can be defined as “problems of organization, phenomena not resolv-
able into local events, dynamic interactions manifest in the difference of behavior of parts
when isolated or in higher configuration, etc.; in short, ‘systems’ of various orders not under-
standable by investigation of their respective parts in isolation.” This remains an effective
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definition of systems biology as practiced today, with the integration and application of math-
ematics, engineering, physics, and computer science to understanding a range of complex
biological regulatory systems.
Computational cell biology is the most immediate beneficiary of the flood of the data that

has emerged from the genomics and proteomics that are the main sources of enormously
large data sets providing information about genes and proteins interaction. The main goal
of systems biology is to integrate all these data in the whole, providing explanation and
prediction of behavior of the system under study. The most feasible application of systems
biology is to create a detailed model of cell regulation to provide system-level insights into
mechanism-based drug discoveries [144–146]. The main subjects of computational systems
biology are the following [147]: the structure of the systems, such as genes, metabolism, and
signal transduction networks and physical structures; the dynamics of such systems; methods
to control the systems; and methods to design and modify the systems for desired properties.

5.2. System-Level Understanding

System–level understanding is a recurrent theme in biology and has a long history [148–150].
The term “system–level understanding” was described in Ref. [147] as the shift of focus in
understanding a system’s structure and dynamics as a whole, rather than as the particular
objects and their interactions. The property of a whole biological system, like a cell, cannot
be understood by drawing a diagram of interconnection of the genes and proteins—this
can give us only a static picture of the dynamics. System-level understanding of a biological
system, however, can be derived from insight into four key properties [117]:

1. System structures: These include the gene regulatory network and biochemical path-
ways. They can also include the mechanisms of modulation for the physical properties
of intracellular and multicellular structures by interaction.

2. System dynamics: System behavior over time under various conditions can be under-
stood by identifying essential mechanisms underlying specific behaviors and through
various approaches depending on the systems nature: metabolic analysis (finding a basis
of elementary flux modes that describe the dominant reaction pathways within the net-
work), sensitivity analysis (the study of how the variation in the output of a model
can be apportioned, qualitatively or quantitatively, to different sources of variation),
dynamic analysis methods such as phase portrait (geometry of the trajectories of the
system in state space), and bifurcation analysis (bifurcation analysis traces time-varying
changes in the state of the system in a multidimensional space, where each dimen-
sion represents a particular system parameter—concentration of the biochemical factor
involved, rate of reactions/interactions, etc). As parameters vary, changes may occur in
the qualitative structure of the solutions for certain parameter values. These changes
are called bifurcations, and the parameter values are called bifurcation values.

3. The control method: Mechanisms that systematically control the state of the cell can be
modulated to change system behavior and optimize potential therapeutic effect targets
of the treatment.

4. The design method: Strategies to modify and construct biological systems having
desired properties can be devised based on definite design principles and simulations,
instead of blind trial-and-error.

As mentioned above, in reality, analysis of system dynamics and understanding the system
structure are overlapping processes. In some cases, analysis of the system dynamics can
give useful predictions in system structure (new interactions, additional members of the
system). Different methods can be used to study the dynamical properties of the system:
analysis of steady states allows us to find the systems states when there are no dynamical
changes in system components; stability and sensitivity analyses provide insights into how
systems behavior changes when stimuli and rate constants are modified to reflect dynamic
behavior; bifurcation analysis, in which a dynamic simulator is coupled with analysis tools,
can provide a detailed illustration of dynamic behavior [151, 152]; and flux balance analysis
[153] can be used to predict the different metabolic patterns, as was done, for instance,
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in [154] for predicting the switching in of the metabolic pathways in Escherichia coli under
different nutritional conditions, based on knowledge of only the metabolic network structure.
The choice of the analytical methods depends on the availability of the data that can be
incorporated into the model, and on the nature of the model.

5.3. Properties of the Complex System

Robustness is a central issue in all complex systems, and it is essential for understanding the
biological object functioning at the system level. Robust behavior in biochemical networks
was reported a long time ago in Refs. [155, 156], as well as in more recent papers [157–160].
Robustness can be defined as the preservation of particular characteristics despite

uncertainty in components or the environment [161]. Robust systems exhibit the following
phenomenological properties [117]: adaptation, which denotes the ability to cope with envi-
ronmental changes; parameter insensitivity, which indicates a system’s relative insensitivity
(to a certain extent) to specific kinetic parameters; and graceful degradation, which reflects
the characteristic slow degradation of a system’s functions after damage, rather than catas-
trophic failure.
These properties correspond to the following properties attained to robust systems in

engineering: a form of system control such as negative feedback and feed-forward con-
trol; redundancy, whereby multiple components with equivalent functions are introduced for
backup; and structural stability, where intrinsic mechanisms are built to promote stability
and modularity, and where subsystems are physically or functionally insulated so that failure
in one module does not spread to other parts and lead to system-wide catastrophe.
Conducting system-level analysis requires a comprehensive set of experimental data. Com-

prehensiveness in measurements requires consideration of three aspects [117]: first, factor
comprehensiveness, which reflects the number of variables that can be measured at once;
second, time-line comprehensiveness, which represents the time frame within which mea-
surements are made; and third, item comprehensiveness, which refers to the simultaneous
measurement of multiple items (instance, concentrations, localization, etc.)
Some systems may have a property of “spiraling complexity,” which means that each

module in the system that provides some advantage can lead also to the fragility of the
system. To overcome a new threat, it is necessary to build a new module/subsystem that can
also lead to the new failure/fragility. This evolution leads to an excess of complexity for the
system, which in its turn leads to the robustness of the system.
The main feature of the concepts in evolutionary biology, the converged evolution, is

that it leads to nearly optimal systems with similar gross characteristics, so simple argu-
ments based on optimal design can explain functional relations between variables across
many scales [162, 163]. Three other key elements (discovered with the use of computational
modeling and experimentation) of the organizational principles used by cells are noted in
Refs. [116, 132, 164].

1. Ultrasensivity: A response that is more sensitive to ligand concentration as compared
to standard responses defined by the Michaelis–Menten equations [165–167];

2. Multistability: An existence of two or more stable states for the regulating network
[168, 169];

3. Rhythmic behavior, functioning as a systemic oscillator: In Ref. [170], the gene regu-
latory network with this property was described; three transcriptional repressors were
used to build an oscillating network in E. coli.

More general principles that seem to be necessary for the operation of a living system (and
peculiar to the complex biological systems) were presented in Ref. [171]:

• Program: plan describing ingredients and interactions between them as living system
persist through time.

• Improvisation: the ability to change the program with respect to changes in environ-
ment.

• Compartmentalization: division of the whole organisms into smaller compartments to
centralize and specialize certain functions.
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• Energy: living organism is an open system metabolizing energy.
• Regeneration: resynthesis of the constituents of the system.
• Adaptability: fast response that allows survival in quickly changing environments.
• Seclusion: the ability to allow thousands of reactions to occur with high efficiency in
the tiny volume of living cells.

5.4. Representation of Gene-Regulatory and Biochemical Networks

Theoretically, each system can be described as a set of modules and protocols. Modules
are components or subsystems of larger system that may have the following features [161]:
possess identifiable interfaces to other modules, can be modified and evolved somewhat inde-
pendently, facilitate simplified or abstract modeling, maintain some identity when isolated
or rearranged, derive additional identity from the rest of the system.
The protocol is the set of rules describing and managing the relationship between modules

and subsystems and processes in the system. It allow interfaces between modules and permit
system functions. The set of protocols for a particular system can include such relation-
ships between modules and components as activation, inhibition, feedback and feed-forward
controls, and so forth.
Developing software for building networks and simulating experiments with the use of stan-

dardized technology and common infrastructure is important for systems biology. To solve
the problem of software interoperability, two related packages were developed [172]: ERATO
Systems Biology Workbench (SBW; a modular, broker-based message-passing framework for
simplified interconnection between applications), and the Systems Biology Markup Language
(SBML; open, extensible markup language (XML) based format for representing biochemical
reaction networks). Initially, the SBWs focus was to provide interoperability for the follow-
ing existing simulation tools: BioSpice [173], DBSolve [174, 175], e-Cell [176, 177], Gepasi
[178, 179], Jarnac [180, 181], StochSim [182, 183], and Virtual Cell [184, 185].
SMBL is an XML-based language. XML [186] and originally it was designed to meet the

challenges of large-scale electronic publishing (http://www.w3.org/XML/) and it is a dialect
of the Standard Generalized Markup Language. The two draft versions of the SMBL were
developed and released by the Caltech ERATO team in 2000, and the base-level definition
of SBML was delivered in March 2001. Model definition in SMBL consists of the following
components [187]:

• Unit definition: A name for a unit used in the expression of quantities in a model. Units
may be supplied in a number of contexts in an SBML model, and it is convenient to
have a facility both for setting default units and for allowing combinations of units to
be given abbreviated names.

• Compartment: A container of finite volume for substances, in which reactions take
place. Compartments do not necessarily have to correspond to actual structures inside
or outside of a cell.

• Specie: A substance or entity that takes part in a reaction. Some example species are
ions such as Ca2+ and molecules such as glucose or adenosine triphosphate. The primary
qualities associated with specie are its initial amount and the compartment in which it
is located.

• Parameter: A quantity that has a symbolic name; this name can be used in formulas in
place of the value. Parameters can be global to a model or local to a single reaction.

• Reaction: A statement describing some transformation, transport or binding process
that can change the amount of one or more species. For example, a reaction may
describe how certain entities (reactants) are transformed into certain other entities
(products). Reactions have associated rate laws describing how quickly they take place.
Reactions are defined using lists of reactant species and products, their stoichiometric
coefficients, and kinetic rate laws.

• Rule: A mathematical expression that is added to the differential equations constructed
from the set of reactions and that can be used to set parameter values, establish con-
straints between quantities, and so forth.
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Models of different complexity can be written in SMBL and then read by software
packages and translated to an internal format. After that, one can model the dynamics, study
the model behavior, and represent the results in plots.
CellML language is close to SMBL and is an open and XML-based standard [188]. CellML

is being developed by the Bioengineering Institute, University of Auckland (http://www.cellml.
org). It was designed for storing and exchanging biological simulation models. Two other
projects are closely affiliated to CellML: AnatML, for exchanging information at the organ
level—it can be used to store geometric information and documentation that was generated
during a skeleton digitization project; and FieldML, to provide a description of spatially and
temporally varying field information using finite elements—it is appropriate for storing geom-
etry information inside AnatML, for spatial distribution of parameters inside compartments
in CellML, or for spatial distribution of cellular model parameters across an entire organ.
Together, these XML-based technologies provide a complete vocabulary for describing

“virtual” biological systems from the cellular to the organism level.
Various attempts were made to standardize the graphical representation of the biochem-

ical and gene networks [189–193]. In Ref. [193], the following requirements for graphical
notation system were formulated:

• Expressiveness: The ability to describe every possible relationship between objects.
• Semantically unambiguous: Different semantics should be assigned to different symbols.
• Visually unambiguous: Symbol should be clearly identified and not be mistaken for
other symbols.

• Extension capability: The notation system should be easily extended.
• Mathematical translation: Availability to be directly applied for numerical analysis.
• Software support: Support of notations by software for drawing, viewing, editing, and
translation into mathematical formalism.

To support the graphical notation system proposed in this work, a new process diagram
editor (Cell Designer) for gene-regulatory and biochemical network was developed [194].
A research program aimed at creating a framework, experimental infrastructure, and com-

putational environment for understanding, experimenting with, manipulating, and modify-
ing a diverse set of fundamental biological processes at multiple scales and spatiotemporal
modes is described in Ref. [195]. From a biological viewpoint, the basic issues of these
projects are understanding common and shared structural motifs among biological processes,
modeling biological noise resulting from interactions among a small number of key molecules
or loss of synchrony, explaining the robustness of these systems in spite of such noise, and
cataloging multistatic behavior and adaptation exhibited by many biological processes.

5.5. Artificial Life

5.5.1. E-Cell
Several other projects that aimed at computer modeling of the cell should be noted. The first
one is the E-Cell Project—an international research project aiming to model and reconstruct
biological phenomena in silico and developing necessary theoretical supports, technologies,
and software platforms to allow precise whole-cell simulation (www.e-cell.org). This project
started in 1996 and led first to the design and development of the first working version of the
E-Cell simulation environment in 1996. Then, the self-sustaining cell model was constructed
by abstracting the gene set of Mycoplasma genitalium—the smallest known genome whose
complete 580 kb genome sequence was determined in 1995. Next, an attempt was made to
model real cells and to develop a more sophisticated simulation environment for biological
simulations, and new modeling projects for modeling a human erythrocyte, mitochondrion,
E. coli chemotaxis, and gene expression/replication were run. A list of publications and a
Windows version of the software (E-Cell, version 2) can be found in Web site listed earlier.

5.5.2. Virtual Cell
Virtual Cell (National Resource for Cell Analysis and Modeling, http://www.nrcam.
uchc.edu/index.html) is another project that is aimed at providing a remote-user modeling
and simulation environment using Java’s Remote Method Invocation (RMI). The Virtual
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Cell provides a formal framework for modeling biochemical, electrophysiological, and
transport phenomena and considers localization in cell of the molecules that take part in
these reactions [196]. This localization can take the form of a three-dimensional arbitrarily
shaped cell; molecular species might be heterogeneously distributed in the cell. The geome-
try of the cell, including the locations and shapes of subcellular organelles, can be imported
directly from microscope images. Such a model considers the diffusion of the molecules
within the geometry. Users can create biological models of various types and run simulations
on a remote server. A general-purpose solver is used to translate the initial biological descrip-
tion into a set of concise mathematical problems. The generated results can be reviewed in
the software or exported in a variety of popular formats.

5.5.3. GEPASI
GEPASI (http://www.gepasi.org) is a software package intended for modeling biochemical
systems [197, 198]. With the help of this package, one can simulate the kinetics of systems
of biochemical reactions as well as fit models to data, optimize functions of the model,
and perform metabolic control analysis and linear stability analysis. GEPASI simplifies the
task of model building with its user-friendly interface and helps to translate the language
of chemistry (reactions) to that of mathematics (matrices and differential equations). This
package uses a set of sophisticated numerical algorithms that ensure that the results obtained
are fast and accurate [199]. GEPASI is intended primarily for research purpose, but it also
can be used for education.

5.5.4. In Silico Cell
In Silico Cell architecture supports the hierarchical modeling of biological system, and the
creation of more complex models from simpler ones. In Silico Cell allows researchers to
interface with the technology in a fashion that is most intuitive to their particular scientific
background. This process is enabled by the use of CellML, an XML-based markup language
for describing biological processes at the cellular and subcellular levels.

5.6. Computational System Biology: Modeling Issues

Tomita stated in his paper [176] that, “the cell is never conquered until its total behavior is
understood, and the total behavior of the cell is never understood until it is modeled and
simulated.”
Modeling living cells in silico (in a computer) has many implications, one of which is testing

new drugs through simulation rather than on patients. According to Ref. [200], human trials
fail for 70–75% of the drugs that enter them.
Computer modeling of the processes in living cells is an extremely difficult task. There are

several reasons for that, including that the processes in a cell are dynamic and depend on
many variables, some of which are related to a changing environment; and that the processes
of DNA transcription and protein translation are not fully understood.
A starting point for dynamic modeling of a cell would be dynamic modeling of a single

gene-regulation process. In Ref. [201] the following methods for single-gene-regulation mod-
eling are discussed, taking into account different aspects of the processes (chemical reactions,
physical chemistry, kinetic changes of states, and thermodynamics): Boolean models, based
on Boolean logic (true/false logic); differential equation models; stochastic models; hybrid
Boolean/differential equation models; hybrid differential equations/stochastic models; neural
network models; and hybrid connectionist-statistical models.
Some of these methods are briefly described below.

5.6.1. Boolean Models
Consider a set of N objects at time tk xk

1 	 x
k
2 	 � � � 	 x

k
N �, and each object can be in only two

different states: on/off, 1/0, False/True, and so forth. For simplicity, let us assume

xk
i ∈ 0	 1� i = 1	 � � � 	N
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The state of the system at a given moment of time can be described as the states of all
objects in this set. The state of a given object at the next time step tk+1 can be determined
by a Boolean logic function (returning only two values, 0 or 1) whose input is the current
state of the system.

xk+1
i

= Bi�x
k
1 	 x

k
2 	 � � � 	 x

k
N �

Boolean function B = B1	 B2	 � � � 	 BN� can be represented as a truth table that consists
of all possible system states (2N ) and corresponding states calculated using Boolean func-
tion. Because this function represents relations between all systems’ states, it can be easily
represented as diagram.
As an example, let us consider a system of two genes, A and B, which can be expressed

(1) or not expressed (0), and a particular regulatory network that can be described as the
following truth table.

All Possible
System States Next State

00 01
01 10
10 11
11 11

The graphical representation of the network is in Fig. 16.

One can see that state 11 in this diagram is stable (i.e., it leads to no change in system
states). The Boolean function that corresponds to the truth table and diagram is

Ak+1 = Ak�Bk

Bk+1 = Ak�¬Bk

where: � is logical OR and ¬ is logical NOT.

5.6.2. Kinetic Logic Models
This type of model is the extension of the Boolean one: each gene has finite number L of
discrete values of states

xk
i ∈ X1	X2	 � � � 	XL� i = 1	 � � � 	N

So, for each gene, Boolean function should return one of the L possible values. In addition,
genes may have different rates of changing their states. This type of relations is described
by the more sophisticated function.
For the example shown above, let us assume that genes A and B can be not expressed,

0; expressed at low level, 1; or expressed, 2. Therefore, the total number of possible system
states is nine, and one of the possible representations of the system is shown in Fig. 17.
For some models of this type, objects may have a different number of discrete values

of states (L = Li); moreover, there may be more than one possible next state for the

00

10 11

01

Figure 16. Diagram representation of the Boolean network for the set of two genes.
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00 01 02

10 11 12

20 21 22

Figure 17. Diagram representation of the kinetic logic model for the set of two genes and three states for gene
expression. System has two stable states (“12” and “22”).

object in the system, and objects may change their states asynchronously. All these features
make kinetic logic models more complex but also more tied to the biological system being
modeled.

5.6.3. Ordinary Differential Equation Models
In their turn, differential equation models are the extension of the kinetic logic model. They
are used usually to deal with continuous values characterizing the system state. Time is also
continuous for these models, and changing of object states with time can be written as

dxi

dt
= Fi�t	 x� i = 1	 � � � 	N

where x = x�t� = )x1�t�	 x2�t�	 � � � 	 xN �t�*. In general, the right-hand side of the ordinary
differential equation of the Mth order can depend on derivatives of the different orders of
all objects’ states

F

(
t	 x	

dx

dt
	
d2x

dt2
	 � � � 	

dMx

dtM

)
= 0 i = 1	 � � � 	N

To calculate system dynamics, one should provide initial condition of the system (values for
all object states at starting time point t = t0)

x�t0� = X0

The above-mentioned general differential equation is said to be linear if F is a linear function
of the variables x	 dx

dt
	 d2x

dt2
	 � � � 	 dMx

dtM
and can be read as

aM�t�x + aM−1�t�
dx

dt
+ · · · + a0�t�

dMx

dtM
= f �t�

where: ai�t�, i = 1	 � � � 	M and f �t� some functions.
When the right-hand function is complex and does not allow an analytical solution, the sys-

tem dynamics can be calculated numerically. There are many tools for solving this problem.
The equilibrium state of the system corresponds to the system state when there are no

changes in all states with time. Therefore, the condition of equilibrium state can be found
by solving the system of equations

Fi�t	 x� = 0 i = 1	 � � � 	N

For instance, the simple model of exponential loss of the gene A expression with time can
be expressed as

dA

dt
= −kA A�0� = A0
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where k is the rate of loss of gene expression with time and A0 is the initial expression of
gene A at time t = 0. For this simple equation, a solution can be found easily

A�t� = A0 exp�−kt�

and the equilibrium state for this system is trivial: �A = 0.

5.6.4. Partial Differential Equation Models
Partial differential equations can be used for the description of the system states if they
change not only with time but with respect to other parameters (e.g., the object’s size and
location). As an example, let us describe the diffusion of expression of a particular gene in
a cell. The equation can be read as follows

dA

dt
= �

d2A

ds2

Here A = A�t	 s� is gene expression distributed in cells with respect to time t (t ≥ 0)
and coordinate s, 0 ≤ s ≤ S. Having initial distribution of the expression of this gene in
the cell

A�0	 s� = g�s�

and boundary conditions

A�t	 0� = p0�t� A�t	 S� = pS�t�

where g�s�, p0�t�, and pS�t� are given functions, one can calculate A�t	 s� at any time and
coordinate point.

5.6.5. Stochastic Models
Stochastic models deal with the dynamic history of each object of the model. In other words,
for each object, the next state must be calculated using the set of probabilistic rules. Each
rule shows the probability of the object being changed in a particular interval of time, and
the probability of it coming to each state. Therefore, the change of state in this type of
model is probabilistic, not deterministic.
Let us assume that object x in the system has a finite state space with L states (as in

the kinetic logic model): X1	X2	 � � � 	XL�. For each time step tk+1 there is a transition
probability P�xk+1�x0	 � � � 	 xk�; and chain x0	 � � � 	 xk represents the history of the system.
Variables xk form a Markov chain if and only if for any k

P�xk+1�x0	 � � � 	 xk� = P�xk+1�xk�

In other words, the future state depends on the only present state. All probability values
[P�Xi�Xj�, the probability of the system jumping from the ith to the jth state] form a
transition matrix.
Suppose that the system can jump into state Xi at time tk with transition rate -i

k. After
calculating the probability of coming into the ith state at time tk

pi
k = -i

k

-
- =

L∑
i=1

-i
k

one can easily calculate the next state of the system. The formula for calculating the next
time point depends on the distribution of the jumps tk+1 − tk; for instance, for the case of
the exponential process, the next time point is tk+1 = tk − ln�r�/-, where r is a random value
uniformly distributed in (0, 1).
Figure 18 shows the examples of dynamics calculated for the model of exponential decay

for differential equation and stochastic models.



36 Computational Biology

Differential equation

Stochastic model, N = 240

Stochastic model, N = 10

0

2

4

6

8

10

0 2 3 4

Time

G
en

e  
ex

pr
es

si
on

A = A0 exp(–kt)

A0 = 10

k = .5

1 5

Figure 18. Examples of exponential decay calculated with the use of a differential equation and stochastic model.
Two numbers of objects �N� were used for the stochastic model. One can see that with the increase of N , the
solution of the stochastic model is the approximate better solution of the differential equation model.

5.6.6. Neural Network Models
Neural networks provide a model of computation that is different from traditional algorithms.
Typically, they are not explicitly programmed to perform a given task; rather, they learn
to do the task from examples of desired input/output behavior. The networks automatically
generalize their processing knowledge into previously unseen situations, and they perform
well for the noisy, incomplete, or inaccurate input data.
In general, the artificial neural network is a model consisting of interconnected units

evolving in time. Connection between units i and j is usually characterized by the weight,
denoted by wij . There are three important architectures of the neural network, based on the
connectivity: recurrent (contains direct loops), feed-forward (contains no direct loops); and
layered (units are organized into layers, and connections are between layers).
The behavior of each unit in time can be described by the time-dependent functions,

stochastical process, Bayesian network, and so forth. Therefore, the ith unit receives total
input xi from the units connected to it and generates the response

fi�xi� =
∑
j∈C

wijyj

where C is the set of units having connection to the ith unit. When the response is repre-
sented as a threshold function

f �x� =
{
1 x > 0

0 x ≤ 0

the unit is called a threshold gate and can generate only binary decisions.
The most usual application of the neural network is classification (to arrange input into

number of classes). The most important feature of the neural network is learning for exam-
ples. It consists of the model fitting and parameter estimation, with the use of the training
subset of input data, and validation of the model output, with the use of the validation subset.

5.6.7. Hybrid Models
Some models can combine features of different types of models. Among these models are

• Boolean/differential-equation models: Parameters of the differential equation can
depend on discrete system states.
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• Differential equations/stochastic models: Introduction in the right-hand side of the dif-
ferential equations’ statistical terms describing, for example, the noise in the system
values. It should be noted that some differential models can show stochastic behavior
for some values of the parameters. For instance, the Mackey–Glass differential equation

dx

dt
= ax�t − /�

1+ x10�t − /�
− bx

behaves as a chaotic time series when the parameters have the following values: x�0� =
1�2, / = 17, a = 0�2, b = 0�1, and x�t� = 0, for t < 0.

The next step in dynamic cell modeling would be to try and model the regulation of more
genes, and hopefully a large set of genes (see Ref. [202]). Patterns of collective regulation
of genes, such as chaotic attractors, are observed in the above reference. Mutual informa-
tion/entropy of clusters of genes can be evaluated.

5.7. Gene Network Modeling

In living systems, many dynamic, adaptive, evolving processes are observed at different levels,
and at different stages of the development, that are involved in a complex interaction. At a
molecular level and a cell level, the DNA, the RNA, and the protein molecules evolve and
interact in a continuous way. The genes form dynamic gene networks (GNs) that define the
complexity of the living organism [203]. It is not just the number of the genes in a genome,
however, but the interaction between the genes that makes one organism more complex than
another.
Many functions are associated with a neuronal cell and with neural networks in the brain

[204]. An ensemble of cells (neurons) operates in concert, defining the function of the neural
network (e.g., perception of a sound, or a brain disease such as epilepsy [205]). At the
level of the whole brain, a complex dynamic interaction is observed, and certain cognitive
functions are performed (e.g., speech and language learning, visual pattern recognition).
The genes, encoded in the DNA, which are transcribed into RNA and then translated into

proteins in each cell, contain important information related to the brain activities. A specific
gene from the genome relates to the activity of a neuronal cell in terms of a specific function,
but the functioning of the brain is much more complex than that. The interaction between
the genes is what defines the functioning of a neuron. Even in the presence of a mutated
gene in the genome that is known to cause a brain disease, the neurons can still function
normally provided a certain pattern of interaction between the genes is maintained—a cer-
tain state of the GRN [206]. However, if there is no mutated gene in the genome, certain
abnormalities in brain functioning can be observed, as defined by a certain state of the
interaction between the genes [205]. The above-cited and many other observations point to
the significance of modeling a neuron and a neuronal ensemble at the gene level to predict
the state of the ensemble. The process of modeling the gene interaction for the purpose of
brain understanding is a significant challenge to biologists, mathematicians, information and
computer scientists, brain scientists, and researchers from many other areas.
Models of GRN, derived from gene-expression RNA data, have been developed using

different mathematical and computational methods, such as statistical correlation techniques
[207, 208], evolutionary computation [209, 210], neural networks [211, 212], differential equa-
tions [213], and others [133, 214]. In Ref. [215], a simple GN model of five genes and gene
clusters is derived from the time-course gene-expression data of a leukemia cell line U937
treated with retinoic acid with two phenotype states—cancer and normal. The model uses
adaptive artificial neural networks—evolving connectionist systems, trained on data in an
adaptive mode [15].
A simple GRN of four genes is given in Fig. 19.

6. IMPLICATIONS FOR MEDICINE
Profiling gene and protein expression using DNA and protein arrays has a tremendous effect
in molecular-based classifications of diseases. There are two important tasks, among others,
in this area: finding the correlation between subsets of genes/proteins and disease features
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Figure 19. A simple gene regulatory network representing only four genes (the nodes) and their relative interaction
strength (the arcs). Four functions are used to calculate the activity of each gene, depending on the activity of other
genes in the network; these functions are not shown.

(progression, localization, etc.), and identifying the smallest informative set of genes/proteins
associated with specific disease features.
Microarray technology offers an opportunity to screen thousands of genes simultaneously,

to be monitored in parallel. New disease subtypes or molecularly distinct forms of the disease
can be identified with the use of this technology: B-cell lymphoma [216], two molecularly
distinct forms of diffuse large B-cell lymphoma with gene-expression patterns indicative of
different stages of B-cell differentiation were identified; breast tumors [217, 218], gene-
expression patterns provided a distinctive molecular portrait of each tumor in a set of 65 sur-
gical specimens of human breast tumors from 42 different individuals; human acute leukemia
[128], automatic discovery of the distinction between AML and ALL. In Ref. [219], cDNA
microarray technology was used to explore variation in gene expression in 60 cell lines of
human cancer, and a consistent relationship between the gene expression patterns and the
tissue of origin was found. Specific features of these gene expression patterns appeared
to be related to physiological properties of the cell lines (doubling time in culture, drug
metabolism, and interferon response).
For some cases, DNA microarray technology is an inadequate method, as was noted in

Ref. [220] for autoimmune diseases: the disease may manifest not in itself at the RNA
level but, rather, at the protein one; protein function can be regulated by posttransla-
tional modifications—phosphorylation, glycosylation, and sulfation, as well as many other
modifications, are extremely important for protein function, as they can determine activity,
stability, localization, and turnover; and there may be nonpredictive correlations between
RNA expression and protein expression and function.
The correlation between levels of mRNA measured in oligonucleotide microarrays and

protein is an important issue in DNA microarray technology. The lack of this correlation
means that the predictive property of the gene expression is independent of gene function.
In Ref. [221], two-dimensional PAGE, mass spectrometry, and Affymetrix oligonucleotide
microarrays were used to identify proteins showing increased expression in lung adenocar-
cinoma and to examine whether the changes in protein expression may be attributable to
transcriptional or other mechanisms of regulation. A comparison of the mRNA expression
values and the protein expression values within the same tumor samples shows that expres-
sion of only two of 14 genes correlated significantly with levels of proteins. The lack of
correlation between mRNA and protein level was also noted in Refs. [222, 223]. Also in
some cases, using chips from different companies may give results that are not significantly
correlated [224].
There is no strict linear relationship between genes and the “proteome” of a cell.

Proteomics is complementary to genomics because it focuses on the gene products, and for
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this reason proteomics directly contributes to drug development, as almost all drugs are
directed against proteins.
Proteomics is a promising tool for the identification of new diagnostic tools (identification

of disease markers or proteins that appear or disappear during the course of a disease),
development of drugs, improvement of the efficiency of clinical trials (availability of biolog-
ically relevant markers for drug efficacy and safety), and clinical diagnostic testing.
These approaches include [225] the analysis of protein expression in normal and disease

tissue, analysis of secreted proteins in cell lines and primary cultures, and direct serum
protein profiling. Aberrantly expressed proteins might represent new markers. MS allows
yielding comprehensive profiles of peptides and proteins without the need of first separating
them, and it is highly suited for marker identification.
The changes in protein expression that enable tumors to initiate and progress in the local

tissue microenvironment were analyzed in Ref. [226] with the use of an antibody microarray.
It was demonstrated that quantitative, and potentially qualitative, differences in expression
patterns of multiple proteins within epithelial cells reproducibly correlate with tumor pro-
gression.
A reverse-phase protein array approach with immobilization of the tissue’s proteins was

reported in Ref. [227]. These arrays were used for the screening of molecular markers and
pathway targets in patient-matched human tissue during disease progression. In contrast to
previous protein arrays that immobilize the probe, reverse-phase protein arrays immobilize
the whole repertoire of patient proteins that represent the state of individual tissue cell pop-
ulations undergoing disease transitions. A high degree of sensitivity, precision, and linearity
was achieved, making it possible to quantify the phosphorylated status of signal proteins in
human tissue cell subpopulations.

APPENDIX: GLOSSARY
Artificial neural networks are biologically inspired computational models that consist of
processing elements (called neurons) and the connections between them, with coefficients
(weights) bound to the connections, which constitute the neuronal structure. To the structure
are also attached training and recall algorithms. One of the most popular training algorithms
is the backpropagation algorithm for adjusting the connection weights in a neural network,
where the gradient descent rule is used for finding the optimal connection weights wij that
minimize a global error E. A change of weight 2wij at a cycle �t + 1� is in the direction of
the negative gradient of the error E.
Bayesian probability The following formula, which represents the conditional probability
between two events C and A, is known as the Bayes Formula (Tamas Bayes, eighteenth
century)

p�A�C� = p�A�C�p�A�

p�C�

Using the Bayes formula involves difficulties, mainly concerning the evaluation of the prior
probabilities p�A�	 p�C�	 p�C�A�. In practice (e.g., in statistical pattern recognition), the
latter is assumed to be of a Gaussian type. The Bayes theorem assumes that if the condition
C consists of condition elements C1	 C2	 � � � 	 Ck they are independent (which may not be
the case in some applications).
Clustering Based on a measured distance between instances (objects, points, vectors) from
the problem space, subareas in the problem space of closely grouped instances can be
defined. These areas are called clusters. They are defined by their cluster centers and by the
membership of the data points to them. A center ci of a cluster Ci is defined as an instance
the mean of the distances to which from each instance in the cluster, is minimum. Let us
have a set X of p data items represented in an n-dimensional space. A clustering procedure
results in defining k disjoint subsets (clusters), such that every data item (n-dimensional
vector) belongs to one only cluster. A cluster membership function Mi is defined for each
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of the clusters C1	 C2	 � � � 	 Ck:

Mi 4 X → 0	 1�

Mi�x� =
{
1 x ∈ Ci

0 x � Ci

where x is a data instance (vector) from X. In fuzzy clustering, one data vector may belong
to several clusters to certain degree of membership, with all of the degrees summing up to 1.
Data are the numbers, the characters, and the quantities operated on by a computer.
Data normalization is a transformation of data from its original scale into another, pre-
defined scale (e.g., [0, 1]). Normalization is linear when uses the following formula (for the
case of a targeted scale of [0, 1])

vnorm = v − xmin
xmax − xmin

where v is a current value of the variable x; xmin is the minimum value for this variable, and
xmax is the maximum value for that variable x in the data set.
Distance between data vectors A way of measuring difference between data vectors. The
distance between two data points in an n-dimensional geometrical space can be measured
in several ways, for example
Hamming:

Dab =
∑ �ai − bi�

Euclidean distance:

Eab =
√
1
n

∑
�ai − bi�

2

Fuzzy clustering is a procedure of clustering data into possibly overlapping clusters, such
that each of the data examples may belong to each of the clusters to a certain degree. The
procedure aims at finding the cluster centers Vi �i = 1	 2	 � � � 	 c� and the cluster membership
functions 8i, which define to what degree each of the n examples belong to the ith cluster.
The number of clusters c is either defined a priori (supervised type of clustering) or chosen
by the clustering procedure (unsupervised type of clustering). The result of a clustering
procedure can be represented as a fuzzy relation 8i	 k such that

(i)
∑

8i	 k = 1, for each k = 1	 2	 � � � 	 n; (the total membership of an instance to all the
clusters equals 1)

(ii)
∑

8i	 k
for each i = 1	 2	 � � � 	 c (there are no empty clusters)

Information is the ordered, structured, interpreted data—the news.
Knowledge is the theoretical or practical understanding of a subject: gained experience,
true and justified belief, the way we do things.
Knowledge-based neural networks (KBNNs) These are prestructured neural networks
allow for data and knowledge manipulation, including learning from data, rule insertion, rule
extraction, adaptation, and reasoning. KBNNs have been developed either as a combination
of symbolic AI systems and NNs, as a combination of fuzzy logic systems and NNs, or as
other hybrid systems. Rule insertion and rule extraction operations are typical operations for
a KBNN to accommodate existing knowledge along with data and to produce an explanation
of what the system has learned.
Kohonen Self-Organizing Map (SOM) A self-organized map neural network for unsuper-
vised learning invented by Professor Teuvo Kohonen and developed by him and other
researchers [228, 229].
Multilayer perceptron network (MLP) is a neural network that consists of an input layer,
at least one intermediate or “hidden” layer, and one output layer, with the neurons from
each layer being fully connected (or, in some particular applications, partially connected) to
the neurons from the next layer.
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Multiple sequence alignment is the procedure of comparing sequences by searching for
the similarity in the subsets that are in the same order in the sequences. Each subset can
consist of one or more characters of the sequence and gaps between them.
Principle component analysis (PCA) Finding a smaller number of m components Y =
�y1	 y2	 � � � 	 ym� (aggregated variables) that can represent the goal function F �x1	 x2	 � � � 	 xn�
of n variables, n > m to a desired degree of accuracy : (i.e., F = MY + :, where M is a
matrix that has to be found through the PCA).
Probability theory is based on the following three axioms:

Axiom 1. 0 ≤ p�E� ≤ 1 The axiom defines the probability p�E� of an event E as a real
number in the closed interval [0, 1]. A probability p�E� = 1 indicates a certain event,
and p�E� = 0 indicates an impossible event.

Axiom 2.
∑

p�Ei� E1 ∪ E2 ∪ · · · ∪ Ek = U , where U is a problem space (universum);
Axiom 3. p�E1 ∨ E2� = p�E1� + p�E2�, where E1 and E2 are mutually exclusive events.
This axiom indicates that if the events E1 and E2 cannot occur simultaneously, the
probability of one or the other happening is the sum of their probabilities.
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