
1

Evolving Connectionist Systems: A Theory and a Case Study on Adaptive Speech
Recognition

Nikola Kasabov
Department of Information Science

University of Otago, P.O Box 56, Dunedin, New Zealand
Phone: +64 3 479 8319, fax: +64 3 479 8311

nkasabov@otago.ac.nz

Abstract.
The paper introduces evolving connectionist systems
(ECOS) as an effective approach to building on-line,
adaptive intelligent systems. ECOS evolve through
incremental, hybrid (supervised/unsupervised), on-line
learning. They can accommodate new input data, including
new features, new classes, etc. through local element
tuning. New connections and new neurons are created
during the operation of the system. The ECOS framework is
presented and illustrated on a particular type of evolving
neural networks - evolving fuzzy neural networks
(EFuNNs). EFuNNs can learn spatial-temporal sequences
in an adaptive way, through one pass learning. Rules can
be inserted and extracted at any time of the system
operation. The characteristics of ECOS and EFuNNs are
illustrated on a case study of adaptive, phoneme-based
spoken language recognition.

1. Introduction

The complexity and dynamics of real-world problems,
especially in engineering and manufacturing, require
sophisticated methods and tools for building on-line,
adaptive intelligent systems (IS). Such systems should be
able to grow as they operate, to update their knowledge and
refine the model through interaction with the environment.
This is especially crucial when solving AI problems such
as adaptive speech and image recognition, multi-modal
information processing, adaptive prediction, adaptive on-
line control, intelligent agents on the WWW. Seven major
requirements of the present IS (that are addressed in the
ECOS framework presented later) are listed below [20-22]:

(1) IS should learn fast from a large amount of data (using
fast training, e.g. one-pass training).
(2) IS should be able to adapt incrementally in both real
time, and in an on-line mode, where new data is
accommodated as they become available. The system

should tolerate and accommodate imprecise and uncertain
facts or knowledge and refine its knowledge.
(3) IS should have an open structure where new features
(relevant to the task) can be introduced at a later stage of
the system’s operation. IS should dynamically create new
modules, new inputs and outputs, new connections and
nodes. That should occur either in a supervised, or in an
unsupervised mode, using one modality or another,
accommodating data, heuristic rules, text, images, etc.
(4) IS should be memory-based, i.e. they should keep a
reasonable track of information that has been used in the
past and be able to retrieve some of it for the purpose of
inner refinement, or for answering an external query.
(5) IS should improve continuously (possibly in a life–long
mode) through active interaction with other IS and with the
environment they operate in.
 (6) IS should be able to analyse themselves in terms of
behaviour, global error and success; to explain what has
been learned; to make decisions about its own
improvement; to manifest introspection.
(7) IS should adequately represent space and time in their
different scales; should have parameters to represent such
concepts as spatial distance, short-term and long-term
memory, age, forgetting, etc.
 Several investigations proved that the most popular

neural network models and algorithms are not suitable for
adaptive, on-line learning [30,17,11]. At same time some of
the seven issues above have been acknowledged and
addressed in the development of several NN models for
adaptive learning and for structure and knowledge
manipulation, for example: learning through self-
organisation [4,23,24,10,], incremental learning [4,5], on-
line learning [11,15,9,31], local learning [3], learning in
growing structures [10,8], learning with pruning
[25,16,13,29], evolutionary learning [12,7,6], knowledge-
based NN [2,18,17], neuro-fuzzy systems [34,26,17-19].
A framework called ECOS (Evolving COnnectionist
Systems) that addresses all seven issues above is
introduced in the paper and illustrated on the case study
problem of adaptive phoneme-based speech recognition.

2. The ECOS framework

Evolving connectionist systems (ECOS) are systems that
evolve in time through interaction with the environment
[20-22]. They have some (genetically) pre-defined
parameters (knowledge) but they also learn and adapt as
they operate. In contrast with the evolutionary systems they
do not necessarily create copies of individuals and select
the best ones for the future. They emerge, evolve, develop,
unfold through both innateness and learning, and through
changing their structure in order to better represent data
[20-22]. ECOS learn in an on-line, and in a knowledge–
based mode, so they can accommodate any new incoming
data from a data stream, and the learning process can be
expressed as a process of rule manipulation. ECOS are
multi-level, multi-modular structures where many neural
network modules (NNM) are connected with inter-, and
intra- connections. ECOS do not have a clear multi-layer
structure, but rather a modular, “open” structure. Initially
an ECOS has a pre-defined structure of some NNMs, each
of them being a mesh of nodes (neurons) and very few
connections defined through prior knowledge, or “genetic”
information. Gradually, the system becomes more and
more “wired” through self-organisation, and through
creation of new NNM and new connections.

The ECOS functioning is based on the following general
principles:
(1) ECOS evolve incrementally in an on-line, hybrid,
adaptive supervised/unsupervised mode through
accommodating more and more examples when they
become known from a continuous input data stream. .
(2) ECOS are memory-based and store exemplars
(prototypes, rules) that represent groups of data from the
data stream. New input vectors are stored in the NNMs
based on their similarity to previously stored data both on
the input and the desired output information. A node in an
NNM is created and designated to represent an individual
example if it is significantly different from the previously
used examples (with a level of differentiation set through
dynamic parameters). Learning is based on locally tuned
elements from the ECOS structure thus making the learning
process fast for real-time parallel implementation.
(3) There are three levels at which ECOS are functionally
and structurally defined:
(a) Parameter (gene) level, i.e. a chromosome contains
genes that represent certain parameters of the whole
systems, such as: type of the structure (connections) that
will be evolved; learning rate; forgetting rate; size of a
NNM; NNM specialisation, thresholds that define
similarity; error rate that is tolerated, and many more. The
values of the genes are relatively stable, but can be changed
through genetic operations, such as mutation of a gene,
deletion and insertion of genes that are triggered by the self

analysis module as a result of the overall performance of
the ECOS.
 (b) Representation (synaptic) level, that is the
information contained in the connections of the NNM. This
is the long-term memory of the system where exemplars of
data are stored. They can be either retrieved to answer an
external query, or can be used for internal ECOS
refinement.
 (c) Behavioural (neuronal activation) level, that is the
short-term activation patterns triggered by input stimuli.
This level defines how well the system is functioning in the
end.
(4) ECOS evolve through learning (growing), forgetting
(pruning), and aggregation, that are both defined at a
genetic level and adapted during the learning process.
ECOS allow for: creating/connecting neurons; removing
neurons and their corresponding connections that are not
actively involved in the functioning of the system thus
making space for new input patterns to be learned;
aggregating nodes into bigger-cluster nodes.
(5) There are two global modes of learning in ECOS:
 (a) Active learning - learning is performed when a
stimulus (input pattern) is presented and kept active.
 (b) Passive (inner, ECO) learning mode - learning is
performed when there is no input pattern presented to the
ECOS. In this case the process of further elaboration of the
connections in ECOS is done in a passive learning phase,
when existing connections, that store previously fed input
patterns, are used as “echo” (here denoted as ECO) to
reiterate the learning process (see for example fig.9
explained later).
There are two types of ECO training:
• cascade eco-training: a new connectionist structure (a

NN) is created in an on-line mode when conceptually new
data (e.g., a new class data) is presented. The NN is trained
on the positive examples of this class, on the negative
examples from the following incoming data, and on the
negative examples from previously stored patterns in
previously created modules.
• ’sleep’ eco-training: NNs are created with the use of

only partial information from the input stream (e.g.,
positive class examples only). Then the NNs are trained
and refined on the stored patterns (exemplars) in other NNs
and NNMs (e.g., as negative class examples).
(6) ECOS provide explanation information extracted from

the NNMs through the self-analysis/ rule extraction
module. Generally speaking, ECOS learn and store
knowledge, rules, rather than individual examples or
meaningless numbers.
(7) The ECOS principles above are based on some

biological facts and biological principles (see for example
[2,33,27]).

Implementing the ECOS framework and the NNM from it
requires connectionist models that comply with the ECOS

3

principles. One of them, called evolving fuzzy neural
network (EFuNN), is presented in the next section.

3. Evolving Fuzzy Neural Networks EFuNNs
3.1. General principles of EFuNNs

Fuzzy neural networks are connectionist structures that
implement fuzzy rules and fuzzy inference [26,34,17].
FuNNs represent a class of them [17,19]. EFuNNs are
FuNNs that evolve according to the ECOS principles.
EFuNNs were introduced in [20-22] where preliminary
results were given. Here EFuNNs are further developed
and illustrated on adaptive speech recognition tasks.
EFuNNs have a five-layer structure, similar to the structure
of FuNNs (fig.1). But here nodes and connections are
created/connected as data examples are presented.

Fig.1 The five layer basic structure of the EFuNN.

An optional short-term memory layer can be used through
a feedback connection from the rule (also called, case)
node layer. The layer of feedback connections can be used
if temporal relationships between input data are to be
memorised structurally as it is the case in speech
recognition.

The input layer represents input variables. The second layer
of nodes (fuzzy input neurons, or fuzzy inputs) represents
fuzzy quantization of each input variable space. For
example, two fuzzy input neurons can be used to represent
"small" and "large" fuzzy values. Different membership
functions (MF) can be attached to these neurons
(triangular, Gaussian, etc.). The number and the type of MF
can be dynamically modified in an EFuNN. The task of the
fuzzy input nodes is to transfer the input values into
membership degrees to which they belong to the MF. The
third layer contains rule (case) nodes that evolve through
supervised/unsupervised learning. The rule nodes represent
prototypes (exemplars, clusters) of input-output data
associations, graphically represented as an association of
hyper-spheres from the fuzzy input and fuzzy output spaces
(see fig.2). Each rule node r is defined by two vectors of
connection weights – W1(r) and W2(r), the latter being
adjusted through supervised learning based on the output

error, and the former being adjusted through unsupervised
learning based on similarity measure within a local area of
the problem space. The fourth layer of neurons represents
fuzzy quantization for the output variables, similar to the
input fuzzy neurons representation. The fifth layer
represents the real values for the output variables.

Each rule node, e.g. rj, represents an association between a
hyper-sphere from the fuzzy input space and a hyper-
sphere from the fuzzy output space (fig.2), the W1(rj)
connection weights representing the co-ordinates of the
center of the sphere in the fuzzy input space, and the W2
(rj) – the co-ordinates in the fuzzy output space. The radius
of an input hyper-sphere of a rule node is defined as (1-
Sthr), where Sthr is the sensitivity threshold parameter
defining the minimum activation of a rule node (e.g., r1,
previously evolved to represent a data point (Xd1,Yd1)) to
an input vector (e.g., (Xd2,Yd2)) in order for the new
input vector to be associated with this rule node. For
example, two pairs of fuzzy input-output data vectors
d1=(Xd1,Yd1) and d2=(Xd2,Yd2) will be allocated to the
first rule node r1 if they fall into the r1 input sphere and in
the r1 output sphere, i.e. the local normalised fuzzy
difference between Xd1 and Xd2 is smaller than the radius
r and the local normalised fuzzy difference between Yd1
and Yd2 is smaller than an error threshold Errthr. The local
normalised fuzzy difference between two fuzzy
membership vectors d1f and d2f that represent the
membership degrees to which two real values d1 and d2
data belong to the pre-defined MF, are calculated as
D(d1f,d2f) = sum(abs(d1f - d2f))/sum(d1f + d2f)). For
example, if d1f=(0,0,1,0,0,0) and d2f=(0,1,0,0,0,0) (see
fig.3), than D(d1,d2) = (1+1)/2=1 which is the maximum
value for the local normalised fuzzy difference. If data
example d1 = (Xd1,Yd1), where Xd1 and Xd2 are
correspondingly the input and the output fuzzy membership
degree vectors, and the data example is associated with a
rule node r1 with a centre r1

1, than a new data point
d2=(Xd2,Yd2) will be associated with this rule node too.
Through the process of associating (learning) of new data
points to a rule node, the centres of this node hyper-spheres
adjust in the fuzzy input space depending on a learning rate
lrn1, and in the fuzzy output space depending on a learning
rate lr2, as it is shown in fig.4a on the two data points d1
and d2. The adjustment of the centre r1

1 to its new position
r1

2 can be represented mathematically by the change in the
connection weights of the rule node r1 from W1(r1

1) and
W2(r1

1) to W1(r1
2) and W2(r1

2) according to the following
vector operations:
 W2 (r1

2) = W2(r1
1) + lr2. Err(Yd1,Yd2). A1(r1

1)
 W1(r1

2)=W1 (r1
1) + lr1. Ds (Xd1,Xd2),

where: Err(Yd1,Yd2)= Ds(Yd1,Yd2)=Yd1-Yd2 is the
signed value rather than the absolute value of the fuzzy
difference vector; A1(r1

1) is the activation of the rule node
r1

1 for the input vector Xd2.

iinputs
outputs

rrule nodes

While the connection weights from W1 and W2 capture
spatial characteristics of the learned data (centres of hyper-
spheres), the temporal layer of connection weights (e.g.
W3) captures temporal dependencies between consecutive
data examples. If the winning rule node at the moment (t-1)
(to which the input data vector at the moment (t-1) was
associated) was r1=inda1(t-1), and the winning node at the
moment t is r2=inda1(t), then a link between the two nodes
is established as follows:
W3(r1,r2) (t) = W3(r1,r2) (t-1) + lr3. A1(r1) (t-1) A1(r2)) (t) ,

where: A1(r) (t) denotes the activation of a rule node r at a
time moment (t); lr3 defines the degree to which the
EFuNN associates links between rules (clusters,
prototypes) that include consecutive data examples (if
lr3=0, no temporal associations are learned in an EFuNN
structure).

Fig.2. Input /output mapping in an EFuNN and learning
through adjustment of the centres of the spheres
represented by the connection weights of the rule nodes

The EFuNN algorithm, to evolve EFuNNs from incoming
examples, is presented in [20-22]. Several simulators
implementing it are available as part of the New Zealand
Repostory of Intelligent Connectionist-based Information
Systems (RICBIS) from:
http://divcom.otago.ac.nz/infosci/CBIIS.html

There are different ways to locate rule nodes in an EFuNN
rule node space: linear – the nodes are located ton represent
exemplars in the order of their presentation; spatial – a new
node is located nearest to the highest activation node for
the current input vector.

3.2. Learning modes in EFuNN. Rule insertion, rule
extraction and aggregation.

Different learning, adaptation and optimisation strategies
and algorithms can be applied on an EFuNN structure for
the purpose of its evolving. These include:
• Active learning , e.g. the EFuNN algorithm;
• Passive learning (i.e., cascade-eco, and sleep-eco

learning) [20-22]
• Rule insertion into EFuNNs, Rule extraction and

aggregation: Each rule node r, which represents a

prototype, rule, exemplar from the problem space, can be
described by its connection weights W1(r) and W2 (r) that
define the association of the two corresponding hyper-
spheres from the fuzzy input and the fuzzy output problem
spaces. The association is expressed as a fuzzy rule.
• Aggregation and abstraction through ECO-learning:

Aggregation of rule nodes to represent association of larger
hyper-spheres from the input and the output space can be
achieved through the use of the ECO learning method,
when the connection weights W1(1) and W2 (1) of an
evolved EFuNN1 are used as fuzzy exemplars to evolve an
EFuNN2 for smaller values of the sensitivity threshold Sthr
and the error threshold Errthr (see fig.9). This process can
be continued further to evolve a new EFuNN3 with smaller
number of rule nodes, therefore smaller number of rules,
and so on.
• Extracting rules for learning temporal pattern
correlation:
Through analysis of the weights W3 of an evolved
EFuNN, temporal correlation between time consecutive
exemplars can be expressed in terms of rules and
conditional probabilities, e.g.:
 IF (W1(r1),W2(r1)) (t-1) THEN (W1(r1),W2(r2)) (t) (0.3)

The meaning of the above rule is that examples that belong
to the rule (prototype) r1 follow in time examples from the
rule prototype r2 with a relative conditional probability of
0.3.
• Changing MF during operation [22].
• On-line parameter optimisation. Once set, the values

for the EFuNN parameters will need to be optimised during
the learning process. Optimisation can be done through
analysis of the behaviour of the system and through a
feedback connection from the higher level modules.
Genetic algorithms (GA) can also be applied to optimise
the EFuNNs structural and functional parameters based on
either standard GA algorithms, or on their possible
modifications for dynamic, on-line application.
• Learning and pruning: With the learning and pruning
operations as part of the EFuNN learning algorithm, and
with some additional adaptation techniques, an EFuNN
can dynamically organise its structure to learn from data in
an adaptive, continuous, incremental, life-long learning
mode.

3.3. EFuNNs as universal learning machines. Local and
global generalisation

EFuNNs are designed to work in an on-line mode, with a
continuous input data stream. An EFuNN is trained
(evolved) on input-output vectors of data available over
time. Then it is used to generalise on new incoming data
Xd for which the output is not known. Once the output
vector Yd for the new input data becomes known, the
input-output pair (Xd,Yd) is accommodated in the EFuNN
structure, which is then used on the next input data, and so

Yd1 Yd2
1

X
1 2

r

Errth

5

on. In an on-line learning of an EFuNN local generalisation
is calculated, i.e., the generalisation over the next incoming
data. Global generalisation, i.e. the generalisation over a
whole set of data (test data) can also be evaluated. The
generalisation ability of EFuNNs depends on the learning
and pruning coefficients which can be dynamically
adjusted in an ECOS architecture through a feedback
connection from the higher level decision module or
through optimisation techniques. EFuNNs are universal
learning machines that can learn, subject to a chosen degree
of accuracy, any data set, regardless of the class of
problems (function approximation, time series prediction,
classification, etc.).

4. Evolving Systems for On-line Incremental
Learning for Adaptive Speech Recognition

Adaptive speech recognition is concerned with the
development of speech recognition systems that: (1) can
adapt to new pronunciation (of the same, or a new
speaker); (2) can enlarge their vocabulary of words in an
on-line mode; (3) can acquire new languages. Here,
EFuNNs are illustrated on the problem of phoneme
adaptation.

It is well known that, there are a lot of variations in the
pronunciation of phones of the same phonemes, and at the
same time there are similarities in the pronunciation of
phones of different phonemes. These make the recognition
of phonemes a very difficult task. Four phoneme data is
used here (the same four phonemes as in the example from
section 3, but here taken from the words ‘pit’ , ‘pet’ , ‘pat’
and ‘bean’ from the same data base, same two speakers
[32]). Figures 3 illustrate the temporal variability of the /I/
phoneme data (new speaker, not in the database,
pronouncing the word ‘sit’) and the /e/ phoneme data (from
the word ‘get’ , speaker 17 from the database) within a
small time interval. Fig.3 shows the values of the 26 mel-
scale coefficients of the phoneme /I/ data for each of ten
consecutive time frames (each of them 11.6 msec long). It
can be seen that while there is similarity in the mel-scale
vector patterns, there is a significant difference in the
values of the main mel coefficients.

In the experiment below the data is grouped into two data
sets – a set A, that constitutes a first pronunciation of the
four phonemes, and a set B – a second pronunciation of the
same words by the same speakers. Once evolved on set A
the system will be tested on set B and if it does not perform
well it will be adapted to set B. The level of forgetting on
the set A will be tested. The following numbers of 78–
element frame vectors are used as positive examples (and
negative examples in brackets): /I/ - 174 (85); /e/ - 253
(124); /ae/ - 285(138); /i/ - 325 (159). The data is taken
from the Otago Speech Corpus:

http://divcom.otago.ac.nz:800/com/infosci/kel/CBIIS.html
Initially four EFuNNs were evolved from the set A through
one pass of training for the following parameter values:
linear activation functions; SThr=0.5; lr1=lr2=0.5; lr3=0;
no pruning; Errthr=0.01. The classification rate was
evaluated on set A (to evaluate the training error), and on
set B (to evaluate the generalisation of the EFuNNs over a
new articulation data of the same speakers (tabl.1). Then all
EFuNNs were further trained for one pass on the set B to
adapt to the new articulation data. After the additional
training the EFuNNs were tested again on set A and set B.
The classification rate significantly improved on both set A
and set B. This experiment shows that EFuNNs can
successfully adapt to new pronuncition without forgetting
previous ones. When temporal links were evolved, for a
small learning rate of lr3=0.01, the classification accuracy
further improved which was expected after having seen the
temporal variations within the phones of same phonemes
from fig.3a,b (tabl.2).

Fig. 3 Phoneme /I/ from ‘sit’ - 10 consecutive mel scale
vectors, each of 26 elements;

Table 1
4 EFuNNs are
evolved for one pass
on A and tested on
A and on B (in%)

on A on B

The evolved on A
EFuNNs are adjusted for
one pass on B and
tested on A and B
on A on B

I 95(99) 71(99) 96(99) 97(99)
e 95(97) 74(96) 97(98) 91(98)
ae 98(99) 81(93) 99(99) 94(98)
I 93(95) 76(82) 92(98) 94(95)

Table 2.
Temporal EFuNNs are
evolved for one pass
on A and tested on A
and on B (lr3=0.001)

on A on B

The temporal EFuNNs
that were evolved on A
are adjusted for one pass
on B and tested on A
and B (lr3=0.001)
 on A on B

I 94(99) 74(99) 96(99) 98(99)
e 95(97) 80(96) 97(98) 93(98)
ae 97(99) 81(94) 99(99) 93(98)
i 95(96) 75(82) 94(98) 96(95)

EFuNNs are currently being used for building a general
framework of an adaptive phoneme-based speech

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

recognition system that adapts its phoneme modules after
every unsuccessful recognition attempt.

5. Conclusions

ECOS and EFuNNs are suitable models for on-line,
adaptive, learning, knowledge-based systems. Further
development in this area includes building ECOS for multi-
modal, multilingual spoken language processing systems.

Acknowledgements

This research is part of a research programme funded by
the New Zealand Foundation for Research Science and
Technology, contract UOO808.

References

1. Amari, S. and Kasabov, N. eds, “Brain-like Computing and
Intelligent Information Systems” , Springer Verlag,1998.

2. Arbib, M. (ed) The Handbook of Brain Theory and Neural
Networks,The MIT Press, 1995.

3. Bottu and Vapnik, “Local learning computation” , Neural
Computation, 4, 888-900 (1992)

4. Carpenter, G. and Grossberg S., Pattern recognition by self-
organizing neural networks , The MIT Press, Cambridge,
Massachusetts (1991)

5. Carpenter, G. S. Grossberg, N. Markuzon, J.H. Reynolds,
D.B. Rosen, “FuzzyARTMAP: A neural network
architecture for incremental supervised learning of analog
multi-dimensional maps,” IEEE Transactions of Neural
Networks , vol.3, No.5, 698-713 (1991).

6. DeGaris, H., “Circuits of Production Rule - GenNets – The
genetic programming of nervous systems” , in: Albrecht, R.,
Reeves, C. and Steele, N. (eds) Artificial Neural Networks
and Genetic Algorithms, Springer Verlag (1993)

7. Edelman, G., Neuronal Darwinism: The theory of neuronal
group selection, Basic Books (1992).

8. Fahlman, C., and C. Lebiere, "The Cascade- Correlation
Learning Architecture", in: Turetzky, D (ed) Advances in
Neural Information Processing Systems, vol.2, Morgan
Kaufmann, 524-532 (1990).

9. Freeman, J., D. Saad, “On-line learning in radial basis
function networks” , Neural Computation vol. 9, No.7
(1997).

10. Fritzke, B. “A growing neural gas network learns
topologies” , Advances in Neural Information Processing
Systems, vol.7 (1995).

11. Gaussier, T., and S. Zrehen, “A topological neural map for
on-line learning: Emergence of obstacle avoidance in a
mobile robot” , In: From Animals to Animats No.3, 282-290,
(1994).

12. Goldberg, D.E., Genetic Algorithms in Search, Optimisation
and Machine Learning, Addison-Wesley (1989)

13. Hassibi and Stork, “Second order derivatives for network
pruning: Optimal Brain Surgeon,” in: Advances in Neural
Information Processing Systems, 4, 164-171, (1992).

14. Hech-Nielsen, R. “Counter-propagation networks” , IEEE
First int. conference on neural networks, San Diego, vol.2,
pp.19-31 (1987)

15. Heskes, T.M., B. Kappen, “On-line learning processes in
artificial neural networks” , in: Math. foundations of neural
networks, Elsevier, Amsterdam, 199-233, (1993).

16. Ishikawa, M., "Structural Learning with Forgetting", Neural
Networks 9, 501-521, (1996).

17. Kasabov, N., Foundations of Neural Networks, Fuzzy
Systems and Knowledge Engineering, The MIT Press, CA,
MA, (1996).

18. Kasabov, N. "Adaptable connectionist production systems” .
Neurocomputing, 13 (2-4) 95-117, (1996).

19. Kasabov, N., "Learning fuzzy rules and approximate
reasoning in fuzzy neural networks and hybrid systems",
Fuzzy Sets and Systems 82 (2) 2-20 (1996).

20. Kasabov, N. The ECOS Framework and the ECO Learning
Method for Evolving Connectionist Systems, Journal of
Advanced Computational Intelligence, 2 (6) 1998, 1-8

21. Kasabov, N., “ECOS: A framework for evolving
connectionist systems and the ECO learning paradigm” ,
Proc. of ICONIP'98, Kitakyushu, Japan, Oct. 1998, IOS
Press, 1222-1235

22. Kasabov, N., “Evolving Fuzzy Neural Networks -
Algorithms, Applications and Biological Motivation” , in: in:
Yamakawa and Matsumoto (eds), Methodologies for the
Conception, design and Application of Soft Computing,
World Scientific, 1998, 271-274

23. Kohonen, T., “The Self-Organizing Map” , Proceedings of
the IEEE, vol.78, N-9, pp.1464-1497, (1990).

24. Kohonen, T., Self-Organizing Maps, second edition,
Springer Verlag, 1997

25. Le Cun, Y., J.S. Denker and S.A. Solla, “Optimal Brain
Damage” , in: Touretzky, D.S., ed., Advances in Neural
Information Processing Systems, Morgan Kaufmann, 2,
598-605 (1990).

26. Lin, C.T. and C.S. G. Lee, Neuro Fuzzy Systems, Prentice
Hall (1996).

27. Quartz, S.R., and T.J. Sejnowski, “The neural basis of
cognitive development: a constructivist manifesto” ,
Behavioral and Brain Science, to appear.

28. R. Jang, “ANFIS: adaptive network-based fuzzy inference
system”, IEEE Trans. on Syst., Man, Cybernetics, 23(3),
May-June, 665-685, (1993).

29. Reed, R., “Pruning algorithms - a survey” , IEEE Trans.
Neural Networks, 4 (5) 740-747, (1993).

30. Robins, A. and Frean, M. “Local learning algorithms for
sequential learning tasks in neural networks, Journal of
Advanced Computational Intelligence, vol.2, 6 (1998)

31. Saad, D. (ed) On-line learning in neural networks,
Cambridge University Press, 1999

32. Sinclair, S., and C. Watson, “The Development of the Otago
Speech Database” , In Kasabov, N. and Coghill, G. (Eds.),
Proceedings of ANNES ’95, Los Alamitos, CA, IEEE
Computer Society Press (1995).

33. Wong, R.O. “Use, disuse, and growth of the brain” , Proc.
Nat. Acad. Sci. USA, 92 (6) 1797-99, (1995).

34. Yamakawa, T., H. Kusanagi, E. Uchino and T. Miki, "A
new Effective Algorithm for Neo Fuzzy Neuron Model", in:
Proceedings of Fifth IFSA World Congress, 1017-1020,
(1993).

