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1  Introduction

Aging is a slow process and its effects are visible only after 
a few years. But in spite of being slow, it remains a spatio-
temporal phenomenon. The facial features of a person can 
be considered as a subspace and the aging over the years 
of this subspace is in turn a temporal process. It would be 
very useful to incorporate the temporal as well as spatial 
patterns in aging data as important components in classi-
fication. The raw data which has been used in this study is 
from (FG-NET) and MORPH image galleries. Age group 
classification and gender recognition have important appli-
cations for business managers and law enforcement agen-
cies. In Human Computer Interaction (HCI) gender rec-
ognition can be used to make it more amenable to both 
genders. For example, it enables a computer to address a 
user by their correct title, Mr or Mrs, as the case may be. 
Automatic gender recognition facilitates better interaction 
with humans as well as saves keystrokes in filling up forms. 
In Surveillance systems, a gender specific physical locality 
can be concentrated upon, thereby reducing the area under 
observation and making the whole system more efficient. It 
could also assign higher threat levels to a specified gender 
location. In content based systems, indexing and searching 
can be greatly facilitated. For example, today a plethora of 
digital videos and photographs are produced. Their gender 
based indexing and searching can be easily carried out. It 
will also reduce the search effort by limiting it to a par-
ticular gender, thereby making it more efficient. The same 
applies to Biometrics. The automatic collection of demo-
graphic data for statistical purposes will be facilitated if the 
gender can be automatically recognised.

Age group classification (Kwon and da  Vitoria  Lobo 
1999; Horng et  al. 2001; Lanitis et  al. 2004; Gunay and 
Nabiyev 2008; Wang et al. 2009, 2011; Thukral et al. 2012; 
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Liu et al. 2015) and gender recognition (Guo and Mu 2011; 
Levi and Hassner 2015) is also an area of research that is 
receiving a lot of attention due to advances in the field of 
biometrics (Guo and Mu 2011; Jain et al. 2016; Liu et al. 
2015; Ramanathan and Chellappa 2006). There are a num-
ber of challenges in making an effective age group clas-
sification and gender recognition system, which include: 
pose, illumination, face expression, occlusions and aging 
effects. It is challenging to address all of them simultane-
ously, because if one error is removed then another crops 
up. We have adopted the approach of using Anthropometric 
features (Ramanathan and Chellappa 2006) which elimi-
nates some of these problems. This model is based on geo-
metrical ratios and distances of fixed number of fiducial 
landmarks, which in our case corresponds to 68 landmark 
points on the face. Since the Anthropometric model uses 
geometrical distances it is not affected by texture informa-
tion, illumination and intensity levels. Problems caused 
by occlusions such as moustaches or spectacles are also 
eliminated as the distance between features will remain 
unchanged even if such occlusions occur. However, differ-
ent poses could create problems (Alvi and Pears 2015a, b, 
c, 2016). We mitigate the effects of this problem by finding 
an average of all faces and then warping all images to that 
image with the help of the procrustes algorithm (Cootes 
et  al. 1999). This allow us to concentrate on effects due 
to aging. Aging not only changes texture, but also alters 
geometrical ratios and distance between landmark points. 
However, such changes over time follow a definite pattern. 
Thus, our main research hypothesis is that our anthropo-
metric model would provide a realistic basis for studying 
the effects of aging due to change in geometry of the face 
(Figs. 1, 2).

This Research focuses on designing a novel framework 
for age group classification and gender recognition. We 
use an Anthropometric model for feature extraction and 

extract seven different indexes. These indexes consist of 
different distances and geometrical ratios of face features. 
After extracting features we convert the data into a discrete 
spike train. We use the AER encoding method to discretize 
the continuous signal. This encoding method was applied 
successfully for the artificial retina sensor (Hechenbichler 
and Schliep 2004). We initialize the NeuCube by using the 
Small World rule (Hechenbichler and Schliep 2004). At 
unsupervised training stage we used the STDP rule (Hech-
enbichler and Schliep 2004). The dynamic evolving Spike 
Neural Networks (deSNN) is used here as an output clas-
sifier. Our choice of the NeuCube platform was influenced 
by its outstanding success that it has achieved on spatio-
temporal classification problems in many diverse (Kasabov 
et al. 2016; Dhoble et al. 2012; Kasabov et al. 2013; Kasa-
bov 2014; Sengupta et al. 2015; Kasabov 2007). All such 
studies employing NeuCube have been on data that exhibit 
a relatively fast pace of temporal changes. However in the 
aging domain that this research is based on, the speed of 
changes are much smaller, on the order of months to years 
rather than hours to seconds, and hence it will be interest-
ing to investigate whether the success of NeuCube can be 
replicated in such a slow-changing temporal environment. 
Our empirical results indicate that NeuCube captures tem-
poral patterns well in this domain as well, as its classifi-
cation accuracy was significantly better than with classical 
methods such as the K Nearest Neighbor(KNN), Multi 
Layer Perceptron (MLP) and Naive Bayes classifiers.

2 � Literature review

Kwon and da  Vitoria  Lobo (1999) proposed a classifica-
tion approach based on age that identifies the age group of 
given face images. It is based on the anthropometry of the 
face and the density of its face wrinkles. They considered 
three age groups in their study. These groups were infants, 
young adults and senior adults. They also observed that the 
lower and upper halves of faces grow at different rates dur-
ing the early formative years.

Lanitis et al. (1999) also used Active Appearance Mod-
els (AAM). Lanitis et  al used a statistical face model for 
studying the age estimation problem. AAM parameters 
were extracted from facial images which were marked with 
68 points. A Genetic Algorithm was then applied to build 
and optimize an aging function.

Geng et al. (2007) worked on the assumption that simi-
lar faces age in similar ways across a population. He intro-
duced the method of Aging pattern Subspace (AGES) for 
modelling aging across time. Geng et  al constructed a 
representative subspace by utilizing a sequence of images 
of a given individuals face sorted in chronological order. 
Thereafter, minimum reconstruction error was achieved by 

Fig. 1   Same individual at different ages (FG-NET 2002)

Fig. 2   Same individual at different ages from MORPH database 
(Ricanek Jr and Tesafaye 2006)
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projecting the unseen face image into its proper aging sub-
space, thus making it possible to determine the age of the 
image from its aging pattern.

Yan et al. (2008) introduced a method which developed 
the concept of coordinate patches and Gaussian Mixture 
Models (GMMs) which were used to estimate facial ages. 
In their method, the face image of an individual is encoded 
as a group of overlapped spatially fexible patches (SFPs). 
Local features are then extracted by a 2D discrete cosine 
transform (DCT). The patches are used for integration of 
local features and coordinate information. The extracted 
SFPs are then modelled with Gaussian Mixture Models 
(GMMs). The model produced was used to estimate age of 
a person by comparing the sum of likelihoods from total 
spatially fexible patches (SFPs) of an hypothetical age.

Guo et  al. (2008) designed a localized regression clas-
sifier to learn the aging function. The concept of manifold 
learning was used for age estimation. Fu and Huang (2008) 
also used manifold learning as well. A set of age separated 
images were taken and a low dimensional manifold was 
developed from it. Linear and quadratic regression func-
tions were applied on the low dimensional feature vectors 
from the respective manifolds.

Face anthropometry is a science of measuring sizes 
and proportions on human faces. It is found that it can 
play an important role in developing facial aging models. 
These sizes and ratios provide a quantitative description of 
the craniofacial complex at different ages. This provides 
numerous options for learning based approaches. These 
approaches are developed to characterize facial aging. Face 
anthropometric studies take measurements between key 
landmarks on human faces at different ages. These ratios 
have played a critical role in surgical procedures employed 
on the faces of growing children (Farkas and Munro 1987).

Farkas (1994) provides a comprehensive overview of 
face anthropometry and also describes its many signifi-
cant applications. He has taken 57 selected landmarks on 
human face that are spread across 6 6 regions in the crani-
ofacial complex (head, face, orbits, nose, lips and mouth, 
ear). The facial measurements are of of three kinds: (1) 
projective measurements (shortest distance between two 
landmarks) (2) tangential measurements (distance between 
two landmarks measured along the skin surface) (3) angu-
lar measurements. Figure 3 illustrates the kind of data that 
is collected in face anthropometric studies and further 
illustrates the different fiducial features across which such 
data is collected. Since age-based anthropometric data was 
not available, they prepared it by extracting facial features 
from passport database. The data was grouped into five age 
groups, namely 21–30, 31–40, 41–50, 51–60 and 61–70 
years. Such data was found to be effective in characterizing 
facial growth based on age, gender, ethnicity etc. It could 
also characterise instances when individuals gain or lose 

weight. Thus it describes the process of transforming facial 
appearances with age progression (Farkas 1994).

Biswas et  al. (2008) proposed that there is coherency 
in facial feature drifts across ages. The degree of drift was 
used as a measure to perform face verification across ages. 
The assumption was that facial feature drifts observed 
in images that are age separated follows a definite coher-
ent drift pattern. It was also observed that the same might 
not be true for age separated face images of two different 
individuals. Biswas et  al suggested that since fiducially 
extracted features on the outer contour tends to be very 
sensitive to head pose variations, a suitable pose correction 
mechanism had to be put in place.

Ramanathan and Chellappa (2006) used eight ratios of 
distance measures to model age progression in young indi-
viduals, ranging in age from 0 to 18 years. These ratios 
were used to estimate an individual’s appearance across 
time and to perform face recognition across age progres-
sion. They experimented with a database of 233 images of 
109 individuals, partially collected from the FG-NET aging 
database and partially from a private gallery of images. 
Improvements in rank 1 accuracy of 8% (without age pre-
diction) to 15% (with age transformation) was reported.

– Facial index ( n−gn
zy−zy )

– Mandibular index ( sto−gn
go−go )

– Intercantal index ( en−en
ex−ex )

– Orbital width index ( ex−en
en−en )

– Eye fissure index ( ps−pi
ex−en )

– Vermilion height index ( ls−sto
sto−li )

– Mouth Face width index ( ch−ch
zy−zy )

Fig. 3   Anthropometric model and seven features (Farkas 1994)
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Liu et al. (2015) proposed a multistage learning system 
calling it Grouping Estimation Fusion (GEF). It addresses 
three research issues: age grouping, age estimation and 
decision fusion for finalizing age estimation. Global and 
local features are extracted and different groupings are cre-
ated. A pipelined approach is used, whereby the output 
of each stage is fed as input to the next stage. The author 
has proposed six fusion schemes (i.e., intra-system fusion, 
inter- system fusion, intra-inter fusion, inter-intra fusion, 
maximum- diversity fusion, and composite fusion) are 
developed and compared. The performance of the GEF sys-
tem is evaluated on FG-NET and MORPH databases.

3 � Methodology

An Anthropometric model was used in our study. A set 
of landmarks (a total of 68) was taken on each face, and 
distances between landmarks as well as ratios between dis-
tances were taken for constructing fiducial features. We 
used 7 such features on the face. The details of the model 
are given below. Since the images in the database are not 
of the same size, we applied procrustes to align them to 
a fixed size. This size was determined by averaging all 
the images in the database. The final feature determina-
tion was done after application of procrustes on landmark 
coordinates. These features were then fed into NeuCube. 
NeuCube, featuring a spiking neural network architecture 
that was successfully used in spatio-temporal modelling 
in brain data applications (Kasabov 2012, 2014; Kasabov 
et al. 2014, 2015; Tu et al. 2014). In contrast to brain data 
signals obtained through the use of devices such as EEG 
where time length between observations spans seconds, the 
corresponding time length in facial aging spans years, thus 
making it an interesting experiment to test the efficacy of 
NeuCube’s spatio-temporal modelling capability in an envi-
ronment of much coarser time granularity. A block diagram 
of NeuCube’s architecture is shown in Fig.  4. NeuCube 

consists of three major components: an input encoding 
module, a three-dimensional Spiking Neural Network Cube 
(SNNc) and an output dynamic evolving spike neural net-
work (deSNN) classifier (Kasabov 2012). In the first stage 
we adjust the connection weights in spiking SNNc to learn 
spatio temporal patterns embedded in the data. In the sec-
ond stage, supervised learning is carried out.

Overall, the modeling process consists of data encoding, 
SNNc initialization, unsupervised training of the SNNc 
and finally supervised training of the classifier. The experi-
ments were performed with CPU of Intel Core i7-2640 M 
Processor 2.8GHz, Memory of 8 GB, Windows 7 Profes-
sional (64 bit) and MatLab (64 bit) R2013a.

3.1 � Data encoding

In the aging problem feature data is in the form of real val-
ues, and hence needs to be discertized into spike trains. The 
Address Event Representation (AER) encoding method is 
used for this purpose. This encoding method was applied 
successfully for the artificial retina sensor (Hechenbichler 
and Schliep 2004; Schliebs et  al. 2012). We obtain both 
positive and negative spike trains for encoding. Positive 
spikes accompany an increase in feature value, whereas a 
negative spike occurs when the feature value has decreased.

3.2 � NeuCube (ST) initialization

We initialize the SNNc by the following rule. Each neuron 
in the SNNc is connected to its nearby neurons which are 
within a distance d, where d equals the longest distance 
between any pair of neurons in the SNNc multiplied by a 
parameter r. The initial weights are set with r set at ran-
dom in the range [−1, 1]. We randomly select 80% of the 
connection weights to be positive and the remaining 20% 
to be negative in the cube initialization process. The actual 
proportion of positive to negative connections will change 

Fig. 4   Schematic representation of the NeuCube-based methodology for mapping, learning, visualisation and classification of FG-NET DATA
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continuously due to weight propagation that occurs when 
data is processed by the cube.

3.3 � Training stage I

This stage deals with Unsupervised Reservoir Training. 
It encodes hidden spatio-temporal relationships from the 
input data into neuronal connection weights. According to 
Hebbian learning rule, if the interaction between two neu-
rons persists, then the connection between them will be 
strengthened. We train the SNNc using the STDP learning 
rule (Song et  al. 2000): if neuron j fires before neuron i, 
then the connection weight from neuron j to neuron i will 
increase, otherwise the connection from neuron i to neuron 
j will decrease. This ensures that the time signal inherent in 
the input spiking trains will be captured by the neuron fir-
ing state and manifest as asymmetrical connection weights 
in the SNNc.

In the SNNc, when a neuron fires, it emits a spike and 
then its potential gradually reduces over time to reach a 
zero value. Each neuron connecting to this firing neuron 
will receive a spike. Because of the emitted spike the poten-
tial of each neighboring neuron will increase in proportion 
to its connection weight to the current firing neuron. The 
potential of each neuron has a small, constant rate of leak-
age over time until it reduces to 0. After learning, the con-
nection weights in the SNNc encode temporal relationships 
from the input spatio-temporal data (Tu et al. 2014).

3.4 � Training stage II

In this stage, supervised classifier training is carried out. 
The deSNN (Dhoble et  al. 2012; Kasabov et  al. 2013; 
Kasabov 2014) is used here as an output classifier, because 
deSNN is computationally efficient and emphasizes the 
importance of the first spike, which has also been observed 
in biological systems.

Once the NeuCube(ST) (Kasabov 2014) is trained, all 
connection weights in the SNNc and in the output classifi-
cation layer are established. For a given new sample with-
out any class label information, the trained NeuCube can 
be used to predict its class label. For the deSNN classifier, 
there are two algorithms that can be used to determine the 
class label of the new sample (Dhoble et al. 2012; Kasabov 
et  al. 2013; Schliebs and Kasabov 2013; Kasabov 2014). 
The deSNN classifier uses one of two algorithms to deter-
mine the class label of the new sample. One is (Dhoble 
et al. 2012; Kasabov et al. 2013; Kasabov 2014) and other 
is deSNNm (Dhoble et al. 2012; Kasabov et al. 2013; Kasa-
bov 2014). We have used the deSNNs algorithm in this 
work.

4 � Empirical results of age group classification

Experiments were performed on the publicly available 
FG-NET (FG-NET 2002) and MORPH Album 2 (the 
largest publicly available face aging dataset) (Ricanek Jr 
and Tesafaye 2006), both of which are used for bench-
marking new methods. The lack of a large face aging 
database until recently limited research on age group 
classification. There are two desired attributes of a face 
aging database: (1) large number of subjects, and (2) 
large number of face images per subject captured at many 
different ages (Li et  al. 2011). In addition, it is desired 
that these images should not have large variations in pose, 
expression, and illumination. The MORPH dataset has a 
large number of subjects while FGNET database has a 
large number of images. The MORPH dataset contains 
about 55,000 face images from 13,000 different people.

In all experiments, the size of the SNNc is 1000 neu-
rons, a relatively simple 10 × 10 × 10 cube. It is trained 
and tested using a leave one out method. Firstly we con-
verted the data into discrete spike trains using the AER 
encoding method to discretize the continuous signal, fol-
lowing the example of the silicon retina (Hechenbichler 
and Schliep 2004). The deSNN classifier mentioned 
previously is used here as an output classifier because 
deSNN is computationally efficient and emphasizes the 
importance of the first spike which has been observed to 
be significant in biological vision systems. We conducted 
experiments to compare traditional modeling methods 
(Knn, Niave Bayes and MLP) and our pro-posed method 
for age group classification.

We designed three experiments for these baseline algo-
rithms. Note that for these baseline algorithms, the time 
length of training samples and testing samples have to be 
the same as these methods cannot tolerate different lengths 
of feature vectors for training and testing. Table  3 shows 
clearly that the classification achieved with NeuCube sig-
nificantly outperformed the other techniques. The results 
clearly indicate that NeuCube with its spatio temporal 
capability can capture the aging effects more effectively 
than classical classifiers that do not explicity take into 
account the time dimension in the data.

Since evolving system data machines (eSTDM) model 
relationships both between and within spatio-temporal data, 
even a small amount of input data will be able to trigger the 
spiking activities in SNNc, giving rise to a more accurate 
pattern (class) recognition rate from image data.

In order to assess generality of our models on different 
types of databases, we used MORPH Album 2 (the largest 
publicly available face aging dataset) database. We anno-
tated the fiducial landmarks with Stasm, a method based 
on Active shape Models (Milborrow and Nicolls 2014) 
(Fig. 5).
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4.1 � Age group classification with FG‑NET

For this experiment we distributed the FG-NET Database 
into three age groups, the first being the 0–3 age group, the 
second grouping as 4–16 and the final one as 17–69. We 
set the sample size to span 5 divisions of time within each 
age group. We then chose 30 samples from each group, 
thus enabling 150 images to be selected for each group. For 
age group 1 the 150 images that were chosen were assigned 
as class 1. Similarly, we chose 150 images from age group 
2 and assigned them as class 2 and did the same for age 
group 3. For each of the images we take 7 features. Each 
sample provides a 5 × 7 matrix with each having 7 features. 
In all there are 90 samples. The leave-one-person-out test-
ing strategy is used for the FG-NET database. For compar-
ative purposes we used the same testing strategy as in Liu 
et al. (2015).

The data was then fed to NeuCube and Weka. The 
results of this experiment are given below.

We benchmarked our NeuCube results against classical 
classifiers such as the k nearest neigbor, Multi Layer Per-
ceptron and Naive Bayes.

Table 1 shows that NeuCube showed outperformed all of 
the general purpose classifiers, with the k nearest neighbor 
performing best amongst them.

Table  2 shows that Age Group Classification using a 
NeuCube eSTDM for each age group separately for FG-
NET database.

Table  3 shows that the purpose-built age classifiers 
performed better than their general purpose counterparts. 
However, a substantial gap still exists between them and 
NeuCube.

4.2 � Age group classification with MORPH

We randomly selected a subset of about 21,000 faces from 
MORPH database that contain black and white, Female and 
Male faces. Each sample provided a 5 × 7 matrix with each 
having 7 features. Our setting of the experiment is similar 
to that of Liu et  al. (2015) and Guo and Mu (2011). We 
divide data into three subsets, S1, S2 and S3. We used S1 
for training and tested it with W/S1. Then we used S2 for 

training and tested with W/S2. Finally, we averaged the two 
results to obtain an overall result.

Tables 4, 5 and 6 mirror the results for the FGNET data-
base, once again underlining the superior performance of 
NeuCube.

4.2.1 � Discussion

In Figs. 6, 7 and 8, blue lines represent positive connections 
(i.e. those with positive weights) while red lines represent 
negative connections (those with negative weights). The 
colour of a neuron signifies its connectivity; the brighter the 
color, the larger is the size of its neighborhood. The thick-
ness of a line denotes the intensity of a connection between 
a pair of given neurons. Thus a thick blue line indicates a 
strong positive connection, while a thin blue line also rep-
resents a positive connection but one with a lesser strength.

Figures  6, 7 and 8 show that different age group acti-
vate different parts of the cube, as indicated by their 
connectivity.

Figures  6 shows that in age group (0–3), the Facial, 
Intercantal and Orbital width indexes have the strongest 
level of expression when compared to the two other age 
groups as they have stronger positive connections when 
compared to their counterparts in Figs. 7 and 8. Changes in 
variables in a Spiking Neural Network result in increased 
spiking activity which in turn spawns positive connections. 
Thus we can conclude that Cranofacial growth in age group 
(0–3) occurs at a faster rate than with other two age groups.

Figure  7 shows that in age group (4–16) that there is 
strong connection strength in the Eye fissure and Mandibu-
lar index regions due to the presence of thick blue lines. 
Mandibular and Eye fissure indexes are associated with the 
eye and chin ratios. This suggests that most changes in the 
face occur in these features at age group (4–16).

Figure  8 shows that in age group (17–69) most of the 
strong connections seem to occur in the Orbital width, 
Intercantal, Mandibular and Facial index regions. Even 
though three of these features, namely the Facial, Inter-
cantal and Orbital indexes, are also expressed in age 
goup (0–3), the levels of expression is less than that for 
age group (0–3). Thus we can conclude that while most 
changes in age group (17–69) occur in these indexes, the 
rate of change is slower with age goup (0–3).

Our comparative analysis shows that in all three age 
groups the Mandibular and Intercantal indexes are active 

Fig. 5   Fiducial landmark detection results  from MORPH database. 
Blue points represent the 68 landmark points

Table 1   Age group classification using a NeuCube eSTDM in com-
parison to traditional classifiers: Knn, MLP, NB

Measure NeuCube MLP knn NaiveBayes

Accuracy (%) 98 80 91.1 66.7



Evolving Systems	

1 3

as they are associated with strong spiking activity. The Eye 
fissure index creates strong spikes during age group (4–19) 
and (17–69). The Vermilion height index shows weak con-
nections and a low level of spike activity in age groups 
(0–3) and (17–69). However, the Vermilion index shows 
a medium level of spike activity and strong connection 
weights in age grouping (4–16).

We observe that there is a clear shift away from the 
Facial, Intercantal, Orbital width and Mouth Face width 
indexes as markers for the age group (0–3) to Mandibular 
and Fissure indexes for age group (4–16). The fact that dif-
ferent indexes are prominent at different age groups sug-
gests that NeuCube has succeeded in capturing the aging 
process. This is useful on two different accounts. First, it 

provides solid evidence that NeuCube is capturing not just 
the temporal but also spatial signals in the data. Second, 
from the viewpoint of aging research it provides a useful 
insight into the changes that take place in the face over 
time and enables interested researchers into building more 
useful age estimation models. It also provides the poten-
tial to simulate future changes in a person’s face over time 
(Tables 7, 8, 9).

We conclude this section by observing that NeuCube not 
only outperformed its rivals across both databases in terms 
of classification accuracy but also yielded useful insights 
into the aging process.

5 � Empirical results of gender recognition

5.1 � Gender recognition with FG‑NET

For this experiment we use the FG-NET Database. We 
model Gender recognition as a two-class classification 
problem. We assign the gender label through a visual 
inspection of the data, with class 1 as male and class 2 as 
female. We also used the classical classifiers from Weka as 
in the first experiment for comparative analysis. For each 
of the images we take 7 features. Each sample provides a 5 
× 7 matrix, ie 5 images, each having 7 features. In all there 
are 172 samples. The leave-one-person-out testing strategy 
is used for FG-NET. Table 10 shows the results of the gen-
der recognition classification process.

Tables  10 and 11 show clearly that NeuCube has bet-
ter classification performance when compared to all of its 
rivals.

5.2 � Gender recognition with FG‑NET in a younger age 
group (0–18)

For this experiment we use the FG-NET Database. For each 
of the images we take 7 features. Each sample provides a 
5 × 7 matrix ie 5 images, with each having 7 features. In 
all there are 120 samples. The leave-one-person-out testing 
strategy was used for FG-NET. Table 12 shows results of 
gender recognition in the younger age group.

5.3 � Gender recognition with MORPH

For this experiment we use the MORPH Database. We 
model Gender recognition as a two-class classification 
problem. We use the same testing strategy as used in Guo 
and Mu (2011) and Liu et al. (2015). This data is then fed 
into the NeuCube. We use the same classical classifiers 
from Weka as we did in the first experiment for compara-
tive analysis. For each of the images we take 7 features. 

Table 2   Age group classification using a NeuCube eSTDM for each 
age group separately

Age groups 0–3 4–15 16–69

Accuracy (%) 100.00 96.00 98.00

Table 3   Comparative results 
of age group classification with 
state-of-the-art age group clas-
sifiers

Models Classi-
fication 
(%)

NeuCube 98
Liu et al. (2015) 93.5
Sai et al. (2015) 90

Table 4   Results of age group classification using a NeuCube 
eSTDM in comparison to traditional classifiers: SVM, MLP, NB

Measure NeuCube MLP Knn NaiveBayes

Accuracy (%) 95.00 82.30 89.03 67.60

Table 5   Age Group Classification using a NeuCube eSTDM for each 
age group separately

Age groups 15–29 30–49 50–77

Accuracy (%) 98.00 91.00 96.00

Table 6   Comparative results 
of age group classification with 
Morph Album 2

Models Classi-
fication 
(%)

NeuCube 95
Liu et al. (2015) 92.6
Sai et al. (2015) 71.2
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Each sample provides a 5 × 7 matrix ie 5 images, with each 
having 7 features. In all there are 3378 samples.

Tables  13 and 14 show clearly that NeuCube has bet-
ter classification performance when compared to all of its 
rivals.

5.4 � Gender recognition with MORPH in a younger age 
group (16–20)

In all there are 420 samples that we use for this experiment. 
Each sample provides a 5 × 7 matrix with each image hav-
ing 7 features. We use the same testing strategy as used in 
Guo and Mu (2011) and Liu et al. (2015). Table 15 shows 
results of gender recognition in the younger age groups.

It was observed that the gender recognition classification 
achieved with NeuCube was better than with other tradi-
tional techniques for the younger age groups.

5.4.1 � Discussion

In Figs.  9 and 10, line colour, thickness and coloring of 
neurons have similar meaning to that described above.

By visualization of the cube in Fig. 9 we can see that the 
Intercantal, Vermilion height, Eye fissure and Mouth Face 
Width indexes have strong positive connections. However, 
the Mandibular, Facial and orbital indexes show weak con-
nections caused by less spiking activity.

Fig. 6   Age group (0–3). The size of the SNNc is controlled by three parameters: nx, ny, andzn , representing the neuron numbers along x, y and z 
direction. And the total neuron number in the cube is N = nx × ny × nz.A SNNc of 1000 (10 × 10 × 10) neurons are shown in above aging model

Fig. 7   Age group (4–16)



Evolving Systems	

1 3

In Fig. 10 we see that all features generate high spikes 
and stronger connections except for the Vermilion height 
index. This is typical for the female specimens in the data 
sample.

By conducting a comparative analysis we observe that 
in both genders that the Intercantal, Eye Fissure and Mouth 
Face Width indexes show strong positive connections, 
implying that more changes would occur in eyes, mouth 
and bone structure between eyes.

The Facial, Mandibular, Orbital width and Vermilion 
height indexes behave differently across the genders, imply-
ing that a gender aging pattern exists. This further validates 
the point that gender also effects the face recognition pro-
cess. Therefore, it is recommended that gender-specific 
aging models be built for age invariant face recognition.

By visualization we can also see another interesting 
effect, facial index, mandibular index, intercantal index and 
orbital index show strong connections for female gender as 
compared to male gender. It may be concluded that female 
gender ages more quickly as compared to male gender.

In these experiments we can see that the NeuCube has 
the capability of providing better accuracy as compared 

Fig. 8   Age group (17–69)

Table 7   Feature profile for age group (0–3)

Features Influence level Connections

Facial High Strong
Mandibular High Strong
Intercantal High Strong
Orbital width High Strong
Eye fissure Low Weak
Vermilion height Low low
Mouth Face Width Medium strong

Table 8   Feature profile for age group (4–16)

Features Influence level Relationship

Facial Low Weak
Mandibular High Strong
Intercantal Medium Weak
Orbital width Low Weak
Eye fissure High Strong
Vermilion height Medium Weak
Mouth Face Width Low Weak

Table 9   Feature profile for age group (17–69)

Features Influence level Relationship

Facial Medium Weak
Mandibular High Strong
Intercantal Medium Strong
Orbital width High Strong
Eye fissure High Weak
Vermilion height Low Weak
Mouth Face Width Low Weak

Table 10   Gender classification on FG-NET

Measure NeuCube MLP KNN NaiveBayes

Accuracy (%) 95.00 76.10 83.00 62.79

Table 11   Age group classification on FG-NET

Models Classification (%)

NeuCube 95
Guo and Mu (2011) 87.20
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to the traditional methods. Its main strength lies in three 
dimensional connections and their weights and the ability 
of learning spatio temporal aging process (Tables 16, 17).

6 � Conclusion

In this paper we researched two inter-related problems in 
face recognition using the NeuCube computational plat-
form. The well-known FG-Net and Morph image galler-
ies were used and Anthropometric features were extracted 
from landmark points on the face. These features ena-
bled learning of spatio temporal relationships. The Weka 
machine learning workbench was used to compare the 
performance of traditional classifiers such as the K nearest 
neighbor (Knn), Multi-LayerPerceptron (MLP) and Naive 
Bayes with NeuCube. This research has revealed that Neu-
Cube has the capability of giving better performance for 
gender recognition and age group classification because it 
has the capacity to learn both spatial and temporal relation-
ships simultaneously.

Our empirical results show that NeuCube performed 
consistently better across both problem types that we 
investigated. We explored the temporal relationships 
between different Anthropometric features. The aging pro-
cess causes significant alterations on the human face, thus 
affecting the long term performance of face authentication 
systems. Our research also revealed that different Fiducial 
markers are prominent at different age groups, thus offering 
the possibility of estimating aging effects for future points 
in a given person’s timeline. However, for age simulation to 
be successful such markers may need to be combined with 
other person-specific information such as lifestyle and envi-
ronment variables that could also impact on shaping a per-
son’s facial profile over time.

One direction that can be explored is to construct Neu-
Cube aging models for each feature separately and then 
fuse the different models to build a composite model of the 

Table 12   Gender Classification for younger age group (0–18)

Measure NeuCube MLP KNN NaiveBayes

Accuracy (%) 85.00 72.60 70.80 67.3

Table 13   Results of gender classification using a NeuCube eSTDM 
in comparison with traditional techniques: Knn, MLP, NB

Measure NeuCube MLP KNN NaiveBayes

Accuracy (%) 99.00 76.30 88.00 66.00

Table 14   Comparative results of age group classification with FG-
NET database

Models Classification (%)

NeuCube 99
Guo and Mu (2011) 98.20

Table 15   Results of Gender Classification at a younger age group 
(16–20) using a NeuCube eSTDM in comparison with traditional 
techniques: KNN, MLP, NB

Measure NeuCube MLP KNN NaiveBayes

Accuracy (%) 87.0 68.3 79.3 63.8

Fig. 9   Male
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simulated face. Modelling each feature separately is attrac-
tive as it allows each feature to express its individual contri-
bution to the aging process to the maximum possible extent 
without interference from the other features. Our future 
research will explore this approach in depth.

In conclusion we observe that NeuCube provides a good 
platform for aging research, whether the objective is age 
estimation or estimating change in facial features over time, 
thus opening up future research opportunities in these two 
key areas of aging research.

References

Alvi FB, Pears R (2015a) An integrated modeling approach to age 
invariant face recognition. In: Sixth International Conference on 
Graphic and Image Processing (ICGIP 2014), International Soci-
ety for Optics and Photonics, pp 94,430A–94,430A

Alvi FB, Pears R (2015b) Texture modelling for age invariant face 
recognition. In: Proceedings of the International Conference on 
Image Processing, Computer Vision, and Pattern Recognition 
(IPCV), The Steering Committee of The World Congress in 
Computer Science, Computer Engineering and Applied Comput-
ing (WorldComp), p 24

Alvi FB, Pears R (2015c) Use of spatio-temporal modeling for age 
invariant face recognition. In: Proceedings of 30th International 
Conference on Image and Vision Computing New Zealand 
(IVCNZ 2015), IEEE

Alvi FB, Pears R (2016) A composite spatio-temporal modeling 
approach for age invariant face recognition. Expert Systems with 
Applications

Biswas S, Aggarwal G, Ramanathan N, Chellappa R (2008) A non-
generative approach for face recognition across aging. In: Biom-
etrics: Theory, Applications and Systems, 2008. BTAS 2008. 
2nd IEEE International Conference on, IEEE, pp 1–6

Cootes TF, Edwards GJ, Taylor CJ et  al (1999) Comparing 
active shape models with active appearance models. BMVC 
99:173–182

Dhoble K, Nuntalid N, Indiveri G, Kasabov N (2012) Online spatio-
temporal pattern recognition with evolving spiking neural net-
works utilising address event representation, rank order, and 
temporal spike learning. In: Neural Networks (IJCNN), The 
2012 International Joint Conference on, IEEE, pp 1–7

Farkas LG (1994) Anthropometry of the Head and Face. Raven Pr
Farkas LG, Munro IR (1987) Anthropometric facial proportions in 

medicine. Charles C. Thomas Publisher
FG-NET (2002) Fg-net database. http://www-prima.inrialpes.fr/

FGnet/
Fu Y, Huang TS (2008) Human age estimation with regression 

on discriminative aging manifold. IEEE Trans Multimed 
10(4):578–584

Geng X, Zhou ZH, Smith-Miles K (2007) Automatic age estimation 
based on facial aging patterns. IEEE Trans Patt Anal Mach Intell 
29(12):2234–2240

Fig. 10   Female

Table 16   Feature profile (male)

Features Influence level Connections

Facial Low Weak
Mandibular Low Weak
Intercantal High Strong
Orbital width Low Weak
Eye fissure High Strong
Vermilion height High Strong
Mouth Face Width High strong

Table 17   Feature profile (female)

Features Influence level Connections

Facial High Strong
Mandibular High Strong
Intercantal High Strong
Orbital width High Strong
Eye fissure High Strong
Vermilion height Low low
Mouth Face Width High strong

http://www-prima.inrialpes.fr/FGnet/
http://www-prima.inrialpes.fr/FGnet/


	 Evolving Systems

1 3

Fu Y, Huang TS (2008) Human age estimation with regression 
on discriminative aging manifold. IEEE Trans Multimed 
10(4):578–584

Guo G, Mu G (2011) Simultaneous dimensionality reduction and 
human age estimation via kernel partial least squares regres-
sion. In: Proceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition pp 657–664, 
doi:10.1109/CVPR.2011.5995404

Guo G, Fu Y, Dyer CR, Huang TS (2008) Image-based human age 
estimation by manifold learning and locally adjusted robust 
regression. IEEE Trans Image Process 17(7):1178–1188

Hechenbichler K, Schliep K (2004) Weighted k-nearest-neighbor 
techniques and ordinal classification. Tech. rep., Discussion 
paper Sonderforschungsbereich 386 der Ludwig-Maximilians-
Universität München

Horng WB, Lee CP, Chen CW (2001) Classification of age groups 
based on facial features. 4(3):183–192

Jain AK, Nandakumar K, Ross A (2016) 50 years of biometric 
research: accomplishments, challenges, and opportunities. Patt 
Recognit Lett

Kasabov N (2007) Evolving connectionist systems: the knowledge 
engineering approach. Springer Science and Business Media

Kasabov N (2012) Neucube evospike architecture for spatio-temporal 
modelling and pattern recognition of brain signals. In: Artificial 
Neural Networks in Pattern Recognition, Springer, pp 225–243

Kasabov N, Dhoble K, Nuntalid N, Indiveri G (2013) Dynamic evolv-
ing spiking neural networks for on-line spatio-and spectro-tem-
poral pattern recognition. Neural Netw 41:188–201

Kasabov N, Feigin V, Hou ZG, Chen Y, Liang L, Krishnamurthi R, 
Othman M, Parmar P (2014) Evolving spiking neural networks 
for personalised modelling, classification and prediction of spa-
tio-temporal patterns with a case study on stroke. Neurocomput-
ing 134:269–279

Kasabov N, Scott NM, Tu E, Marks S, Sengupta N, Capecci E, 
Othman M, Doborjeh MG, Murli N, Hartono R, et  al (2015) 
Evolving spatio-temporal data machines based on the neucube 
neuromorphic framework: design methodology and selected 
applications. Neural Netw

Kasabov N, Scott NM, Tu E, Marks S, Sengupta N, Capecci E, Oth-
man M, Doborjeh MG, Murli N, Hartono R et al (2016) Evolving 
spatio-temporal data machines based on the neucube neuromor-
phic framework: design methodology and selected applications. 
Neural Netw 78:1–14

Kasabov NK (2014) Neucube: a spiking neural network architecture 
for mapping, learning and understanding of spatio-temporal 
brain data. Neural Netw 52:62–76

Kwon YH, da Vitoria Lobo N (1999) Age classification from facial 
images. Comput Vis Image Understand 74(1):1–21

Lanitis A, Taylor CJ, Cootes TF (1999) Modeling the process of age-
ing in face images. In: The Proceedings of the Seventh IEEE 
International Conference on Computer Vision, IEEE, vol 1, pp 
131–136

Lanitis A, Draganova C, Christodoulou C (2004) Comparing different 
classifiers for automatic age estimation. IEEE Trans Syst Man 
Cybern Part B (Cybernetics) 34(1):621–628

Levi G, Hassner T (2015) Age and gender classification using con-
volutional neural networks. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops, 
pp 34–42

Li Z, Park U, Jain AK (2011) A discriminative model for age invariant 
face recognition. IEEE Trans Inf Foren Secur 6(3):1028–1037

Liu KH, Yan S, Kuo CCJ (2015) Age estimation via grouping and 
decision fusion. IEEE Trans Inf Foren Secur 10(11):2408–2423. 
doi:10.1109/TIFS.2015.2462732, http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=7173035

Milborrow S, Nicolls F (2014) Active shape models with sift descrip-
tors and mars. VISAPP 2:380–387

Ramanathan N, Chellappa R (2006) Modeling age progression in 
young faces. In: Computer Vision and Pattern Recognition, 2006 
IEEE Computer Society Conference on, IEEE, vol 1, pp 387–394

Ricanek Jr K, Tesafaye T (2006) Morph: a longitudinal image data-
base of normal adult age-progression. In: Automatic Face and 
Gesture Recognition, 2006. FGR 2006. 7th International Confer-
ence on, IEEE, pp 341–345

Sai PK, Wang JG, Teoh EK (2015) Facial age range estimation with 
extreme learning machines. Neurocomputing 149 (Part A):364–
372, doi:10.1016/j.neucom.2014.03.074

Schliebs S, Kasabov N (2013) Evolving spiking neural networka sur-
vey. Evol Syst 4(2):87–98

Schliebs S, Fiasché M, Kasabov N (2012) Constructing robust liquid 
state machines to process highly variable data streams. In: Inter-
national Conference on Artificial Neural Networks, Springer, pp 
604–611

Sengupta N, Scott N, Kasabov N (2015) Framework for knowledge 
driven optimisation based data encoding for brain data modelling 
using spiking neural network architecture. In: Proceedings of the 
Fifth International Conference on Fuzzy and Neuro Computing 
(FANCCO-2015), Springer, pp 109–118

Song S, Miller KD, Abbott LF (2000) Competitive hebbian learning 
through spike-timing-dependent synaptic plasticity. Nat Neurosci 
3(9):919–926

Thukral P, Mitra K, Chellappa R (2012) A hierarchical approach for 
human age estimation. In: 2012 IEEE International Conference 
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp 
1529–1532

Tu E, Kasabov N, Othman M, Li Y, Worner S, Yang J, Jia Z (2014) 
Neucube (st) for spatio-temporal data predictive modelling with 
a case study on ecological data. In: 2014 International Joint Con-
ference on Neural Networks (IJCNN), IEEE, pp 638–645

Wang JG, Yau WY, Wang HL (2009) Age categorization via ecoc 
with fused gabor and lbp features. In: Applications of Computer 
Vision (WACV), 2009 Workshop on, IEEE, pp 1–6

Wang JG, Sung E, Yau WY (2011) Active learning for solving the 
incomplete data problem in facial age classification by the fur-
thest nearest-neighbor criterion. IEEE Trans Image Process 
20(7):2049–2062

Yan S, Zhou X, Liu M, Hasegawa-Johnson M, Huang TS (2008) 
Regression from patch-kernel. In: Computer Vision and Pattern 
Recognition, 2008. CVPR 2008. IEEE Conference on, IEEE, pp 
1–8

http://dx.doi.org/10.1109/CVPR.2011.5995404
http://dx.doi.org/10.1109/TIFS.2015.2462732
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7173035
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7173035
http://dx.doi.org/10.1016/j.neucom.2014.03.074

	An evolving spatio-temporal approach for gender and age group classification with Spiking Neural Networks
	Abstract 
	1 Introduction
	2 Literature review
	3 Methodology
	3.1 Data encoding
	3.2 NeuCube (ST) initialization
	3.3 Training stage I
	3.4 Training stage II

	4 Empirical results of age group classification
	4.1 Age group classification with FG-NET
	4.2 Age group classification with MORPH
	4.2.1 Discussion


	5 Empirical results of gender recognition
	5.1 Gender recognition with FG-NET
	5.2 Gender recognition with FG-NET in a younger age group (0–18)
	5.3 Gender recognition with MORPH
	5.4 Gender recognition with MORPH in a younger age group (16–20)
	5.4.1 Discussion


	6 Conclusion
	References


