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In this research we propose a novel method of face recognition based on texture and shape information. 

Age invariant face recognition enables matching of an image obtained at a given point in time against an 

image of the same individual obtained at an earlier point in time and thus has important applications, 

notably in law enforcement. We investigate various types of models built on different levels of data gran- 

ularity. At the global level a model is built on training data that encompasses the entire set of available 

individuals, whereas at the local level, data from homogeneous sub-populations is used and finally at the 

individual level a personalized model is built for each individual. We narrow down the search space by 

dividing the whole database into subspaces for improving recognition time. We use a two-phased pro- 

cess for age invariant face recognition. In the first phase we identify the correct subspace by using a 

probabilistic method, and in the second phase we find the probe image within that subspace. Finally, we 

use a decision tree approach to combine models built from shape and texture features. Our empirical 

results show that the local and personalized models perform best when rated on both Rank-1 accuracy 

and recognition time. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Face image recognition is an important and significant part of

he domain of biometric research ( Cootes, Edwards, & Taylor, 1999;

ong, Li, Tao, Liu, & Li, 2015; Jain, Nandakumar, & Ross, 2016; Li,

ark, & Jain, 2011; Park, Tong, & Jain, 2010; Ramanathan & Chel-

appa, 2006 ). It has important applications in real life in the fields

f missing children identification, passport verification, security,

nimation and business intelligence. For example, in case of law

nforcement, an image of a suspect is available and we need to

nd out whether the image of the same person exists and can be

btained from our crime database or not. If the suspect does actu-

lly appear in the crime database at a previous age then a match

hould be made and information on the last known address and

ther associated information of the suspect can be retrieved from

he crime database. 

Inspite of extensive research in face recognition ( Gong, Li, Lin,

iu, & Tang, 2013; Gong et al., 2015; Li et al., 2011; Ramanathan &

hellappa, 2006 ) much ground has not been covered in the field of

ge invariant face recognition ( Gong et al., 2013; Gong et al., 2015;

i et al., 2011; Park et al., 2010 ). Face recognition has two main
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reas of research namely, face verification and face identification.

here are two types of approaches used in age invariant face recog-

ition, generative and non generative. Generative approaches as-

ume prior knowledge of human age, given an image. On the other

and, non-generative approaches concentrate on finding discrimi-

ative features of the face and the changes therein throughout the

ace aging lifespan. From another perspective we can identify three

ain directions of research related to face recognition across age:

iz, age invariant face recognition, age simulation and age estima-

ion. Most research has concentrated on age estimation and age

imulation. Research into age invariant face recognition is still at a

ascent stage. 

In this paper we will concentrate on age invariant face recogni-

ion across different ages with special emphasis on the identifica-

ion problem (see illustration in Fig. 1 ). 

Aging is a complex problem because at different age points dif-

erent types of changes occur in the human face. From childhood

o teenage the changes are mostly related to craniofacial growth. At

aturity the changes are mostly related to the skin color changes

nd texture effects, with facial skin starting to become slack and

ess smooth. So aging is a mixture of all of these components.

oreover, aging is a slow, irreversible, and a process that is unique

o every human being. Many factors affect the aging process. For

xample every person has different genes, blood group, life style

nd belongs to a particular ethnic group. In order to resolve all

http://dx.doi.org/10.1016/j.eswa.2016.10.042
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Fig. 1. Proposed methodology. 

Fig. 2. Same individual at different ages from FG-NET ( FG-NET, 2002 ). 

Fig. 3. Same individual at different ages from MORPH ( Ricanek Jr & Tesafaye, 2006 ). 
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hese issues we need to deal with shape and texture features sepa-

ately and finally combine them to exploit the natural synergy be-

ween these two types of features. Figs. 2 and 3 show images of

wo persons at different ages. 

There are five major challenges which affect the performance of

ace recognition systems: pose, illumination, expression, occlusion

nd aging. It has been observed in past research that for resolving

ne challenge we need to compromise on others ( Abdullah et al.,

014; Geng, Zhou, & Smith-Miles, 2007; Pujol & García, 2012 ) Thus,

here is a need to find a solution that compromises on the mini-

um number of factors or challenges. 

We use a novel approach in this paper making a two pronged

ttack on these challenges by using both shape and texture fea-

ures. We build an Anthropometric model which is based on ge-

metrical ratios and distances of a fixed number of fiducial land-

arks. Such a model is not affected by occlusions such as mous-

aches or spectacles because landmarks do not alter their posi-

ion. Likewise, facial expression and illumination also do not sig-

ificantly alter the position of landmarks. However, different poses

ould create problems. To mitigate this problem, we take an aver-

ge frontal image and warp all our images to that image through

rocrustes analysis ( Cootes et al., 1999 ). That leaves the aging as-

ect which is our main area of research and our study fully fo-

uses on that area. We use edges on the face texture to extract

rinkles information and together with the Anthropometric fea-

ures we build and analyze the aging process. We have used these

ame features in our previous studies ( Alvi & Pears, 2015a; 2015b )

s well. The contributions we make in this research are: 

• We partition an image gallery into sub galleries by time seg-

ment before applying a probabilistic Bayesian method to iden-

tify the segment containing the desired (target image). Our em-

pirical results show that such partitioning helps to improve

recognition accuracy. 
• We use a local modeling approach whereby we partition the

global population of images into homogeneous sub-populations

of clusters and build localized models on each of the clusters.

This partitioning is orthogonal to the time based partitioning

mentioned above. 
• We combine shape and texture models in order to exploit any

synergy that exists between them. In certain cases, both types

of models point to the same image which happens also to be

the right one. In such cases having two types of models en-

hances the robustness of the matching process as agreement

exists. However in certain other cases, each model could iden-

tify different images. Conflict resolution is then necessary and

we make use of a decision tree classifier for resolving such con-

flicts. Our choice of the decision tree classifier was based on the

fact that it had the highest conflict resolution success rate out

of the classifiers that we experimented with, which included
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Fig. 4. Anthropometric model and seven features ( Farkas, 1994 ) . 
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the Support Vector Machine (SVM), Decision Tree, Random For-

est and Naive Bayes. 

. Literature review 

Geng et al. (2007) worked on the assumption that similar faces

ge in similar ways across a population. He introduced the method

f Aging pattern Subspace (AGES) for modeling aging across time.

eng et al constructed a representative subspace by utilizing a se-

uence of images of a given individuals face sorted in chronologi-

al order. Minimum reconstruction error was achieved by project-

ng the unseen face image into the proper aging subspace. Thus,

t would be possible to determine the age of the image from the

ging pattern. 

Syambas and Purwanto (2012) used a combination of Active

ppearance Models (AAMs), Support Vector Machines (SVMs) and

onte-Carlo simulation to build a high accuracy aging model. Two

ypes of experiments were reported. In the first experiment, they

howed empirically that as the probe face progresses in age, the

ace recognition rate decreases. In order to overcome this problem,

n a second experiment, they artificially aged probe faces so as to

ncrease the likelihood of a match with a gallery image that would

hen be closer in time terms to the aged version of the probe im-

ge. The artificial aging was accomplished by the use of active ap-

earance models while the matching process was based on the use

f PCA. A rank 1 accuracy of 32 percent was obtained by Sethuram

t al. 

Lanitis, Taylor, and Cootes (1999) also used Active Appearance

odels (AAM). He used a statistical face model for studying the

ge estimation problem. AAM parameters were extracted from fa-

ial images which were marked with 68 points. A Genetic Algo-

ithm was then applied to build and optimize an aging function. 

Ling, Soatto, Ramanathan, and Jacobs (2007) introduced the

oncept of coordinate patches and Gaussian Mixture Models

GMMs). He used images of individuals and encoded them as en-

embles of overlapped spatially flexible patches (SFPs). These SFPs

ere modeled with Gaussian Mixture Models (GMMs). Local fea-

ures were extracted with the help of the 2D discrete cosine trans-

orm (DCT). The local features were integrated with the patches

nd an estimate of the age of the individual was then obtained

ased on maximum likelihood estimators built from all the SFPs of

he hypothetical age. 

. Anthropometric model 

Face anthropometry, the science of measuring sizes and propor-

ions on human faces, has the potential to play a crucial role in

eveloping facial aging models. Such studies provide a quantitative

escription of the craniofacial growth at different ages and hence

rovide a plethora of options for learning based approaches to

e adopted to characterize facial aging. Face anthropometric stud-

es provide dense measurements taken between key landmarks on

uman faces across different ages and have played a critical role

n surgical procedures employed on the faces of growing children

 Farkas & Munro, 1987 ). Farkas provides a comprehensive overview

f face anthropometry and its many significant applications. He de-

nes face anthropometry in terms of measurements taken from

7 carefully selected landmarks on human faces spread across 6

egions in the craniofacial area (head, face, orbits, nose, lips and

outh, ear). The facial measurements are of three kinds: (i) projec-

ive measurements (shortest distance between two landmarks); (ii)

angential measurements (distance between two landmarks mea-

ured along the skin surface) and (iii) angular measurements. Fig. 4

llustrates the kind of data that is collected in face anthropometric

tudies and further illustrates the different fiducial features across
hich such data is collected ( Farkas, 1994 ). In the absence of age-

ased Anthropometric measurements they collected facial growth

ata by extracting facial features on the passport database. 

Such growth data was collected on five different age groups:

1–30 years, 31–40 years, 41–50 years, 51–60 years and 61–70

ears. The facial growth data collected in this manner was found

o be effective in characterizing facial growth based on age, gender,

thnicity etc. and in cases where individuals gain or lose weight. 

. Texture features 

In the case of texture, as a part of preprocessing, we first reg-

ster( Goshtasby, 2012; Štruc & Paveši ́c, 2010 ) images on the ba-

is of eye coordinates so that all images transform to the same

ize and that each point on any given face refers to the same

oint on all of the images. We then divide the facial image hor-

zontally into five slices. The slices cover the forehead, eyes, nose,

outh and the area below the mouth. Edges are marked on the

ace after converting the image into grayscale. A histogram is

repared for these edges. The frequency of the edges in each

lice is taken as a feature, thus resulting in five features across

he entire face as shown in Fig. 5 . We used two parameters for

anny edge detection: sigma and threshold. The threshold val-

es were obtained after experimentation, to minimize the noise

nd obtain optimum results. The values of threshold are FG-

ET, minimum = 0.0375, maximum = 0.0938 and for MORPH mini-

um = 0.0500 and maximum = 0.1250. The sigma value used was

qrt(2) for both databases. 
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Fig. 5. Five slices of the face ( FG-NET, 2002 ) 

Fig. 6. Canny edge detection of one image ( FG-NET, 2002 ). 
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4.1. Edge detection 

We used the Canny edge detector to find edges. The Canny op-

erator was designed to be an optimal edge detector (according

to particular criteria — there are other detectors around that also

claim to be optimal with respect to slightly different criteria). It

takes as input a gray scale image, and produces as output an im-

age showing the positions of tracked intensity discontinuities The

Canny edge detector operator works as a multi-stage process. First

of all the image is smoothed by Gaussian convolution. Then a sim-

ple 2D first derivative operator is applied to the smoothed image

to highlight regions of the image with high values for the first spa-

tial derivative. Edges give rise to ridges in the gradient magnitude

image. The algorithm then tracks along the top of these ridges

and sets to zero all pixels that are not actually on the ridge top

so as to give a thin line in the output. This process is known as

non-maximal suppression. The tracking process exhibits hystere-

sis and is controlled by two thresholds: t1 and t2 , with t1 > t2 .

Tracking can only begin at a point on a ridge higher than t1. Track-

ing then continues in both directions out from that point until the

height of the ridge falls below t2 . This hysteresis helps to ensure

that noisy edges are not broken up into multiple edge fragments.

( Canny, 1986 ). Fig. 6 shows canny edge detection for a selected im-

age. 

5. Computational models for aging 

In this research we treat the age recognition problem as a time

series problem with each texture feature and anthropometric fea-

ture giving rise to a separate time series variable. In the standard

time series problem a trajectory at several different time points

from the past is available and the problem is to project into the

future. The time series problem that we tackle differs from the

standard time series problem in one fundamental aspect: in the

face recognition scenario only one time point is available, which

is the image (feature vector) at the time point at which the im-
ge was captured. No other training data is available. This would

ake the problem virtually unsolvable if not for the fact that we

an explore the data spatially to obtain more training data. Thus at

ny given time point we have f data points obtained from the f dif-

erent anthropometric features that we extract. However, since the

ime series trajectory of each feature is largely independent of the

thers, a simple approach of combining them into a single series

ould be highly ineffective. As such, our solution is to first build

rajectories for each of the features separately and then combine

redicted feature values at each band into a single vector which

s used to determine whether a match exists between probe and

allery images. The other relatively minor difference is the direc-

ion in which the trajectory is built; in our case it is backwards in

ime instead of forwards. 

We investigated four different types of models built at differ-

nt levels of data granularity. At the global level a model is built

n training data that encompasses the entire set of available indi-

iduals. At the local level data from homogeneous sub-populations

ere used to prepare a local model. At the individual level a per-

onalized model was built for each individual. Finally, all these

odels were combined into a single, integrated model. We used

 similarity matrix to compute Rank 1 accuracy. 

.1. Global model 

.1.1. Model construction 

A global model is induced over the entire problem space that

ontains the entire population of available individuals. Such models

erve to capture useful general trends across the population over a

pectrum of age bands used. After grouping images into their re-

pective age bands, we determine discriminative features and com-

ute the values of 7 unique indexes (i.e. ratio of Euclidean dis-

ances for a given pair of Anthropometric features) for each image.

he indexes were calculated after warping the image to a mean

mage using the Procrustes algorithm ( Cootes et al., 1999 ). In the

ase of texture, as a part of preprocessing, we first register the

mages, so that all images transform to the same size and each

oint on any given image refers to the same point on all of the

mages. Then we divide the facial image into five horizontal slices.

he slices cover the forehead, eyes, nose, mouth and the area be-

ow the mouth. Edges(Canny) are marked on the face after con-

erting the image into grayscale. A histogram is prepared for these

dges. The frequency of edges in each slice is taken as a feature,

hus resulting in five features for the whole face. The centroid of

ach age band is determined and an n th order polynomial (we ex-

eriment with values of n in the range [1..3]) function is developed

hat spans all the age bands using a least square based non-linear

egression method. Eq. (1) represents the Global model for the Fa-

ial index feature, where c i represents the value of each coefficient

nd x i represents its age band index value. Fig. 7 shows the trajec-

ory of the Global Model across the agebands for the Facial index.

 

(gl obal ) 
i 

= c 1 x 
n 
i + c 2 x i 

n −1 + .... + c n x i + c n +1 (1)

.2. Personalized model 

.2.1. Model construction 

The transductive or personalized approach, in contrast to the

nductive approach, models each point in the problem space. It

as defined by Vapnik in Vapnik and Vapnik (1998) and used

y Kasabov in Kasabov (2007) and Pears in Pears, Widiputra, and

asabov (2013) . The intuition behind personalized modeling is that

he aging process differs from person to person and hence model-

ng at the level of individuals can be expected to yield more ac-

uracy. The k-NN (k-nearest neighbor) is one of the well-known
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Fig. 7. Global model for feature 1 (Facial index) 
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(  
ransductive techniques and is the most widely used form of per-

onalized modeling. 

The model is constructed as follows. We take an image, deter-

ine its age band (in closed set evaluation mode the age for the

mage is known; in real-world applications, a human expert can be

sed to estimate the age) and obtain its k -nearest neighbors (the

ptimal value of k = 5 is set by experimentation). When we get an

nthropometric sample of an image we de-age that sample as fol-

ows: 

F i = M i − F i (2) 

We introduce a deviation factor (DF) as defined in Eq. (2) above.

he deviation factor captures the degree to which an individual’s

eature differs from the population as a whole. In this research we

ssume that the DF i is independent of age which amounts to as-

uming that the rate of change in a feature value that is constant

ver time. In Eq. (2) , M i represents the mean of feature i at the age

and j estimated by the human expert and F i is the feature value

f the image in that same age band. 

 i j = G i j + DF i (3)

The de-aging process is done in Eq. (3) by adding the devia-

ion factor DF i of the image in the given age band to the value G ij 

eturned by the global model at age band j which in turn is ob-

ained by applying Eq. (1) on feature i . The resultant pivot value P ij 
s used to find the k -nearest neighbors and determine the centroid

 i of these neighbors. This process is repeated for each age band to

omplete the construction of the personalized model for the image.

e use these centroids a i to fit a nonlinear function across the age

ands; once again we fit an nth degree polynomial curve using the

ethod of least squares. Eq. (4) represents the Personalized model

here y i is the feature value for feature i; x i is the age band index

nd n is the degree of the polynomial. 

 

(personalized) 
i 

= c 1 x i 
n + c 2 x i 

n −1 + .... + c n x i + c n +1 (4)

Eq. (4) embodies the aging trajectory for an individual and pro-

ides insights into how one individual’s aging trajectory differs

rom another in the given population. In our experimentation in

ections 8 and 9 we demonstrate the effectiveness of the person-

lized model against the global model. 

.3. Local model 

While a personalized model captures aging effects that are tai-

ored to an individual and a global model captures trends across

 population, scope exists for an intermediate level modeling ap-

roach. Given a probe image the local modeling approach con-

tructs a model from a homogeneous subset of the population that
s most closely aligned with the image rather than from the entire

opulation that in general is heterogeneous. 

Essentially, the local approach constructs subpopulation

hrough the use of a clustering scheme. For each probe im-

ge, the cluster that is closest to it is identified and thereafter

he same model construction process as in personalized modeling

s applied. Thus in terms of performance, the local approach is

xpected to be faster than personalized modeling as the construc-

ion and fitting of the aging function is restricted to a subset of

nstances rather than from the population as a whole. 

In a real world situation, the population may be heterogeneous

ith several different sub-populations made up of different eth-

icities, different lifestyles, etc, all of which have a bearing on the

ging process. However, in this research we do not assume that the

mage gallery is annotated with such explicit feature information.

hus in order to segment the population we need to make use of

 clustering algorithm that could be applied on the time series tra-

ectories obtained from the fiducial features taken over time. The

ntuition is that individuals who age similarly will produce simi-

ar trajectories and hence will be clustered together in the same

egment. However, it can also happen that any two given individ-

als age similarly but have pair-wise differences in the time series

ariable (fiducial feature) over the age bands that we track. In time

eries analysis this corresponds to two time series that are highly

orrelated but are out of phase with each other. A standard cluster-

ng algorithm such as K -means will fail to cluster such correlated

ut out of phase sequences. This problem can be avoided by ap-

lying Dynamic Time Warping (DTW) ( Sakoe & Chiba, 1978 ) before

pplying K -means. 

As mentioned earlier the construction follows the same proce-

ure as for the personalized model but with segmentation per-

ormed as a pre-processing step and the use of cluster means in

lace of global means at each age band. The algorithmic details

ollow. 

.3.1. Model construction 

Step 1: For each feature f , apply the K -means clustering algo-

ithm on the time warped vector space and create K clusters that

pan the N age bands. Note that we use K to distinguish it from

he neighborhood parameter k used in the k-NN search. This will

esult in a total of K × N centroids, one for each cluster and one

or each age band. 

Step 2: For each probe image its age band is determined. For

hat age band the closest cluster C , that has the maximum proba-

ility of containing the target image given feature X j is determined

rom Eq. (5) . 

 r(C i | X j ) = P r (C i ) P r (X j | C i ) /P r (X ) (5)

here Pr ( X ) is a scaling factor computed across all features. X j , 1 ≤
 ≤ n where n is total number of features. 

Step 3: Use Eq. (2) with M i representing the mean of feature i

cross the cluster that the image belongs to, instead of the mean

cross all images in the database. Thereafter, Eq. (3) is applied to

nd the pivot points P i and n polynomial aging functions of the

ame form as in Eq. (4) are developed for each of the K clusters. 

.4. Integrated model 

Our Integrated model is inspired by the Integrated Multi Model

rame Work(IMMF) proposed by Widiputra (2011) which exploits

ynergy that may exists between models at the global, local and

ersonalized data granularity levels. 

The main component of the IMMF is the accumulator mod-

le which is implemented through the use of an Adaline Neural

etwork ( Widrow & Stearns, 1985 ) that decides the contribution

weighting) contributed by each type of model. The accumulator
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Fig. 8. Illustration of the Adaline for integrated model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

FG-NET age bands 

Ages 0–5 6–10 11–15 16–20 21–25 26–30 31–35 36–40 41–45 46–69 

Images 233 178 164 155 81 62 38 31 26 34 

Subjects 75 70 71 68 46 38 30 24 19 10 

Table 2 

FG-NET subspaces 

Ages 0–10 11–20 21–30 31–40 41–69 

Images 411 319 143 69 60 

Subjects 77 81 50 35 22 
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module takes as input the set of training images and then for each

training image will feed prediction outcomes (in the form of pre-

dicted feature value for feature j ) from each of the global, local

and personalized models in order to assign weights that will be

associated with each type of model. The output of the accumula-

tor represented by X in Fig. 8 is the optimized final set of weights

over the entire set of training images. Eq. (6) defines the predic-

tion for feature j for the Integrated model in terms of a linear

weighted function of predictions from the global, local and per-

sonalized models. 

(X ) j = W j,g Y 
(Gl obal ) + W j,l Y 

(Local) + W j,p Y 
(Personalised) (6)

where W j, g is the weight attributed to the global model for fidu-

cial feature j. W j, l is the weight attributed to the local model for

fiducial feature j. W j, p is the weight attributed to the personalized

model for fiducial feature j. Y ( Global ) , Y ( Local ) and Y ( Personalised ) are val-

ues returned from Eq. (4) . 

6. Use of subspace for target image identification 

In order to improve rank 1 accuracy, we aggregated adjacent

age bands into subspaces. In effect, we combine two adjacent age

bands into one subspace, thus building I subspaces from N age

bands. This has two advantages. Firstly, we expect rank 1 accuracy

to improve as there is less uncertainty in locating subspaces as op-

posed to age bands. Secondly, image recognition time is reduced

as the search is restricted to a smaller number of time segments. 

Naive Bayes is used to identify a subspace having a probe fea-

ture X j . Naive Bayes is an effective and computationally efficient

technique for constructing a classifier. The classifier assumes that

features are independent of each other which implies that the con-

ditional dependence of class on a given feature is independent of

the corresponding conditional dependencies across the other fea-

tures. Although this assumption may not hold strictly in practice

several empirical studies in the machine learning literature have

shown that this type of classifier is robust in practice ( Witten &

Frank, 2005 ). We thus select the Naive Bayes classifier on account

of its robustness and computational efficiency. 

Each subspace is constructed as shown in Tables 2 and 4 . Two

bins, high and low , spanning the higher and lower end of the me-

dian boundary range, were used for each subspace after normal-

izing each feature value to the [0..1] range. When a probe image

is taken, models at the global, local and personalized data granu-

larity levels are constructed. The feature values are de-aged to the

age band of the probe image. Then a predicted value for all of the

features are produced by the model. These values are compared

with the bin values and a bin is chosen on the basis of the closest

match with the predicted value. 

A posterior probability for each subspace is computed by us-

ing Eq. (7) where Pr ( A i ) is a prior probability for subspace i . The

conditional probability Pr ( X j | A i ) is then found for each feature j by

applying our aging models. The probability Pr(X) is a scaling factor

that is computed across the entire feature set. 

P r(A i | X j ) = P r (A i ) P r (X j | A i ) /P r (X ) (7)
here 

 r(X j | A i ) = P r(X 1 | A i ) P r(X 2 | A i ) ......P r(X n | A i ) 

 r(X j | A i ) = 

n ∏ 

j=1 

P r(X j | A i ) 

 r(A i | X j ) = P r(A i ) 
n ∏ 

j=1 

P r(X j | A i ) 

P r(X ) = 

k ∑ 

i =1 

P r(A i ) 
n ∏ 

j=1 

P r(X j | A i ) 

This process is repeated for every subspace. The subspace that

ields the highest posterior probability Pr ( A i | X j ) is chosen and is

ssumed to contain the desired probe image. We used a leave one

erson out strategy to train the classifier. 

For recognition, given a probe image, its age band is obtained

rom the human expert. We use this age band estimate to compute

redicted feature values for the probe image by using aging mod-

ls. We then determine the target subspace of the probe image.

inally, a similarity matrix is built from all images in our search

pace and rank 1 accuracy is then computed. 

. Empirical study 

Experiments were performed on the publicly available FG-NET

nd MORPH Album 2 (the largest publicly available face aging

ataset) ( Ricanek Jr & Tesafaye, 2006 ), both of which are used for

enchmarking new methods. The lack of a large publicly available

ace aging database until recently limited research on age invariant

ace recognition. 

There are two desired attributes of a face aging database: (i)

arge number of subjects, and (ii) large number of face images per

ubject captured at many different age points ( Li et al., 2011 ). In

ddition, it is desired that these images should not have large vari-

tions in pose, expression, and illumination. 

Each of the two datasets that we experimented with has their

wn challenges. The MORPH dataset has a large number of sub-

ects with images taken across a narrow age timeline while FG-

ET database has a smaller number of subjects and images but the

verage age gap between images from the same person is much

arger than with the MORPH dataset. 

The MORPH dataset contains about 55,0 0 0 face images from

3,0 0 0 different people. The FG-NET database on the other hand

ontains 1002 color and gray face images of 82 persons across a

ange of different ethnicities. There is a large variation in lighting,

xpression and pose across the different images. The image size is

0 0 × 40 0 in pixel units, on the average. The ages vary from 0 to

9 years. There are on the average 12 images per person across dif-

erent ages. The database was divided into ten different age bands

s shown in Tables 1 and 3 . 
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Table 3 

Morph age bands 

Ages 16–20 21–25 26–30 31–35 36–40 41–45 46–50 51–55 56–60 61–65 

Images 2189 2113 1642 1760 1825 1657 1018 549 183 64 

Subjects 973 1037 821 903 971 850 536 287 92 30 

Table 4 

Morph subspaces 

Ages 16–25 26–35 36–45 46–55 56–65 

Images 2283 1759 1680 675 103 

Subjects 2283 1759 1680 675 103 

Table 5 

Classification accuracy of subspace identification 

Models Database, subjects and images in probe Accuracy 

Shape FG-NET(82,1002) 96 .4% 

Texture FG-NET(82,1002) 94 .6% 

Fig. 9. Cumulative matching characteristic curves (CMC) for FGNET database. 
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Fig. 10. Cumulative matching characteristic curves for FGNET database. 

Fig. 11. The first row shows the probe images and the second row shows the 

gallery images correctly identified at the rank-1 level. 
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. Experiment with FG-NET database 

For evaluation we chose all 1002 images taken from the entire

et of 82 individuals. A leave-one person-out (LOPO) strategy was

sed for evaluation ( Gong et al., 2013; Gong et al., 2015; Li et al.,

011 ). 

Our experimentation focused on a three-way comparison be-

ween models at different levels of data granularity. We com-

ared the performance of the Global, Local and Personalized mod-

ls against each other and finally the effectiveness of the Integrated

pproach was investigated. The rationale behind this was to estab-

ish the merits of each method operating on its own in order to

ssess: (1) which one of the models on their own performed the

est and (2) whether the Integrated approach offers better accu-

acy over and above each of the individual model approaches. 

.1. Success rate of subspace selection 

Table 5 shows that the Bayesian classifier was highly effective

t finding the correct subspace for both shape and texture models,

ith both types of models returning accuracy rates around the mid

0% mark as measured according to the LOPO strategy mentioned

arlier. 
.2. Comparison of models across data granularity level for shape 

eatures 

The CMC curves in Fig. 9 confirm that the trends displayed in

hape models hold across rank orders from 1 to 10, with the Inte-

rated model emerging the winner across the range. 

.3. Comparison of models across data granularity level for texture 

eatures 

The CMC curves in Fig. 10 confirm that the trends displayed in

exture models hold across rank orders from 1 to 10, with the In-

egrated model emerging the winner across the range. 

Fig. 11 shows that gallery images of people in their youth can

e extracted successfully, given probe images of the same people

t adulthood. 

We note that the models developed can not only be used for

allery image extraction but could be used to simulate the aging

rocess as well. The age trajectory functions that we build can

e used to predict their features values by performing a forward

raversal (rather than a backward one). This a further advantage of

ur aging models over the one proposed by Gong et al. (2015) . 

. Morph experimentation 

In order to check generality of our models on different types of

atabases, we used MORPH Album 2 (the largest publicly available

ace aging dataset) database. We annotated the fiducial landmarks

ith Stasm as shown in Figs. 12 , a method based on Active shape

odels ( Milborrow & Nicolls, 2014 ). We used all 13,0 0 0 subjects

or conducting the experiment. We used the same methodology as

sed in state of art algorithms ( Gong et al., 2013; Gong et al., 2015;

i et al., 2011 ) in which the MORPH album 2 data set was split into

hree sets, viz training set, a probe set and a gallery set. 
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Fig. 12. Fiducial landmark detection results. Blue points represent the 68 landmark 

points.(For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 13. Cumulative matching characteristic curves for MORPH database 

Fig. 14. Cumulative matching characteristic curves for MORPH database 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. The first row shows the probe images and the second row shows the 

gallery images correctly identified at the rank-1 level. 

Table 6 

Comparative results of Rank-1 score 

with FG-NET database. 

Models shape Texture 

Global 33 .7% 23 .3% 

Local 63 .7% 53 .9% 

Personalized 70 .4% 68 .6% 

Integrated 75 .6% 74 .5% 

Table 7 

Comparative results of classification of different models 

Models Database,subjects and images in probe accuracy 

Shape Morph(650 0,650 0) 98 .8% 

Texture Morph(650 0,650 0) 99 .0% 

Table 8 

Comparative results of Rank-1 score 

with MORPH database 

Models Shape Texture 

Global 21% 20% 

Local 85% 81% 

Personalized 91% 90 .5% 

Integrated 95 .3% 95% 
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The persons in the training set were entirely different from

those in the probe and gallery sets. For the training dataset, we

selected a subset of 13,0 0 0 face images from 6500 subjects, with

two images per subject. These two images were selected such that

they had the largest age gap between them. The gallery set was

composed of 6500 face images corresponding to the youngest age

of these 6500 subjects. The probe set was composed of 6500 face

images corresponding to the oldest age of these 6500 subjects. 

The CMC curves in Figs. 13 and 14 confirm the trends shown

in Table 8 across rank order, thus confirming that the Integrated

model is once again the overall winner on the MORPH dataset as

well. 

9.1. Success rate of subspace selection 

Table 7 shows that the Bayesian classifier was highly effective

at finding the correct subspace for both shape and texture models,

with both types of models returning accuracy rates above 95% as

measured according to the LOPO strategy mentioned earlier. 
.2. Comparison of models across data granularity level for shape 

eatures 

The CMC curves in Fig. 13 confirm that the trends displayed in

hape models hold across rank orders from 1 to 10, with the Inte-

rated model emerging the winner across the range. 

.3. Comparison of models across data granularity level for texture 

eatures 

The CMC curves in Fig. 14 confirm that the trends displayed in

exture models hold across rank orders from 1 to 10, with the In-

egrated model emerging the winner across the range. 

Fig. 15 above shows that gallery images of people in their youth

an be extracted successfully, given probe images of the same peo-

le at adulthood. 

Tables 6 and 8 show that the Integrated model outperforms

he Global, Local and personalized Model. This indicates that syn-

rgy exists between models at different levels of data granularity.

odels built from shape features slightly outperform their texture

ounterparts although evidence exists that the texture features en-

ance face recognition as models built from a composite set of tex-

ure and shape features outperform each model type on its own. 
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Fig. 16. Composite model 
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Table 9 

Comparative results of Rank-1 

score with FG-NET database 

Composite models Rank-1 

Global 41 .7% 

Local 65 .1% 

Personalized 71 .2% 

Integrated 77 .6% 

( Geng et al., 2007 ) 38 .1% 

( Park et al., 2010 ) 37 .4% 

( Li et al., 2011 ) 47 .5% 

( Gong et al., 2013 ) 69% 

( Gong et al., 2015 ) 76 .2% 

Table 10 

Comparative results of Rank-1 

score with MORPH database 

Composite models Rank-1 

Global 21 .2% 

Local 81 .2% 

Personalized 90 .6% 

Integrated 96 .7% 

( Klare & Jain, 2011 ) 79 .08% 

( Park et al., 2010 ) 79 .80% 

( Li et al., 2011 ) 83 .90% 

( Gong et al., 2013 ) 91 .14% 

( Gong et al., 2015 ) 94 .59% 

( Li et al., 2016 ) 94 .87% 
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0. Composite aging modeling 

Shape and texture models are built from different types of fea-

ures and it can thus be expected that there will be differences in

odel outcomes. The question is: Does sufficient synergy exist be-

ween the two types of model formulations that can be exploited

o obtain even higher accuracy than one type of model operating

n its own. 

There are two types of scenarios possible with both types of

odels operating in tandem. The first is that both model types re-

urn the same predicted image for a given probe image. This sce-

ario increases confidence in the prediction process, and thus in

his case the returned image is selected. The other scenario occurs

hen both types of models point to different images. Fig. 16 show-

ng illustration of Composite model. This is a non trivial case to

eal with as it requires a conflict resolution mechanism. The res-

lution mechanism that we adopt is a classifier. The conflict sce-

ario can be represented as a two class problem: class 1 corre-

ponds to the case when the belief is that the shape model type

as made the right decision while class 2 corresponds to the be-

ief that the texture model has made the right decision. In prin-

iple, any type of robust classifier can be utilized here, includ-

ng the Bayesian that we used for subspace identification. We ex-

erimented with different classifiers such as the support vector

achine (SVM), Decision tree, Random Forest and Naive Bayes,

nd found that the Decision Tree returned the highest accuracy

mongst all. 

The predictor used were: the 7 shape features, 5 texture fea-

ures and 2 deviation factors df s and df t , one each for shape and

exture respectively. In addition, we use two confidence measures

 s and c t for shape and texture respectively, which we define be-

ow. 

The confidence factor is a measure of the predictive power of

he model type on identifying the correct image in the gallery. The

loser the distance between the predicted image returned by the

odel to the desired image the larger should be the confidence.

owever, it is desirable that the confidence diminishes rapidly in

 non-linear manner with distance; a distance of 2 d between the

mages should be considered much more than twice as weak as

 confidence obtained with a distance of d . Hence our decision to

hoose an inverse exponential function to measure confidence. In

rinciple, any monotonically decreasing nonlinear function can be

sed, but our experimentation with different types of such func-

ions has shown that the inverse exponential function defined in

q. (8) performs best. 

on f m 

= 1 / (1 + e d m 

) (8)
here subscript m refers to the model type, taking values of either

shape” or ”texture” and e is the natural logarithm base 

For either of the model types, the distance can be represented

s a Euclidean distance between the predictor image feature vector

nd the actual image feature vector and is defined in expression

9) below. 

(P, A ) = 

√ ∑ 

i 

(P i − A i ) 2 (9) 

he confidence measures for both model types were generated

rom the gallery dataset. 

1. Integration vs composition 

In this set of experiments we investigated the effects of com-

ining shape and texture models at different levels of granularity.

e benchmarked our models against the current state-of-the-art

ne proposed by Gong et al. (2015) . 

The results in Tables 9 and 10 clearly indicate that the Com-

osite Local and Personalized approaches significantly outperform

he Global approach. In fact, the Composite Local and Personal-

zed models are capable of good accuracy by themselves. This is to

e expected as aging is a personalized process and its trajectory

s very different for different individuals, depending on a range

f factors such as lifestyle, genetic disposition and others. At the

ame time we observe that the Composite Integrated approach also

rovides further improvement to models operating on their own,

ndicating that a certain amount of synergy existed between the

wo modeling approaches. We also note that the Composite Inte-

rated approach significantly outperformed the models proposed

y Gong et al. (2015) and Li, Gong, Li, and Tao (2016) . Our com-

osite model results are statistically significant with P value for

G-NET is 0.0 0 0 01 and for MORPH database P value is 0.0 0 0 0 0 01,

hich are determined through the use of the t-test with a confi-

ence level of 95% are used. 
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Fig. 17. ROC curve for FG-NET database 

Fig. 18. ROC curve for MORPH database 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 

Comparative results of verification with 

personalized model for shape and tex- 

ture at the 1% level for FAR and EER with 

FG-NET database 

Models EER HTER VR 

Shape 2 .62% 1 .79% 98 .36% 

Texture 3 .09% 2 .04% 98 .01% 

Table 12 

Comparative results of verification 

with state of art algorithms in terms 

of EER with FG-NET database 

Models EER 

Shape(Personalized) 2 .62% 

Texture (Personalized) 3 .09% 

( Du & Ling, 2015 ) 19 .4% 

( Ali et al., 2015 ) 6 .51% 

Table 13 

Comparative results of verification with 

personalized model for shape and tex- 

ture at the 1% level for FAR and EER with 

MORPH database 

Models EER HTER VR 

Shape 2 .38% 3 .02% 98 .16% 

Texture 1 .01% 0 .94% 99 .75% 

Table 14 

Comparative results of verification with state of art 

algorithms in terms of EER with MORPH database 

Models EER 

Shape(Personalized) 2 .38% 

Texture (Personalized) 1 .01% 

Lu, Zhou, Tan, Shang, and Zhou (2014) 7 .5% 

( Du & Ling, 2015 ) 5 .5% 
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12. Verification experiments 

Face verification is the usual process carried out where it is

desired to restrict entrance to some ceratin categories of persons

about whom information is already present in the database. It

compares the probe image against an image present in the gallery.

The probe image claims an identity and the system process ver-

ifies whether the stated claim is true and that it corresponds to

the claimed identity image in the database. The system must then

make a decision about truth or falsehood of the claim. Because,

based on this decision, the claimant will be granted or refused ac-

cess to the sensitive information or place. In the verification exper-

iments, three performance metrics are computed. The first metric

is called equal error rate or crossover error rate (EER or CER) which

is the rate at which both acceptance and rejection error rates

are equal. The second metric is the minimal half total error rate

(HT ER ) = (F AR + F RR ) / 2 , where FAR is the false accept rate and

FRR is the false reject rate as used in Miheli ̌c and Žibert (2006) . We

carried out verification experiments with the most common strat-

egy of three fold cross validation for FG-NET and MORPH database

as used in Ali, Sagayan, Saeed, Ameen, and Aziz (2015) ; Du and

Ling (2015) . The graphic representation of results is made through

a receiver operating characteristic (ROC) curve. It plots the false ac-

cept rate against the verification rate. The verification rate is the

likelihood of correctly accepting a genuine match. The probabil-

ity of verification (VR) was calculated and plotted against differ-

ent FARs. The reference threshold was varied along ROC curve to

study the effects. The ROC curves for texture and shape are shown

in Figs. 17 and 18 . 
Tables 11 and 13 show comparative results of verification with

ersonalized Model for shape and texture at the 1% level for FAR

nd EER FG-NET and MORPH databases. 

Table 12 summarizes the performances of the proposed algo-

ithm along with other state-of-the-art approaches. It shows that

ur Personalized models for shape and texture an ERR of 2.62%

nd 3.09% ,which represents a significant improvement over the

est published result of (6.51%) for the FG-NET database. 

Table 14 summarizes the performances of the proposed algo-

ithm along with other state-of-the-arts. It shows that our Person-

lized models for shape and texture with ERR rates of 2.38% and

.01%; both of which significantly improves over the best published

esult (5.5%) for the MORPH database. 

3. Conclusion and future work 

In this research we presented shape and texture models at dif-

erent levels of data granularity. The Personalized model, where a

odel is built for each individual at the lowest level of granularity

ielded the best rank 1 recognition rate. This indicates that aging

o large extent is an individualized process and is in agreement

ith other studies ( Lanitis, Taylor, & Cootes, 2002 ). 

Our method of dividing the whole database into subspaces and

sing the Naive Bayesian classifier to narrow down the search

pace also proved to be a success. This limits the search space and

mproves our recognition accuracy. 

In the case of the Local model we further reduced the search

pace by first dividing the whole database into sub populations
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Table 15 

Comparison of different models 

Models Complexity Effectiveness 

Global Low Low 

Local Low High 

Personalized High High 

Integrated High High 

Table 16 

Aging models when to use 

Models When to used 

Global When results required are required in very short time 

Local When good accuracy is required in short time 

Personalized When high accuracy is required and recognition time 

is not a problem 

Integrated When very high accuracy is required and recognition 

time is not a problem 
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clusters) and then considered subspaces within each subpopula-

ion. The Local model trades-off accuracy with recognition time.

eduction in recognition time follows directly from restricting the

earch space to a cluster rather than the entire dataset. Experimen-

ation with the FG-NET database resulted in a reduction of recog-

ition time by a factor of 60% in relation to the Personalized model

pproach but a reduction in rank 1 accuracy also resulted due to

he fact that image recognition decisions are made on localized

ata rather than on the entire dataset. 

The Integrated model which consisted of a combination across

ranularity level (Global, Local, Personalized) resulted in the high-

st accuracy because of the synergy that existed between the mod-

ls. The increased accuracy did come at the cost of extra compu-

ation time, increasing the recognition time 35% in relation to the

ersonalized model approach. 

Another idea that we explored in this research was model com-

osition between models built from shape and texture features. It

urned out that model composition, similar to model integration

esulted in better accuracy. The final conclusion of the study was

hat the optimal modeling approach was to compose shape models

uilt by integrating across data granularity levels with their cor-

esponding texture counterparts using the same data granularity

cheme. 

A brief comparison in tabular form is given in Table 15 . Table 16

ompares the models on two factors, complexity and effective-

ess. Complexity relates to computation time and effort involved

n model generation. The effectiveness relates to accuracy. Based

n Table 15, Table 16 was prepared, which suggests which of the

odels to be used depending on the end user’s requirements. For

ighest accuracy the Integrated Model is suggested and when time

s at a premium, the Local Model is a good compromise as it has a

ower recognition time than the Personalized model while having

etter accuracy than the Global model. 

Our aging models are also capable of forward traversal through

ime. Forward traversal has two attractive benefits. The first is au-

omatic update of the image database. Over a period of time an im-

ge gallery containing older images of a person becomes less use-

ul for recognition purposes as research has shown that the longer

he time gap between the probe image and the target image, the

ower is the rank 1 accuracy in general ( Park et al., 2010 ). The so-

ution to this problem either involves obtaining newer images from

he subjects concerned which may not be practicable as some sub-

ects may not be available. A more practical alternative would be

n automatic refresh based on a computed trajectory provided by

he aging functions proposed in this research. The second benefit

ies in age simulation whereby the appearance of given person at a

uture point in time is required for applications as face animation
r for making decisions at a future point in time on plastic surgery

lternatives. 
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