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Abstract: Personalised modelling aims to create a unique computational
diagnostic or prognostic model for an individual. The paper reports
a new Integrated Method for Personalised Modelling (IMPM) that
applies global optimisation of variables (features) and neighbourhood of
appropriate data samples to create an accurate personalised model for an
individual. The proposed IMPM allows for adaptation, monitoring and
improvement of an individual’s model. Three medical decision support
problems are used as illustrations: cancer diagnosis and profiling; risk of
disease evaluation based on whole genome SNPs data; chronic disease
decision support. The method leads to improved accuracy and unique
personalised profiling that could be used for personalised treatment and
personalised drug design.
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1 Introduction

Most contemporary medical decision support systems use global models for the
prediction of a patient’s risk to develop a particular disease or a likely outcome
from the treatment. A global model is derived from all available data for the target
and then applied to any new patient anywhere at anytime. While it may give 70%
or 80% average accuracy over the whole population, it still may not be suitable
for many individuals. There is a clear evidence that prediction and treatment based
on such global models are only effective for some of the patients (about 70% at
average) (Shabo, 2007) leaving the rest of patients with no effective treatment, and
in many cases facing worsening of their condition or even death.

The rationale behind the personalised modelling paradigm is that since each
person is different, the most effective treatment could be only achieved if it is
based on the detailed analysis of data available for this particular patient. With the
advancement of science and technology, it is now possible to obtain and utilise a
wide range of personal data such as: DNA, RNA, gene and protein expression,
clinical tests, age, gender, BMI, inheritance, food and drug intake, disease, ethnicity,
etc. (Shabo, 2007; Hindorff et al., 2009; WTCCC, 2007).

The goal is to create an accurate personalised computational model using
information for an individual and the available information for other individuals
that is related to the same problem. Achieving a higher accuracy of prediction of a
personalised risk for a disease or the effect of treatment may mean saving millions
of lives, significantly reducing the cost for treatment, and improving the quality of
life of hundreds of millions of patients.

The available methods for personalised modelling do not solve the task
completely as they optimise only partially a model for an individual (Nevins et al.,
2003; Kasabov et al., 2008b; Song and Kasabov, 2005, 2006). These methods
are usually derivatives of the K-Nearest Neighbour method (K-NN), where for
a pre-defined set of variables describing an individual with unknown outcome
and a population of individuals with known outcomes, the closest K samples to
the new one are selected from the population data forming a neighbourhood.
The outcome for the new sample is decided based on the majority outcomes in
the neighbourhood. Modifications of the K-NN method include WKNN (Vapnik,
1998), WWKNN (Kasabov, 2009, 2007b), TWNFI (Song and Kasabov, 2005, 2006;
Kasabov, 2007a).

The above methods are suitable only for the problems defined by a small set of
variables. In reality, personalised data usually includes thousands of genes, proteins,
SNPs, clinical, demographic and other variables. However, using the complete set
of available variables would be detrimental to the modelling results, as most of
the variables would be redundant. Pre-selecting a set of variables based on their
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statistical significance for the whole population space may not be appropriate
either, as variables’ importance varies depending on the particular sub-space of
the problem space (Vapnik, 1998; Kasabov, 2007b). An efficient diagnosis and
treatment of a person would require the creation of their personalised profile
based on the important variables within the person’s sub-space of neighbouring
samples. The selection of the neighbourhood of closest samples depends on the
selected variables. The overall efficiency of the classification/prediction model
would depend on the integrated optimisation of variables, neighbourhood data
and parameters of the model, in their concert. Here we present a new IMPM, its
implementation and some experimental results for three types of medical decision
support problems.

2 An Integrated Method for Personalised Modelling (IMPM) utilising
features, model parameters and neighbourhood optimisation

The proposed IMPM method is developed based on the following strategy. For
every new individual sample (new input vector) all aspects of their personalised
model (variables, neighbouring samples, type of models and model parameters),
are optimised together using the accuracy of the outcome achieved for the local
neighbourhood of the sample as an optimisation criterion. Next, a personalised
model and personalised profile are derived that use the selected variables and the
neighbouring samples with known outcomes. The sample’s profile is compared with
average profiles of the other outcome classes in the neighbourhood (e.g., good
outcome, or bad outcome of disease or treatment). The difference between the
points and average profiles based on important variables that may need to be
modified through treatment. A functional block diagram of the proposed IMPM is
shown in Figure 1.

Figure 1 A functional block diagram of the proposed IMPM

Source: Adapted from Kasabov (2008)
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2.1 A detailed description of the personalised modelling method

The proposed method consists of the following procedures (Kasabov, 2008):

P1 Data collection, data filtering, storage and update.

P2 Compiling the input vector x for a new patient.

P3 Selecting a subset of relevant to the new sample x variables (features) Vx

from a global variable set V .

P4 Selecting a number Kx of samples from the global data set D and forming a
neighbourhood Dx of similar samples to x using the variables from Vx to
define the similarity.

P5 Ranking the Vx variables within the local neighbourhood Dx in order of
importance to the outcome, obtaining a weight vector Wx.

P6 Training and optimising a local prognostic/classification model Mx, that has
a set of model parameters Px, a set of variables Vx and local training/testing
data set Dx.

P7 Generating a functional profile Fx for the person x using the selected set Vx

of variables, along with the verage profiles of the samples from Dx that
belong to different outcome classes, e.g., Fi and Fj . Performing a
comparative analysis between Fx, Fi and Fj to define what variables from
Vx are the most important for the person x that make him or her very
differential from the desired class. These variables may be used to define a
personalised course of treatment.

Procedures P3–P6 are repeated a number of iterations or until a desired local
accuracy of the model for a local data set Dx is achieved. The optimisation
of the parameters of the personalised model Vx, Kx and Dx is global and is
achieved through multiple runs of a Genetic Algorithm (GA) that is a type of
evolutionary algorithm (Goldberg, 1989; Kasabov, 2007a; Hu and Kasabov, 2009;
Mohan and Kasabov, 2005). The resulting competing personalised models for x
form a population of such models that are evaluated over iterations (generations)
using a fitness criterion – the best accuracy of outcome prognosis for the local
neighbourhood of x. Operators of crossover and mutation are applied in the search
for the best local model (refer to Figure 2). All variables and parameters of the
personalised model form an integrated single ‘chromosome’ (refer to Figure 3)
where variable values are optimised together as a global optimisation.

Initially, it is assumed that all variables from a set V have equal absolute
and relative importance for a new sample x in relation to predicting its unknown
output y:

wv1 = wv2 =, . . . ,= wvq = 1 (1)

and

wv1,norm = wv2,norm =, . . . ,= wvq,norm = 1/q. (2)
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Figure 2 A schematic diagram of a GA operation

Source: Adapted from Kasabov (2007a)

Figure 3 A chromosome for an evolutionary computation based integrated, global
optimisation of the following parameters (‘genes’): number of selected variables
Vx; their corresponding weights Wx; number K of nearest neighbours to x; set
of selected K samples s1 − sK forming a data subset Dx; local prognostic
model Mx (e.g., classification algorithm); set of parameters Pm for the Mx

(e.g., classification threshold)

The initial numbers for the variables Vx and Kx may be determined in a variety
of different ways without departing from the scope of the method. For example
Vx and Kx may be initially determined by an assessment of the global data set
in terms of size and/or distribution of the data. Minimum and maximum values
of these parameters may also be established based on the available data and
the problem analysis. For example, Vx_min = 3 (minimum three variables used
in a personalised model) and Vx_max < Kx (the maximum variables used in a
personalised model is not larger than the number of samples in the neighbourhood
Dx of x), usually Vx_max < 20. The initial set of variables may include expert
knowledge, i.e., variables which are referenced in the literature as highly correlated
to the outcome of the problem (disease) in a general sense (over the whole
population). Such variables for example are the BRCA genes, when the problem
is predicting outcome of breast cancer (van’t Veer et al., 2002). For an individual
patient the BRCA genes may interact with some other genes, which interaction
will be specific for the person or a group of people and is likely to be discovered
through local or/and personalised modelling only (Kasabov, 2007b).

A major advantage of IMPM is that the modelling process can start with all
relevant variables available for a person, rather than with a pre-fixed set of variables
in a global model, when compared with global or local modelling. Such a global
model may well be statistically representative for a whole population, but not
necessarily representative for a single person in terms of optimal model and best
profiling and prognosis for this person.



Integrated optimisation method for personalised modelling 241

Selecting the initial number Kx of neighbouring samples and the minimum
and the maximum numbers Kx_min and Kx_max will also depend on the data
available and on the problem in hand. A general requirement is that Kx_min > Vx,
and, Kx_max < cN , where c is a ratio, e.g., 0.5, and N is the number of samples in
the neighbourhood Dx of x. Several formulas have been already suggested and
experimented (Vapnik, 1998), e.g.,:

• Kx_min equals the number of samples that belong to the class with a smaller
number of samples when the data is imbalanced (one class has many more
samples, e.g., 90%, than the another class) and the available data set D is of
small or medium size (e.g., hundreds of samples)

• Kx_min =
√

N , where N is the total number of samples in the data set D.

At subsequent iterations of the method, the parameters Vx and Kx along with all
other parameters are optimised via an optimisation procedure such as:

• exhaustive search, where all or some possible values of all or some of the
parameters Vx, Wx, Kx, Mx and Px are used in their combination and the
model Mx with the best accuracy is selected

• an evolutionary algorithm, such as GA (Goldberg, 1989), optimises all or
some parameters that form the ‘chromosome’ from Figure 3.

The closest Kx neighbouring vectors to x from D are selected to form a new
data set Dx. A local weighted variable distance measure is used to weigh the
importance of each variable Vl (l = 1, 2, . . . , q) to the accuracy of the model
outcome calculation for all data samples in the neighbourhood Dx. For example,
the distance between x and z from Dx is measured as a local weighted variable
distance:

dx,z =

√∑q
l=1(1 − wl,norm)(xl − zl)2

q
(3)

where wl is the weight assigned to the variable Vl and its normalised value is
calculated as:

wl,norm =
wl∑q

i=1 wi
. (4)

Here the distance between a cluster centre (in our case it is the vector x) and cluster
members (data samples from Dx) is calculated not only based on the geometrical
distance, as it is in the traditional nearest neighbour methods, but on the relative
variable importance weight vector Wx in the neighbourhood Dx as suggested in
Kasabov (2007b). After a subset Dx of Kx data samples are selected based on
the variables from Vx, the variables are ranked in a descending order of their
importance for prediction of the output y of the input vector x and a weighting
vector Wx is obtained. Through an iterative optimisation procedure the number of
the variables Vx to be used for an optimised personalised model Mx will be reduced,
selecting only the most appropriate variables that will provide the best personalised
prediction accuracy of the model Mx. For the weighting Wx (i.e., ranking) of the Vx
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variables, alternative algorithms can be used, such as t-test, Signal-to-Noise Ratio
(SNR), etc.

In the SNR algorithm, Wx are calculated as normalised coefficients and the
variables are sorted in descending order: V1, V2, . . . , Vv , where w1 >= w2 >=
. . . >= wv , calculated as follows:

wl =
|M class1

l − M class2
l |

stdclass1
l + stdclass2

l

(5)

where M classs
l and stdclasss

l are respectively the mean value and the standard
deviation of variable xl for all vectors in Dx that belong to class s. This method
is very fast, but evaluates the importance of the variables in the neighbourhood
Dx one by one and does not take into account a possible interaction between the
variables, which might affect the model output.

A classification or prediction learning procedure is applied to the
neighbourhood Dx of Kx data samples to derive a personalised model Mx using
the already defined variables Vx, variable weights Wx and a model parameter set
Px. A number of different classification or prediction procedures can be used such
as: KNN, WKNN, WWKNN (Kasabov, 2007b), MLR, SVM, TWNFI (Song and
Kasabov, 2006), and others. In the Weighted KNN (WKNN) classification model,
the outcome for the new sample is calculated based on the weighted outcomes of
the individuals in the neighbourhood according to their distance to the new sample.
In the WWKNN model (Kasabov, 2007b) variables are ranked and weighted
according to their importance for separating the samples of different classes in
the neighbourhood area in addition to the weighting according to the distance as
in WKNN. In the TWNFI model – transductive, weighted neuro-fuzzy inference
system (Song and Kasabov, 2006), the number of variables in all personalised
models is fixed, but the neighbouring samples used to train the personalised neuro-
fuzzy classification model are selected based on the variable weighted distance to
the new sample as it is in the WWKNN.

When using the WWKNN method (Kasabov, 2007b), the output value y for
the input vector x is calculated using the formula:

y =

∑K
j=1 ajyj∑K
j=1 wj

(6)

where yj is the output value for the sample xj in the neighbourhood Dx of x and:

aj = max(d) − [dj − min(d)] (7)

In equation (7), the vector distance d = [d1, d2, . . . , dK ] is defined as the distances
between the new input vector x and the nearest samples (xj , yj) for j = 1 to
Kx; max(d) and min(d) are the maximum and minimum values in d respectively.
Euclidean distance dj between vector x and a neighbouring one xj is calculated as:

dj =

√√√√ V∑
l=1

(1 − wl)(xl − xjl)2 (8)
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where wl is the coefficient weighing variable xl in the neighbourhood Dx of x
(e.g., wl can be calculated by a SNR algorithm, refer to equation (5).

When using the TWNFI classification or prediction model (Song and Kasabov,
2006), the output y for the input vector x is calculated as follows:

y =

∑m
l=1

nl

δ2
l

P∏
j=1

αlj · exp
[

− w2
j (xij−mlj)2

2σ2
lj

]
∑m

l=1
1
δ2

l

P∏
j=1

αlj · exp
[

− w2
j (xij−mlj)2

2σ2
lj

] (9)

where m is the number of the closest clusters to the new input vector x; each cluster
l is defined as a Gaussian function Gl in a Vx dimensional space with a mean value
ml as a vector and a standard deviation δl as a vector too; x = (x1, x2, . . . , xv);
αl (also a vector across all variables V ) is membership degree to which the input
vector x belongs to the cluster Gaussian function Gl; nl is a parameter of each
cluster (Song and Kasabov, 2006). The detailed algorithm of TWNFI is described
in Appendix.

A local accuracy (local error Ex), that estimates the personalised accuracy of
the personalised prognosis (classification) for the data set Dx using model Mx is
evaluated. This error is a local one, calculated in the neighbourhood Dx, rather
than a global accuracy, that is commonly calculated for the whole problem space
D. A variety of methods for calculating error can be employed such as:

• RMSE (root-mean square error)

• AUC (area under the receiving operating characteristic curve)

• AE (absolute error).

We propose here another formula for calculating local error that can be used for
model optimisation:

Ex =

∑Kx

j=1(1 − dxj) · Ej

Kx
(10)

where dxj is the weighted Euclidean distance between sample x and sample Sj from
Dx that takes into account the variable weights Wx (see equation (3)); Ej is the
error between what the model Mx calculates for the sample Sj from Dx and what
its real output value is.

In the above formula the closer a data sample Sj to x is, based on a weighted
distance measure, the higher its contribution to the error Ex will be. The calculated
personalised model Mx accuracy is:

Ax = 1 − Ex. (11)

The best accuracy model obtained is stored for a future improvement and
optimisation purposes. The optimisation procedure iteratively returns to all
previous procedures (P2–P6) to select another set of parameter values for the
parameter vector (refer to Figure 3), according to one of the optimisation
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procedures listed above (exhaustive search, GA, a combination between them)
until the model Mx with the best local accuracy is achieved. The method also
optimises parameters Px of the classification/prediction procedure. Once the best
model Mx is derived, an output value y for the new input vector x is calculated
using this model. After the output value y for the new input vector x is calculated
a personalised profile Fx of the person represented as input vector x is derived,
assessed against possible desired outcomes for the scenario, and possible ways to
achieve an improved outcome will be designed, which is also a major novelty of
this method. A personal improvement scenario consists of suggested changes in the
values of the person’s variables to improve the outcome for x is designed. The x
profile Fx is formed as a vector:

Fx = {Vx, Wx, Kx, Dx, Mx, Px, t} (12)

where the variable t represents the time of the model Mx creation. At a future time
(t + ∆t) the person’s input data will change to x∗ (due to changes in variables such
as age, weight, protein expression values, etc.), or the data samples in the data set
D may be updated and new data samples added. A new profile F ∗

x derived at time
(t + ∆t) may be different from the current one Fx.

The average profile Fi for every class Ci in the data Dx is a vector containing
the average values of each variable of all samples in Dx from class Ci. The
importance of each variable (feature) is indicated by its weighting in the weight
vector Wx. The weighted distance from the person’s profile Fx to the average class
profile Fi (for each class i) is defined as:

D(Fx, Fi) =
v∑

l=1

|Vlx − Vli| · wl (13)

where wl is the weight of the variable Vl calculated for dataset Dx (see equation
(4)).

Assuming that Fd is the desired profile (e.g., normal outcome), the weighted
distance D(Fx, Fd) will be calculated as an aggregated indication of how much a
person’s profile should change to reach the average desired profile Fd:

D(Fx, Fd) =
v∑

l=1

|Vlx − Vld| · wl. (14)

A scenario for a person’s improvement through changes made to variables
(features) towards the desired average profile Fd can be produced as a vector of
required variable changes, defined as:

∆Fx,d = ∆Vlx,d | l = 1, . . . , v (15)

∆Vlx,d = |Vlx − Vld|, with an importance of wl. (16)

In order to find a smaller number of variables, as global markers that can be
applied to the whole population X , procedures P2–P7 are repeated for every
individual x. All variables from the derived sets Vx are then ranked based on their
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likelihood to be selected for all samples. The top m variables (most frequently
used for individual models) are selected as a set of global set of markers Vm. The
procedures P1–P7 will be applied again with the use of Vm as initial variable set
(instead of using the whole initial set V of variables). In this case personalised
models and profiles are obtained within a set of variable markers Vm that would
make treatment and drug design more universal across the whole population X .

3 Results of using the IMPM on case studies for medical decision support

3.1 Software implementation of the IMPM

The IMPM was implemented as a software toolbox, which employed evolutionary
computational techniques. We used a coevolutionary based algorithm to search
optimised personalised models (Hu and Kasabov, 2009). We have applied our
method on three case studies to illustrate the possible uses of the proposed method.

3.2 Personalised modelling with IMPM for colon cancer diagnosis and
profiling on gene expression data

The first case study is the personalised modelling for diagnosis and profiling of
cancer. A benchmark colon cancer gene expression dataset is used (Alon et al.,
1999). It consists of 62 samples, 40 collected from colon cancer patients and 22
from control subjects. Each sample is represented by 2000 gene expression variables.
The objective is to create a diagnostic (classification) system that not only provides
an accurate diagnosis, but also profiles the person to help define the best treatment.

An example of a personalised model of colon cancer diagnosis and profiling of a
randomly selected person is given in Figure 4–9. Figure 4 shows the evolution (GA)
process of feature selection specifically for sample#32 from the colon cancer data
through 600 generations. IMPM selects 18 genes (features) out of 2000 genes based
the result from the GA optimisation. Figure 5 illustrates the weighted importance
of the selected 18 genes in Figure 4. The weighted importance is calculated by a
weighted SNR model (refer to equations (4)–(5)). The larger the importance value,
the more informative the gene is.

Using the proposed IMPM, an optimised personalised model Mx for sample#32
from the colon cancer data is created. This personalised model Mx consists of the
selected 18 informative genes, along with two parameters – classification threshold
(θ = 0.40) and the number of neighbouring samples (K = 18) are optimised
specifically for sample#32. Figure 6 shows the data subset Dx with 18 samples (the
neighbourhood with an appropriate size) of sample#32 using top 3 selected genes
(gene 377, 1285 and 1892). These neighbouring samples are:

61 , 41 , 12 , 1 , 38 , 22 , 26 , 31 , 34 , 28 , 19 , 44 , 6 , 49 , 57 , 3 , 8 , 43 .

The predicted outcome computed by the optimised personalised model Mx is 0.51,
which successfully classifies sample#32 into diseased class (class 2) (the classification
threshold θ is optimised to 0.40 as a model parameter).

Using the IMPM, a profile and a scenario of potential genome improvement
for colon sample#32 was created shown in Figure 7. Desired average profile is the
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Figure 4 The evolution of feature (variable) selection for sample#32 from the Colon
cancer data (600 generations of GA optimisation; the lighter the colour, the
higher the probability of the feature to be selected; each feature is represented as
one bit on the horizontal axis; at the beginning all features are assigned equal
probability to selected as 0.5) (see online version for colours)

Figure 5 The weighted importance of the selected features for sample#32 using weighted
SNR based model (refer to equation (4)–(5)) (see online version for colours)

average gene expression level from healthy samples group and desired improvement
value identifies the change of the gene expression level that this patient (sample#32)
should follow in order to recover from the disease. For example, the expression
level of gene 377 of sample#32 is 761.3790, while the average class profile for
class 1 (normal class) and class 2 (diseased class) are: 233.8870 (for class 1) and
432.6468 (for class 2). The distance between the gene expression level of gene 377
for sample#32 and the desired average class 1 profile is 527.4920, i.e., a potential
solution can be given to the colon cancer patient (sample#32) to decrease his
or her gene 377 expression level from 761.3790 to 233.8870. The information in
the generated profile can be used for designing personalised treatment for cancer
patients.

To find a small number of variables (potential markers) for the whole
population of colon cancer data, we have used the approach as follows: Based on
the experiment result for every sample, we selected 20 most frequently used genes as
potential global markers. Table 1 lists these 20 global markers with their biological
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Figure 6 Sample#32 (the blue dot) is plotted with its 18 neighbouring samples selected by
IMPM (red triangles – cancer samples and green triangles – control) in the 3D
space of the top 3 gene variables (genes 377, 1285 and 1892) from Figure 5
(see online version for colours)

Figure 7 The profile of sample#32 (blue dots) vs. the average local profile of the control
(green) and cancer (red) samples using the 18 selected genes from Figure 5 as
derived through the IMPM (see online version for colours)

Figure 8 The 20 most frequently selected genes using IMPM across all colon cancer data
samples, where x axis represents the index of the gene in the data and y axis is
the frequency of the gene as the marker of the optimised personalised models
for which this gene has been selected (see online version for colours)

information. Here we use 20 selected genes as global markers. The number of 20 is
based on the suggestion in Alon’s work (Alon et al., 1999).
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Figure 9 A comparison of classification results obtained by 4 classification algorithms
using 20 potential maker genes from Figure 8 , where x axis represents the size
of neighbourhood and y axis is the average classification accuracy across all
samples. The best accuracy is obtained with the use of the TWNFI classification
algorithm (91.90%) (see online version for colours)

The next objective of our experiment is to investigate whether utilising these
20 potential marker genes can lead to improved colon cancer classification
accuracy and what classification algorithm will perform best in the proposed
IMPM. Four classification algorithms are tested as personalised models in this
experiment, including WKNN, MLR, SVM and TWNFI. All the classification
results from four classifiers are validated based on leave-one-out cross validation
(LOOCV) across the whole dataset. Figure 9 shows the average accuracy obtained
by these four algorithms with different size (Kx) of neighbourhood. Table 2
summarises the classification results from the four classification algorithms using
20 selected potential marker genes. WKNN and a localised SVM yielded improved
classification accuracy (90.3%) when compared to the global model (Alon et al.,
1999). However, the TWNFI classifier obtained the best classification performance
(91.9%). Our results suggest that a small set of marker genes selected by the IMPM
could lead to improved cancer classification accuracy.

3.3 Crohn’s disease risk evaluation on geneome SNPs data

The second case study is personalised modelling for risk of Crohn’s Disease (CD)
risk evaluation based on whole genome SNPs data. Large repositories of SNPs data
have been collected from control patients and ill patients (Hindorff et al., 2009;
WTCCC, 2007). The data can be utilised to accurately predict an individual’s risk
of disease based on a personalised DNA profiling using the IMPM. The UK’s
Welcome Trust Case Control Consortium (WTCCC) data was collected as part of
a genome-wide association study project of 14,000 cases of 7 major diseases and a
shared set of 3000 controls (WTCCC, 2007).
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Table 1 The 20 most frequently selected genes (potential marker genes) using the
proposed IMPM across all colon cancer gene data samples (see Figure 8)

Index of gene GenBank accession number Description of the gene (from GenBank)

G377 Z50753 H.sapiens mRNA for GCAP-II/
uroguanylin precursor

G1058 M80815 H.sapiens a-L-fucosidase gene,
exon 7 and 8, and complete cds

G1423 J02854 Myosin regulatory light chain 2,
smooth muscle ISOFORM (HUMAN)

G66 T71025 Human (HUMAN)
G493 R87126 Myosin heavy chain, nonuscle

(Gallus gallus)
G1042 R36977 P03001 Transcription factor IIIA
G1772 H08393 COLLAGEN ALPHA 2(XI) CHAIN

(Homo sapiens)
G765 M76378 Human cysteine-rich protein (CRP) gene,

exons 5 and 6
G399 U30825 Human splicing factor SRp30c mRNA,

complete cds
G1325 T47377 S-100P PROTEIN (HUMAN)
G1870 H55916 PEPTIDYL-PROLYL CIS-TRANS

ISOMERASE, MITOCHONDRIAL
PRECURSOR (HUMAN)

G245 M76378 Human cysteine-rich protein (CRP) gene,
exons 5 and 6

G286 H64489 Leukocyte Antigen CD37 (Homo sapiens)
G419 R44418 Nuclear protein (Epstein-barr virus)
G1060 U09564 Human serine kinase mRNA,

complete cds
G187 T51023 Heat shock protein HSP 90-BETA

(HUMAN)
G1924 H64807 Placental folate transporter

(Homo sapiens)
G391 D31885 Human mRNA (KIAA0069) for ORF

(novel proetin), partial cds
G1582 X63629 H.sapiens mRNA for p cadherin
G548 T40645 Human Wiskott-Aldrich syndrome (WAS)

mRNA, complete cds

Here, we randomly selected a sample (#392) and evaluated it through 20 runs.
The proposed IMPM method produced an applausable prediction accuracy: the
prediction for sample#392 was always correct through all 20 runs. The average local
accuracy for this sample through 20 runs was 82.45%, which was significantly better
than the average accuracy from a published global statistical method (e.g., SVM)
that was only around 64%. Our experimental results has shown that the IMPM has
worked effectively on sample#392, as the computed local accuracy through 20 runs
is very stable – ranges from 81% to 83%.

Figure 10 shows the number of selected features for sample#392 in each of the
20 runs using the proposed IMPM method. The selecting frequency of each feature
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for testing sample#392 through 20 runs is shown in Figure 11. Here Age is the most
important feature for CD prediction, along with other top 5 selected SNPs:

Feature Id SNP Id Selecting frequency (/20times)

20 X4252400_T 19
24 X2155777_T 18
12 X7683921_A 14
9 X2270308_T 13
23 X10883359_G 13

Table 2 The best classification accuracy obtained by four classification algorithms on
colon cancer data with 20 potential maker genes. Overall – overall accuracy;
Class 1 – class 1 accuracy; Class 2 – class 2 accuracy

Classifier Overal [%] Class 1 [%] Class 2 [%] Neighbourhood size

MLR (Personalised) 82.3 90.0 68.2 3
SVM (Personalised) 90.3 95.0 81.8 12
WKNN 90.3 95.0 81.8 6
TWNFI 91.9 95.0 85.4 20
Original publication
(Alon et al., 1999) 87.1 – – –

Figure 10 An example of applying the IMPM for personalised modelling risk of Crohns’
disease evaluation based on the UK WTCCC data (WTCCC, 2007). A single
sample#392 is randomly selected from the data set. The number of selected
features for sample#392 in each of the 20 runs of the method is shown (see
online version for colours)

These selected important features, including 2 clinical factors (age and gender)
and 5 SNPs may be the potential global markers for CD risk evaluation across
whole CD patient population. Such information can be utilised for the personalised
treatment and drug design for this specific CD disease research.
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Figure 11 An example of personalised modelling for risk of Crohns’ disease evaluation
based on the UK WTCCC data (WTCCC, 2007). The most frequently selected
features for sample#392 after 20 runs (see Figure 10): #1 – Age; #20 – SNP
X4252400 T; #24 – SNP X2155777 T; #12 – Gender; #12 – SNP X7683921;
#9 – SNP X2270308 and #23 – SNP X10883359 (see online version for colours)

Figure 12 A schematic representation of a personalised modelling system linked to a
chronic disease ontology (see online version for colours)

Source: Adapted from Kasabov et al. (2008b)

3.4 Individual risk evaluation of chronic disease

The case study given here only as a general framework, is illustrated in Figure 12.
It shows a block diagram of a personalised modelling system for evaluation of
individual risks of chronic disease (cardio-vascular disease, diabetes type 2 and
obesity) that is linked to a chronic Disease Ontology. The ontology contains DNA-,
genetic-, proteomic-, clinical-, nutritional and other types of data of both control
patients and patients of a chronic disease (Kasabov et al., 2008b).

With the advancement of personalised data collection techniques, personalised
modelling is expected to play a significant role for the understanding of specific
personal conditions and for the design of more efficient personalised treatment
for patients with neurodegenerative diseases, such as Alzheimer disease, clinical
depression, bipolar disease, Parkinson’s disease and others (National Center for
Biotechnology Information, 2010; Reggia et al., 1999; Benuskova et al., 2006).
The IMPM can be linked to existing brain-gene ontology systems as shown in
Figure 12. Such ontology is the BGO proposed in the work (Kasabov et al., 2008a;
Benuskova et al., 2006).
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4 Conclusion

When compared to global or local modelling, the proposed personalised modelling
method (IMPM) has a major advantage. In our method, the modelling process
starts with all relevant variables available for a person, rather than with a fixed set
of variables required by a global model that may well be statistically representative
for a whole population, but not necessarily representative for a single person in
terms of best prognosis for this person. The proposed IMPM leads to a better
prognostic accuracy and a computed personalised profile. With global optimisation,
a small set of variables (potential markers) can be identified from the selected
variable set across the whole population. This information can be utilised for the
development of new more efficient drugs. A scenario for outcome improvement
is also created by the IMPM, which can be utilised for the decision of efficient
personalised treatment. We hope that this paper will motivate the biomedical
applications of personalised modelling research.

Personalised modelling methods and systems are not going to substitute experts
and current global or local modelling methods, but they are expected to derive
information that is specifically relevant to a person and help individuals and
clinicians make better decisions, thus saving lives, improving quality of life, and
reducing cost of treatment.
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Appendix: TWNFI – a transductive neuro-fuzzy inference system with
weighted data normalisation for personalised modelling

TWNFI (Song and Kasabov, 2006) is a dynamic neuro-fuzzy inference system in
which a local model is created for analysing each new data vector xv . A basic block
diagram of TWNFI is illustrated in Figure 13.

Giving a training dataset X , for each new data vector xv , TWNFI creates a
unique model with the application of the following steps (Song and Kasabov, 2006):

1 Normalisation:

• normalise the training data X and the new data vector xv (values range
from 0 to 1)

• initialise the weights of every input variables (features) to 1.

2 Identifying an appropriate neighbourhood (Dv) for xv;
Find Nv samples from training data that are closest to xv based on the
weighted normalised Euclidean distance calculated as:

‖x − y‖ =

√∑P
j=1 wj(xj − yj)2

P
(17)

where xj and yj are two vectors in the given problem space, N is the number
of samples, and w is a weight vector.

3 Calculate the distance di, i = 1, . . . , Nv using equation (17). di is the distance
between each sample in Dq and xv . Each sample’s weight is calculated as:

vi = 1 − (di − min(d)), i = 1, 2, . . . , Nv,

where min(d) is the minimum number of elements in the distance vector
d = [d1, d2, . . . , dNv ].

4 Cluster and partition the input subspace that consists of Nv selected training
samples; Create fuzzy rules and set their initial parameter values based on the
clustering results. Every fuzzy rule is created as:
the centroid of a cluster is the center of the fuzzy membership function (e.g.,
a Gaussian membership function) and the cluster radius is taken as the width.

5 Apply the steepest descent approach (back-propagation) to optimise the
weights and the parameters of the fuzzy rules in a local model Mv .



Integrated optimisation method for personalised modelling 255

6 Find a new set of Nv samples (D∗
v) nearest to xv (Step 2):

if the same samples are found as in the last search, the algorithm goes to the
next step;
otherwise, it repeats from Step 3.

7 Output the prediction yv for the new data vector xv using fuzzy inference on
the set of fuzzy rules that constitute the local model Mv .

Figure 13 A basic block diagram of TWNFI (see online version for colours)

Source: Adapted from Song and Kasabov (2006)

The weight and parameters can be optimised as follows: Consider a system having
P inputs, one output and M fuzzy rules initially defined by a clustering algorithm,
and the lth rule is formed as:
Rl: if xl is Fl1 and x2 is Fl2 and · · · xp is Flp, then y is Gl,
where Flj are the fuzzy sets defined by the following Gaussian membership
function:

Gaussian MF = α exp
(

− (x − m)2

2σ2

)
(18)

and Gl can be defined as:

Gaussian MF = exp
(

− (y − n)2

2δ2

)
. (19)
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Thus, the output of the system for an input vector xi = [x1, x2, . . . , xp] can be
calculated by a modified centre average defuzzification function as:

f(xi) =

∑M
l=1

nl

δ2
l

∏P
j=1 αlj exp[−w2

j (xij−mlj)2

2σ2
lj

]

∑M
l=1

1
δ2

l

P∏
j=1

αlj exp[−w2
j (xij−mlj)2

2σ2
lj

]
(20)

where, wj is the current weight vector for the input variables and nl is the point
having maximum membership value in the lth output set).




