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ABSTRACT 
 
The paper describes the problem of discovering genetic 
networks from time course gene expression data (the 
reverse engineering approach) and introduces a novel 
method for using evolving connectionist systems (ECOS) 
for this task. A case study is used to illustrate the 
approach. Genetic regulatory networks, once constructed,  
can be potentially used to model the behaviour of a cell or 
an organism from initial conditions.  

 

1. EVOLVING PROCESSES IN MOLECULAR 
BIOLOGY AND THE PROBLEM OF GENETIC 

NETWORK DISCOVERY  
 
In a single cell, the DNA, the RNA and the protein 
molecules evolve and interact in a continuous way. At the 
cell level evolving are all the metabolic processes, the cell 
growing, the cell division, etc. [1,2,3,17]. This interaction 
can be represented as a complex genetic regulatory 
network (GRN) of genes connected to each other so that 
the connections represent this interaction [4]. Genes can 
trigger other genes to over-express, or to become down-
expressed, or may not have a direct relation at all.  

The following issues are related to the problem: 
• It is assumed that a GRN describes the regulatory 

interaction between genes; 
• It is assumed that reverse engineering – from gene 

expression data to GRN, is appropriate to apply;  
• It is assumed that gene expression data reflect the 

underlying GRN;  
• If there are co-expressed  genes  over time – either 

one regulates the other, or both  are regulated by same 
other genes; 

• The time unit of interaction needs to be defined; 
• Appropriate data need to be obtained;  
• A validation procedure needs to be used;  

• A correct interpretation of the models may generate 
new biological knowledge.      

Several approaches have been introduced so far for the 
problem of genetic network discovery and modeling as 
presented briefly in the next section. 
 

2. GRN MODELS – A BRIEF REVIEW 
 
An extended review of the literature on the existing 
models for modelling GN is presented in [4].  

There are several types of GN representation, some of 
them listed below: 
• Boolean GRN (using Kauffman boolean networks), 
where boolean vectors represent the state of the genes at 
every time point, i.e. values of  1 or 0; this representation 
is too simplistic and  is imprecise [ 5]; 
• Bayesian and regression networks - transitional 
probabilities are represented in the model [ 13,14 ];  
• Connectionist networks (genes are represented as 
neurons and the interaction between them – as weighted 
connections [20,21,24]; 
• Fuzzy connectionist networks - fuzzy representation is 
used to represent the transition in a connectionist GRN 
network [24];  
      Several methods have been introduced for reverse 
engineering in order to detect a GN from manifestation of 
data: 
• Detecting gene relations from MEDLINE abstracts  
[19]; 
• Analytical modeling – formulas are derived from gene 
data  [10,15];  
• Correlation analysis of gene data to find correlations 
between gene expression over time [12]. 
• Cluster analysis – genes are clustered based on their 
expression [7,8,9]; 
• Evolutionary computation – GRN are evolved from gene 
data based on a fitness function [11,16]; 
• Connectionist techniques (neural networks) are used to 
learn a GRN from data [20,21]. 



 
Despite of the existence of these methods, the problem of 
the genetic network discovery has not been solved so far. 
One of the reasons is that the processes are too complex 
for the existing computational models. Generally 
speaking, modeling genetic networks requires that the 
model evolves both its structure and functionality in time. 
A potential approach to apply to this task is the evolving 
connectionist systems (ECOS) approach as presented and 
applied in this paper.   

 
3. EVOLVING CONNECTIONIST SYSTEMS 

 
Evolving connectionist systems are multi-modular, 
connectionist architectures that facilitate modelling of 
evolving processes and knowledge discovery [24]. An 
evolving connectionist system may consist of many 
evolving connectionist modules.  

An evolving connectionist system is a neural network 
that operates continuously in time and adapts its structure 
and functionality through a continuous interaction with 
the environment and with other systems according to: (i) 
a set of parameters P that are subject to change during the 
system operation; (ii) an incoming continuous flow of 
information with unknown distribution;  (iii) a goal 
(rationale) criteria (also subject to modification) that is 
applied to optimise the performance of the system over 
time.  

The set of parameters P of an ECOS can be regarded 
as a chromosome of ”genes” of the evolving system and 
evolutionary computation can be applied for their 
optimisation.  

The evolving connectionist systems presented in [22-
25] have the following specific characteristics: (1) they 
evolve in an open space, not necessarily of fixed 
dimensions; (2) they learn in on-line, pattern mode, 
incremental learning, fast learning - possibly by one pass 
of data propagation; (3) they learn in a life-long learning 
mode; (4) they learn as both individual systems, and 
evolutionary population systems; (5) they have evolving 
structures and use constructive learning; (6) they learn 
locally and locally partition the problem space, thus 
allowing for a fast adaptation and tracing the evolving 
processes over time; (7) they facilitate different kinds of 
knowledge extraction, mostly combined memory based, 
statistical and symbolic rule knowledge. 

Some ECOS models, such as ZISC [26] and EFuNN 
[22] have been patented and used widely [24]. Some of 
the evolving connectionist models presented in [22-26] 
are knowledge-based models, facilitating Zadeh-
Mamdani fuzzy rules (EFuNN, HyFIS), Takagi-Sugeno 
fuzzy rules (DENFIS), on-line fuzzy clustering (ECM).  

Fig.1 shows a simplified version of an evolving fuzzy 
neural network (EFuNN) [22] that facilitates the 

extraction of rules of the type of Zadeh-Mamdani, as an 
example is given below: 

IF x1 is High (0.7) and x2 is Low (0.8) THEN y is 
Medium (0.9), number of examples accommodated in the 
rule is 45; radius of the cluster covered by the rule is 0.5.  

Each rule node captures one fuzzy rule that can be 
extracted at any time of the operation of the system. A  
rule links a cluster of data from the input space to a 
cluster of data from the output space and can be 
interpreted as knowledge. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1. A simplified version of EFuNN (from [22,24]) 

 
Another type of ECOS – DENFIS [25] deals with 

Takagi-Sugeno fuzzy rules of the form of: 
IF x1 is High (0.7) and x2 is Low (0.8) THEN y=0.5 

+3.7x1 + 4.5x2, number of examples accommodated in 
the rule is 15; the area of  the cluster covered by the rule 
is  [0.5, 0.7]. 

Each evolving connectionist system consists of three 
main parts: 

(1) Pre-processing and feature evaluation part 
(2) Connectionist modelling part 
(3) Knowledge acquisition part 

 
4.  A METHOD FOR GRN MODELING AND 

DISCOVERY USING EVOLVING 
CONNECTIONIST SYSTEMS AND MICROARRAY 

GENE EXPRESSION DATA  
 

Genes are complex structures and they cause dynamic 
transformation of one substance into another during the 
whole life of an individual, as well as the life of the 
human population over many generations. When genes 
are “in action”, the dynamics of the processes in which a 
single gene is involved are complex, as this gene interacts 
with many other genes, proteins, and is influenced by 
many environmental and developmental factors.  

Modelling these interactions, learning about them and 
extracting knowledge, is a major goal for the scientific 
area of computational molecular biology and bio-
informatics. The whole process of the expression of genes 
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and the production of proteins, and back to the genes, 
evolves over time.  

The method proposed here and illustrated in the next 
section consists of the following steps: 
1) Micro-array data is collected from cells in a time 
course manner at time moments t=0,1,2,…p. 
2) A number of genes that are relevant to the process of 
modelling are selected, that include genes that change 
over the time of the cell development.  
3) The genes may be grouped into grouped based on 
their correlation with time (or another variable) into two 
groups – the group of positive correlation, and the group 
of negative correlation, each group represented as a 
collective integral “gene” having the average expression 
level of all genes in the group.  
4) The microarray data is then used to evolve a 
clustering-based ECOS (regardless of its type, e.g. EfuNN 
[22], ZISC [26]) with inputs being the expression level of 
a certain number of selected genes (e.g.100) and the 
outputs being the expression level of the same genes at 
the next time moment as recorded in the data.  
5) After the ECOS is trained on time course gene 
expression data, rules that express transitions of gene 
states over time are extracted from it. The rule nodes in 
an ECOS capture clusters of input genes that are related 
to the output genes at next time moment. 
6) The rules are linked to each other in terms of time-
arrows of their creation, thus representing the GRN.  
7) The extracted rules are fuzzy rules of Zadeh-Mamdani 
type, they represent the relationship between the gene 
expression of a group of genes G(t) at a time moment t 
and the expression of the genes at the next time moment 
G(t+dt), e.g. the following is a Zadeh-Mamdani type of 
fuzzy rule: 

IF g13(t) is High (0.87)  and g23(t) is Low (0.9)  
     THEN g87 (t+dt) is High (0.6) and g103(t+dt) is Low 
8) Through modifying a threshold for rule extraction (see 
[24]) stronger or weaker patterns of relationship are 
extracted. 
9) New data are added to the model in an on-line mode 
continuously and incrementally, so the ECOS allows for 
learning dynamic GRN, so that on-line, incremental 
learning of a GRN is possible as well as adding new 
inputs/outputs (new genes) to the GRN.    

In another implementation of the same method from 
above, a Takagi-Sugeno type of fuzzy inference systems 
such as DENFIS [25] are applied as follows: 
1) A set of DENFISi,1=1,2,..n (number of genes) models 
will be trained, one for each gene gi  so that input vector 
is the expression  vector G(t) and the output is gi(t+dt). 
DENFIS allows for a dynamic partitioning of the input 
space. 

2) Takagi-Sugeno fuzzy rules, that represent the 
relationship between gene gi with the rest of the genes, 
are extracted from each DENFISi model, e.g.:     

 
If          g1  is (  0.63    0.70    0.76) and 
            g2  is (  0.71    0.77    0.84)  and 
            g3  is (  0.71    0.77    0.84) and 
            g4  is (  0.59    0.66    0.72) and 
     then   g5   =    1.84 -  1.26 g1 -  1.22g2 
                          +  0.58g3 -  0.03 g4 

 
5.  A CASE~STUDY OF A SMALL GRN 
MODELING WITH THE USE OF ECOS  

 
In a particular implementation of the method presented in 
the previous section, a small GRN of a leukemic cell line 
U937 [27] is modeled with the use EfuNN [22,24].  
     Retinoic acid and other reagents can induce 
differentiation of cancer cells leading to gradual loss of 
proliferation activity and in many cases death by 
apoptosis. Elucidation of the mechanisms of these 
processes may have important implications not only for 
our understanding of the fundamental mechanisms of cell 
differentiation but also for treatment of cancer. We 
studied differentiation of two subclones of the leukemic 
cell line U937 induced by retinoic acid [27]. These 
subclones exhibited highly differential expression of a 
number of genes including c-Myc, Id1 and Id2 that were 
correlated with their telomerase activity – the PLUS 
clones had about 100-fold higher telomerase activity than 
the MINUS clones [27]. It appears that the MINUS 
clones are in a more “differentiated” state. The two 
subclones were treated with retinoic acid and samples 
were taken before treatment (time 0) and then at 6 h, 1, 2, 
4, 7 and 9 days for the plus clones and until day 2 for the 
minus clones because of their apoptotic death. The gene 
expression in these samples was measured by Affymetrix 
gene chips that contain probes for 12,600 genes. To 
specifically address the question of telomerase regulation 
we selected a subset of those genes that were implicated 
in the telomerase regulation and used ECOS for their 
analysis. 

The task is to find the gene regulatory network 
G={g1,g2,g3,grest-,grest+} of three genes g1=c-Myc, 
g2=Id1, g3=Id2 while taking into account the integrated 
influence of the rest of the changing genes over time 
denoted as grest-  and g rest+ representing respectively the 
integrated group of genes which expression level 
decreases over time (negative correlation with time), and 
the group of genes which expression increases over time 
(positive correlation with time).  

Groups of genes grest-, grest+  were formed for each 
experiment of PLUS and MINUS cell line, forming all 
together four group of genes. For each group of genes, the 



average gene expression level of all genes at each time 
moment was calculated to form a single aggregated 
variable grest.  

Two EfuNN models, one for the PLUS cell, and one – 
for the MINUS cell, were trained on 5 input vector data, 
the expression level of the genes G(t) at time moment t, 
and five output vectors – the expression level G(t+1) of 
the same genes recorded at the next time moment. Rules 
were extracted from the trained structure that describe the 
transition between the gene states in the problem space. 
The rules are given in appendix and their transition in 
time is represented as graphs on fig. 2a,b. 
 
 
 
 
 
 
 

Fig.2a. The genetic regulatory network extracted from 
a trained EfuNN on time course gene expression data of 
genes related to telomerase of the PLUS leukemic cell 
line U937.  Each point represents a state of the 5 genes 
used in the model, the arrows representing (rules) 
transitions of the states.    

 
 
 
 
 
 
 
 
 
 

Fig.2b.The regulatory network of three time steps for 
the MINUS cell line represented in the 2D space of the  
expression level of the first two genes – c-Myc and Id1. 
 

6. CONCLUSIONS AND FUTURE DIRECTIONS  
 

Using the extracted rules that form a gene regulatory 
network, one can simulate the development of the cell 
from initial state G(t=0), through time moments in the 
future, thus predicting a final state of the cell. 

Future directions include a more rigorous analysis of 
the theoretical limits of ECOS, building multi-modular 
systems of multiple sources of information, building large 
ECOS to model complex gene/protein complexes, 
building large scale adaptive decision support systems 

that consists of hundreds and thousands of adaptive 
modules.   
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Appendix 
 
A. Gene regulatory rules extracted at consecutive time 
moments for the PLUS cell line.  
 Denotation: the type of the rules is: IF G(t) THEN 
G(T+1);  [1],[2],[3],[4],[5] denote the 5 genes used in the 
model; 1,2 and 3 denote Small, Medium and High 
expression level as a fuzzy membership function; the 
number attached to it is the membership degree, for 
example [1] (2 0.299)(3 0.701) means that gene 1 is 
expressed at a medium level with a membership degree of  
0.299 and at a High level with a degree of 0.701.   
 
Rule 1: 
if      [1] (2  0.299) (3  0.701) 
        [2] (1  0.909) (2  0.091) 
        [3] (1  0.070) (2  0.930) 
        [4] (2  0.683) (3  0.317) 
        [5] (1  0.731) (2  0.269) 
then        [1] (2  0.091) (3  0.909) 

[2] (1  0.798) (2  0.202) 
[3] (1  0.048) (2  0.952) 
[4] (2  0.439) (3  0.561) 
[5] (1  0.838) (2  0.162) 



Rule 2: 
if     [1] (2  0.091) (3  0.909) 
        [2] (2  0.961) (3  0.039) 
        [3] (2  0.955) (3  0.045) 
        [4] (2  0.559) (3  0.441) 
       [5] (1  0.836) (2  0.164) 
then        [1] (2  0.622) (3  0.378) 

[2] (1  0.231) (2  0.769) 
[3] (1  0.909) (2  0.091) 
[4] (2  0.896) (3  0.104) 
[5] (1  0.355) (2  0.645) 

 
 
Rule 3: 
if      [1] (2  0.691) (3  0.309) 
        [2] (2  0.091) (3  0.909) 
       [3] (1  0.909) (2  0.091) 
       [4] (1  0.174) (2  0.826) 
        [5] (1  0.341) (2  0.659) 
then        [1] (1  0.311) (2  0.689) 

[2] (1  0.909) (2  0.091) 
[3] (1  0.244) (2  0.756) 
[4] (2  0.091) (3  0.909) 
[5] (1  0.909) (2  0.091) 

Rule 4: 
if      [1] (1  0.471) (2  0.529) 
        [2] (1  0.131) (2  0.869) 
        [3] (1  0.171) (2  0.829) 
        [4] (2  0.091) (3  0.909) 
        [5] (1  0.909) (2  0.091) 
then        [1] (1  0.699) (2  0.301) 

[2] (1  0.641) (2  0.359) 
[3] (2  0.269) (3  0.731) 
[4] (1  0.443) (2  0.557) 
[5] (2  0.138) (3  0.862) 

Rule 5: 
if      [1] (1  0.909) (2  0.091) 
        [2] (2  0.719) (3  0.281) 
        [3] (2  0.091) (3  0.909) 
        [4] (1  0.909) (2  0.091) 
        [5] (2  0.091) (3  0.909) 
then        [1] (1  0.909) (2  0.091) 

[2] (2  0.091) (3  0.909) 
[3] (2  0.091) (3  0.909) 
[4] (1  0.909) (2  0.091) 
[5] (2  0.091) (3  0.909) 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
B. Gene regulatory rules for the MINUS cell module 
(same denotation as above is used): 
 
Rule 1: 
if      [1] (2  0.091) (3  0.909) 
        [2] (1  0.909) (2  0.091) 
        [3] (2  0.091) (3  0.909) 
        [4] (2  0.604) (3  0.396) 
        [5] (2  0.983) (3  0.017) 
then       [1] (2  0.091) (3  0.909) 

[2] (2  0.091) (3  0.909) 
[3] (2  0.996) 
[4] (2  0.091) (3  0.909) 
[5] (1  0.909) (2  0.091) 

 
Rule 2: 
if      [1] (1  0.583) (2  0.417) 
        [2] (2  0.091) (3  0.909) 
        [3] (1  0.909) (2  0.091) 
        [4] (2  0.091) (3  0.909) 
        [5] (1  0.909) (2  0.091) 
then       [1] (1  0.840) (2  0.160) 

[2] (1  0.909) (2  0.091) 
[3] (2  0.091) (3  0.909) 
[4] (1  0.641) (2  0.359) 
[5] (2  0.810) (3  0.190) 

 
Rule 3: 
if      [1] (1  0.909) (2  0.091) 
        [2] (2  0.757) (3  0.243) 
        [3] (1  0.114) (2  0.886) 
        [4] (1  0.909) (2  0.091) 
        [5] (2  0.091) (3  0.909) 
then     [1] (1  0.909) (2  0.091) 

[2] (1  0.508) (2  0.492) 
[3] (1  0.909) (2  0.091) 
[4] (1  0.909) (2  0.091) 
[5] (2  0.091) (3  0.909) 
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