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Abstract

Speech and signal processing technologies need new methods that deal with the
problems of noise and adaptation in order for these technologies to become common
tools for communication and information processing. This chapter is concerned with
a method and a system for adaptive speech recognition in a noisy environment
(ASN). A system based on the described method can store words and phrases spo-
ken by the user and subsequently recognise them when they are pronounced as con-
nected words in a noisy environment. The method guarantees system robustness in
respect to noise, regardless of its origin and level. New words, pronunciations, and
languages can be introduced to the system in an incremental, adaptive mode. The
method and system are based on novel techniques recently created by the authors,
namely: adaptive noise suppression, and evolving connectionist systems. Potential
applications are numerous, e.g. voice dialling in a noisy environment, voice com-
mand control, improved wireless communications, data entry into databases, helping
disabled people, multimedia systems, improved human computer interaction. The
method and system are illustrated on the recognition of English spoken digits in dif-
ferent noisy environments.
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1. Introduction

Speech recognition is one of the most challenging applications of signal
processing (Owens, 93). Yet there is no noise-robust, adaptive, speaker-
independent speech recognition system capable to maintain a medium, or a
large vocabulary, available on the world market. The general problem ad-
dressed in this chapter is developing adaptive systems working in a noisy
environment typical for many applications (e.g. automatic speech recogni-
tion (ASR) in offices, vehicles, aeroplanes etc).

The chapter offers solutions to the following specific research problems:
• The noise suppression problem, that is to design novel methods and

systems for effective noise suppression in different environments. Ex-
amples are vehicle noise (cars, trucks etc.), aircraft noise, industrial
noise, office noise.

• The adaptive speech recognition problem, that is the development of
methods and systems for speaker-independent recognition with high
accuracy, capable to adapt fast to new words, new accents, new
speakers for a small-, medium-, to large vocabulary of words, phrases
and sentences.

• The problem of integrated speech systems design capable to work re-
liably in severe noise conditions.
The noise cancellation problem is comparatively well explored (Pelton,

H., 93). There are methods available that are well situated for different types
of noise (Widrow, Stearns, 85). The research on the adaptive speech recog-
nition problem is still in its infancy. It has been solved only for speaker de-
pendent systems where the user adjusts the system to their voice (Pelton, G.,
93).

Here the goal is to develop a method and a system that combine the ad-
vantages of several approaches in order to achieve an adaptive system effi-
cient in a range of noisy environments.

The method and system developed and investigated in the chapter are
based on novel techniques that have been recently created by the authors,
namely: adaptive noise suppression (Iliev, Kasabov, 99); evolving
connectionist systems for adaptive learning (Kasabov, 98, 99).

The chapter presents first the framework of a noise-robust, adaptive
speech recognition system. Then the methods for adaptive noise suppression
and adaptive learning and recognition are explained. The chapter also gives
some experimental results achieved on a case study problem - the recogni-
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tion of English spoken digits in different noisy environments. A comparative
analysis is also presented when the suggested method and system are com-
pared with other systems on the case study problem. Conclusions and sug-
gestions of how the method and the system can be used for practical appli-
cations are given at the end.

2. The Framework of the Methodology and the System for
Adaptive Speech Recognition in a Noisy Environment

The framework of the proposed ASN methodology and a system is sche-
matically shown in Fig.1. It consists of the following modules and proce-
dures: adaptive noise suppression (ANS), endpoint detection (EPD), acoustic
feature extraction (AFE), feature normalisation with the use of the Discrete
Cosine Transform (DCT) and speech recognition module that uses evolving
fuzzy neural networks (EFuNNs). Other modules not shown in the figure are
a temporal buffer for storing a sequence of recognised words and a phrase
and sentence recognition module that follow the EFuNN module.

                    MIC
                                     ANS         EPD        AFE       DCT      EFuNN

Fig. 1. Block diagram of the framework of the proposed ANS.

The methodology we propose here is based on the following principles:
• Speech recording and noise cancellation with the use of an original

method suggested by the authors. The noise is effectively removed
from the signal and a ‘noise-free’  signal is achieved. The method tol-
erates very low signal-to-noise ratio (close to 0).

• Transforming the ‘noise-free’  signal with the use of standard trans-
formations tailored for the purpose. That includes: end point detection
to determine the boundaries of each word; acoustic feature extraction
to extract representative features from the signal; feature normalisa-
tion to produce a fixed length vector that represents each spoken word
and preserves the difference between the words. Here specific to the
method, but controllable features and parameters are used.
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• The vector that represents the pronounced word or phrase than is fed
into a word-storage module created with the use of the general pur-
pose adaptive learning method realised as an EFuNN. The EFuNN
allows for adaptive learning. New words and phrases can be added or
deleted from the system at any time of its operation, e.g. “go” , “one” ,
“connect to the Internet” , “start” , “end” , “ find a parking place” .  New
speakers can be introduced to the system, new accents, new lan-
guages. In the recognition mode, when speech is entered to the sys-
tem, the recognised words and phrases at consecutive time moments
are stored in the temporal buffer.

• The temporal buffer is fed into an EFuNN-sentence module where
multiple word sequences (or a whole sentence) are recognised.

• The recognised word or a sequence of words can be passed to an ac-
tion module for execution depending on the application of the pro-
posed method and system.
The signal processing part at the beginning is organised as follows:

Short-time energy and zero-crossing rate are combined to detect the speech
utterance boundaries. Acoustic features of the input speech are extracted
over 20 ms frames. Hamming windows having an overlap of 10 ms are used
to calculate Mel Frequency Scale Cepstral Coefficients (MFSCC) and log-
energy. A discrete cosine transform (DCT) is applied to the whole segment,
retaining as many parameters as it is necessary.

3. Adaptive Noise Suppression

3.1. Adaptive Filtering and Adaptive Noise Cancellation
Fig. 2 shows the classical scheme for adaptive noise cancellation using digi-
tal filter with finite impulse response (FIR). The primary input consists of
speech s(n) and noise n2(n) while the reference input consists of noise n1(n)
alone. The two noises n1(n) and n2(n) are correlated and hi(n) is the impulse
response of the noise path. The system tries to reduce the impact of the noise
in the primary input exploring the correlation between the two noise signals.
This is equivalent to the minimisation of the mean-square error E[e2(n)]
where
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e(n) = s(n) + n2(n) – n3(n)                                                                       (1)

Having in mind that by assumption, s(n) is correlated neither with n2(n)
nor with n1(n) we have

E[e2(n)] = E[s2(n)] + E[n2(n) – n3(n)]2.                                                   (2)

In other words the minimisation of E[e2(n)] is equivalent to the minimi-
sation of the difference between n2(n) and n3(n). Obviously E[e2(n)] will be
minimal when n3(n) ≈ n2(n) i.e. when the impulse response of the adaptive
filter closely mimics the impulse response of the noise path.

The minimisation of E[e2(n)] can be achieved by updating the filter taps
wi(n). Most often NLMS and RLS algorithms are used.
                                         s(n)+n2(n)                               e(n)

                                          hi(n)

                                        n1(n)                         n3(n)
                                                            wi(n)

Fig. 2. Adaptive noise cancellation.

3.2. Adaptive Blind Noise Suppression
The basic idea is that in many applications, for instance, hands-free cellular
phones in car environment (Kuo, Chuang, Mallela, 93), howling control in
hands-free phones, noise reduction in an office environment, the noise re-
veals specific features that can be exploited. In most instances although the
noise might be quite wide-band, there are always, as a rule, no more than
two or three regions of its frequency spectrum that carry most of the noise
energy (White, Walker, 82) and the removal of these dominant frequencies
results in a considerable improvement of signal-to-noise ratio (SNR). This
brings the idea to use notch adaptive filters capable of tracking the noise
characteristics. They have to meet the following requirements:
• to adapt as fast as possible to the changes in the noise which might be

quite rapid, for example car engine noise;



6 Title of Book

• the cancelled portions of the spectrum should be as narrow as possible
in order to prevent speech signal distortions.
Both requirements could be met much easier using infinite impulse re-

sponse (IIR) adaptive filters instead of finite impulse response (FIR) adap-
tive filters. IIR filters are usually avoided because they create a lot of stabil-
ity problems. To overcome this problem we use a realisation based on sec-
ond order Gray-Markel lattice circuit (Regalia, Mitra, Vaidyanathan, 88) -
Fig.3. Using this circuit it becomes possible to implement a second order
notch/bandpass section (Regalia, 91) - Fig. 4.

What are the advantages of such a realisation? First, it has extremely low
pass-band sensitivity that means resistance to quantisation effects. Second, it
is very convenient for realisation of adaptive notch filters because it is possi-
ble to control independently the notch frequency and the bandwidth.

                                            k2                                      k1

                    input

                                                     z-1                                        z-1

                    output

Fig.3. Second order lattice Gray-Markel circuit realising all-pass function A(z).
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then k1 controls the notch frequency ω0 while k2 is related to the bandwidth
(BW) via

k1 = -cos ω0                                                                                             (4)

k2 = 
)2/BWtan(1

)2/BWtan(1

+
−

.                                                                              (5)

But, on the other hand, BW is directly connected to the distance from the
pole to the unity-circle. So if we use the structure of Fig. 3 as an adaptive
filter we may fix BW and thus fixing k2 we make the distance from the pole



Title of Chapter 7

to the unity-circle constant which means that with this constraint we obtain
an adaptive IIR filter free of stability problems. Through adapting k1 we shift
the notch frequency around the unity-circle.
                                                                                      0.5
                                                                                                    Notch

                                    x(n)                           y(n)
                                                        A(z)

                                                                                      0.5
                                                                                                   Bandpass

Fig. 4. Second order notch/bandpass section.

Using the basic structure of Fig. 4 and the constraint mentioned above,
the final arrangement of our system is shown in Fig. 5. The system will work
in the following manner: each section will remove one of the dominant fre-
quencies using an appropriate adaptive algorithm. As shown in Fig. 4 we
propose to update only the coefficients k11, k12,…, k1M, while k2 is a priori
determined from equation (5). Thus we can reduce considerably the number
of computations and can guarantee the stability of the adaptive structure. The
number of sections is determined by the application. Here we introduce the
normalised least mean square (NLMS) algorithm for adjusting the filter co-
efficients as follows:

ei(n) = 0.5[ei-1(n) + yi(n)]                                                                        (6)

for i = 1 to M and e0(n) = x(n)

k1i(n+1) = k1i(n) - µ
2
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′
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for 1≤i≤M
where M is the number of sections, ei(n) is the error signal, µ is the step size
and )n(y i

′  is the derivative of yi(n) with respect to the coefficient subject of

adaptation.
We also call this method adaptive blind noise suppression (ABNS). The

method is illustrated by computer simulations. Fig. 6 shows the original
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speech. The speech is corrupted with noise from computer cooling fan that is
the most often encountered noise in an office environment and the resultant
signal is depicted in Fig. 7 (a). The process of noise suppression is shown in
Fig .7 (b). Here the system is composed of 3 sections each of them adapting
its coefficient to one of the dominant frequencies in the noise spectrum.

                                 x(n)                                   y1(n)
                                                     k11         k2

                                                                                   0.5       e1(n)

                                                     AA

                                 Section 1

                                                                         y2(n)
                                                     k12         k2

                                                                                  0.5       e2(n)

                                                    AA

                                 Section 2

                                                                         yM(n)
                                                     k1M         k2

                                                                                   0.5     eM(n)

                                                     AA
                                 Section M

Fig. 5. Adaptive system for noise suppression.

The main advantages of this system for noise suppression are:
• the adaptive system has a short time of adaptation - about 100 itera-

tions;
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• The system is very simple and flexible. For comparison, here we ad-
just only 3 coefficients against 250-450 in the conventional adaptive
noise cancellation systems (Widrow, Stearns, 85).

• the second-order lattice structures are stable during the adaptation that
defines the high stability of the whole system.

Fig. 6. Original speech - the word “zero” .

(a)

(b)

Fig.7. (a) Speech and noise. (b) Speech after noise suppression.
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3.3. A Novel Algorithm for Adaptive Noise Suppression Based on

Adaptive Filtering with Averaging
For application where the fast convergence rate is vital, NLMS algorithm is
not very efficient. The more complex recursive least square (RLS) algorithm
maintains a good rate of adaptation but the prize to be paid is an order-of-
magnitude increase in complexity. Moreover, the RLS algorithm is known
for having stability problems (Proakis, 95) due to the recursive covariance
update formula. In this section we introduce a new adaptive algorithm ap-
plied for noise cancellation based on adaptive filtering with averaging.

We start with the definition of the problem in the following manner. To
recursively adjust the filter coefficients, so that the mean-square error is
minimised, a standard algorithm for approximating the vector of filter coef-
ficients can be written as follows:

W(n+1) = W(n) – a(n)N1(n)e(n),                                                            (8)
where
W(n) = [w0(n), w1(n),…, wN(n)]T is the coefficients vector,

N1(n) = [n1(n), n1(n-1),…, n1(n-N)]T is the input vector, and a(n) is a se-
quence of positive scalars as a(n)→0 for n→∞.

In (8) the estimation error can be given by

e(n) = s(n) + n2(n) - N1
T(n)W(n).                                                            (9)

The equation (8) could be transformed through taking the averages of W:

)n(e)n(N
n

1
)n(W)1n(W 1γ

+=+                                                          (10)

∑=
=

n
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)k(W

n

1
)n(W

1/2<γ<1

The analysis presented in (Astrom, Goodwin, Kumar, 95) shows that al-
gorithm based on the principle from above may be unstable in the initial pe-
riod. In order to improve the stability, we undergo the second step, namely
averaging not only the approximation sequence, but also the observed sig-
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nals N1 and e. This leads us to an adaptive filtering algorithm with averaging
(AFA):
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1/2<γ<1

The required steps for the utilisation of the AFA algorithm for noise can-
cellation are presented in Table 1.

Considering Table 1 it can be concluded that first, the averaging here
does not create additional burden since the terms )n(w i  and )n(en1 i

 can be
recursively computed from their past values. Second, the algorithm does not
use the covariance matrix, so there is no need of covariance estimate. This
implies low computational complexity and escape from stability issues re-
lated to P(n).

TABLE 1
The AFA algorithm applied to noise cancellation.

Noise estimation:

n3(n) = ∑ −
=

N

0i
1i )in(n)n(w

N – filter order
Error estimation:

e(n) = s(n) + n2(n) – n3(n)
Coefficients update:
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+

for 0≤i≤N        and        1/2<γ<1

The NLMS, RLS and AFA algorithms are implemented and experi-
mented with for the following parameters: for the NLMS algorithm - µ=
0.02; for the RLS algorithm - δ= 0.98; and for the AFA algorithm - γ =
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0.5.The averaging is started after a suitable transient period, here chosen to
be 40 iterations.

First, the original speech (the word "two") is corrupted with office noise
(SNR=8dB) and the results after noise cancellation are shown in Fig. 8 and
9. Second, an experiment with car noise (SNR=3dB) is conducted and the
results for the different algorithms are presented in Fig. 10 and 11 (here the
original speech is the word "seven").

Comparing the results of the different algorithms it is clear that RLS and
AFA outperform NLMS algorithm. The latter manifests a high deviation in
its coefficients that results in a poorer performance.

The main goal of this section is to investigate the application of an algo-
rithm based on adaptive filtering with averaging for the noise cancellation
problem. Here the main concern is to achieve a high convergence rate in or-
der to meet the requirements imposed by different applications where rapid
changes in the signal characteristics could occur. In this aspect the obtained
results show that the AFA algorithm is very promising. Its main advantages
could be summarised as follows:
• high adaptation rate, comparable to that of the RLS algorithm;
• low computational complexity and robustness when fixed-point im-

plementation is used.

                             (a)                                                                     (b)

Fig. 8. Office noise, SNR=8dB. Noise suppression with the use of: (a) The NLMS
algorithm. (b) The RLS algorithm.
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Fig. 9. Noise suppression with the use of the AFA algorithm; office noise,
SNR=8dB.

                                     (a)                                                            (b)

Fig. 10. Car noise, SNR=3dB. Noise suppression with the use of: (a) The NLMS al-
gorithm. (b) The RLS algorithm.
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Fig. 11. Noise suppression with the use of the AFA algorithm; car noise, SNR=3dB.

4. Evolving Connectionist Systems and Evolving Fuzzy Neu-
ral Networks for Adaptive Learning and Classification

4.1. Evolving Connectionist Systems (ECOS)
The proposed methodology and a system for adaptive speech recognition in
a noisy environment uses a method for adaptive learning called evolving
connectionist systems  (ECOS) (Kasabov, 98,99). ECOS learn in a continu-
ous, incremental way, adapt to changes in data, are self-organised, are con-
trollable (i.e., through pre-setting appropriate values for certain parameters,
certain level of learning and generalisation can be achieved).

The ECOS method allows a system to be automatically created. The
system consists of nodes (units) that perform pre-defined functions, and con-
nections between them. The system has a minimal initial structure that in-
cludes preliminary input and output nodes and few preliminary connections.
Data is allowed to flow into the system so that if an input data vector is asso-
ciated with a desired output vector, the system stores this association into a
new node and new connections. Nodes and connections are created auto-
matically to reflect the data distribution. The system’s structure is dynami-
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cally changing after each data item is introduced. The number of the input
and output variables can vary during the learning process thus allowing for
more (or less) input and output variables to be introduced at any stage of the
learning process. Input and output variables can have ‘missing values’  at any
time of the learning process. If there is no output vector associated with an
input vector, the system produces its own output vector (its own solution). If
the desired output vector became known afterwards, the system will adjust
its structure to produce this output, or one close to it next time the same in-
put vector is presented. The system continuously and adaptively learns from
data to associate inputs to outputs and to cluster the data trough allocating
nodes to represent exemplars of data.

The learning process in ECOS is achieved through interaction with the
environment, which supplies the data flow and reacts to the output produced
by the system (see Fig.12). In addition, the system provides the knowledge it
has learned in the form of IF-THEN rules. The ECOS method implies that a
system evolves through its operation in an interactive way (see Fig. 12). The
more data are presented to the system, the more the system evolves. The
learning process is on-line, life-long.

Fig. 12. Learning in ECOS is through interaction with the environment (from (Ka-
sabov, 98, 99)).

Nodes and connections in an ECOS system can be created, modified,
merged, and pruned, in a self-organising manner, similar to how the human
brain learns through creating and wiring neuronal structures. The system’s
structure grows or shrinks depending on the incoming data distribution and
pre-set parameters. Through the process of evolving from data, the system
learns the rules of its own behaviour. The rules that constitute the system’s
knowledge can be reported and/or extracted at any time of the system opera-

              Environment

ECOS
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tion (Kasabov, 99). In this way, an ECOS can be considered as a self-pro-
gramming environment.

One realisation of ECOS is the evolving fuzzy neural network (EFuNN)
(Kasabov, 98,99). An example of EFuNN is given in Fig. 13. EFuNNs have
a five-layer structure. Nodes and connections are created/connected as data
examples are presented. An optional short-term memory layer can be used
through a feedback connection from the rule (also called, case) node layer
(see for example (Kasabov, 99)). The layer of feedback connections could be
used if temporal relationships of input data are to be memorised structurally.
The input layer represents input variables. The second layer of nodes (fuzzy
input neurons, or fuzzy inputs) represents fuzzy quantisation of each input
variable space. For example, two fuzzy input neurons can be used to repre-
sent "small" and "large" fuzzy values. Different membership functions (MF)
can be attached to these neurons (triangular, Gaussian, etc.). The number and
the type of MF can be dynamically modified in an EFuNN. New neurons can
evolve in this layer if, for a given input vector, the corresponding variable
value does not belong to any of the existing MF to a degree greater than a
membership threshold. A new fuzzy input neuron, or an input neuron, can be
created during the adaptation phase of an EFuNN. The task of the fuzzy in-
put nodes is to transfer the input values into membership degrees to which
they belong to the MFs. The third layer contains rule (case) nodes that
evolve through supervised/unsupervised learning. The rule nodes represent
prototypes (exemplars, clusters) of input-output data associations, graphi-
cally represented as an association of hyper-spheres from the fuzzy input and
fuzzy output spaces. Each rule node r is defined by its own values for the
system parameters, and by two vectors of connection weights – W1(r) and
W2(r), the latter being adjusted through supervised learning based on the
output error, and the former being adjusted through unsupervised learning
based on similarity measure within a local area of the problem space. The
fourth layer of neurons represents fuzzy quantisation for the output variables,
similar to the input fuzzy neuron representation. The fifth layer represents
the real values for the output variables.

An initial version of the EFuNN evolving algorithm is presented in (Ka-
sabov, 98, 99). The learning process includes also: aggregation of rule nodes
(i.e. merging rule nodes); pruning of rule nodes and connections and other
operations. Here an optimised evolving algorithm is presented.
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4.2. A Self-Optimised Learning Algorithm for Evolving Fuzzy Neural

Networks
The basic EFuNN algorithm, to evolve EFuNNs from incoming examples, is
further developed and improved as a method for adaptive learning and self-
optimisation (Kasabov, 2000) as presented below:

The EFuNN learning algorithm
The algorithm is given below as a procedure of consecutive steps. Matrix

operation expressions are used similar to the expressions in a matrix proc-
essing language such as MATLAB.

1. Initialise an EFuNN structure with a maximum number of neurons and
no (or zero-value) connections. Initial connections may be set through in-
serting fuzzy rules in the structure. If initially there are no rule (case) nodes
connected to the fuzzy input and fuzzy output neurons, then create the first
node rn=1 to represent the first example d1 and set its input W1(rn) and out-
put W2(rn) connection weight vectors as follows:

<Create a new rule node rn >:  W1(rn)=EX; W2(rn) = TE, where TE is the
fuzzy output vector for the current fuzzy input vector EX.

2. WHILE <there are examples in the input stream> DO
Enter the current example (Xdi,Ydi), EX denoting its fuzzy input vector.

If new variables appear in this example, which are absent in the previous ex-
amples, create new input and/or output nodes with their corresponding
membership functions.

3. Find the local normalised fuzzy distance between the fuzzy input vec-
tor EX and the already stored patterns (prototypes, exemplars) in the rule
(case) nodes rj=r1,r2,…,rn

D(EX, rj )= sum (abs (EX - W1(rj) )) / sum (W1(rj)+EX)
4. Find the activation A1 (rj) of the rule (case) nodes rj, rj , j=1: rn. Here

radial basis activation function, or a saturated linear one, can be used, i.e. A1
(rj) =  radbas (D(EX, W1(rj))), or  A1(rj) = satlin (1 – D(EX, W1(rj))). The
former may be appropriate for function approximation tasks, while the latter
may be preferred for classification tasks. In case of the feedback variant of
an EFuNN, the activation A1(rj) is calculated as:

A1 (rj) =  radbas (Ss. D(EX, W1(rj) ) - Tc.W3), or  A1(rj) = satlin (1 – Ss.
D(EX, W1(rj)) + Tc.W3).

5. Update the pruning and aggregation parameter values for the rule
nodes, e.g. age, average activation, sensitivity threshold, etc.

6. Find all case nodes rj with an activation value A1(rj) above a sensitiv-
ity threshold Sthr.
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7. IF there is no such case node, then <Create a new rule node> using the
procedure from step 1 in an unsupervised learning mode ELSE

8. Find the rule node inda1 that has the maximum activation value (e.g.,
maxa1).

9. (a) in case of "one-of-n" EFuNNs propagate the activation of the rule
node inda1 to   the fuzzy output neurons:  A2 = satlin (A1(inda1) . W2(inda1)

    (b) in case of "many-of-n" mode, the activation values of all rule
nodes that are above an activation  threshold of Athr are propagated to the
next neuronal layer (this case is not discussed in details here; it has been
further developed into a new EFuNN architecture called dynamic, ‘many-of-
n’   EFuNN, or DEFuNN) .

10. Find the winning fuzzy output neuron inda2 and its activation maxa2.
11. Find the desired winning fuzzy output neuron indt2 and its value

maxt2.
12. Calculate the fuzzy output error vector: Err=A2 - TE.
13. IF (inda2 is different from indt2) or (D(A2,TE) > Errthr )  <Create a

new rule node>
ELSE
14. Update: (a) the input, (b) the output, and (c) the temporal connection

vectors (if such exist) of the rule node k=inda1 as follows:
• Ds(EX,W1(k))=EX-W1(k); W1(k)=W1(k) + lr1.Ds(EX,W1(k)),

where lr1 is the learning rate for the first layer;
• W2(k) = W2 (k) + lr2. Err. maxa1, where lr2 is the learning rate for the

second layer;
• W3(l,k)=W3(l,k)+lr3. A1(k).A1(l)(t-1) , here l is the winning rule neron

at the previous time moment (t-1), and A1(l)(t-1) is its activation value
kept in the short term memory.
15. Prune rule nodes j and their connections that satisfy the following

fuzzy pruning rule to a pre-defined level:
IF (a rule node rj is OLD) AND (average activation A1av(rj) is LOW)

and (the density of the neighbouring area of neurons is HIGH or
MODERATE  (i.e. there are other prototypical nodes that overlap with j in
the input-output space; this condition apply only for some strategies of in-
serting rule nodes as explained in a sub-section below)

THEN the probability of pruning node (rj) is HIGH
The above pruning rule is fuzzy and it requires that the fuzzy concepts of

OLD, HIGH, etc., are defined in advance (as part of the EFuNN’s chromo-
some). As a partial case, a fixed value can be used, e.g. a node is OLD if it
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has existed during the evolving of a FuNN from more than 1000 examples.
The use of a pruning strategy and the way the values for the pruning pa-
rameters are defined, depends on the application task.

16. Aggregate rule nodes (after every pre-defined number of examples)
into a smaller number of nodes.

17. END of the while loop
18. END of the algorithm
Self-optimisation in EFuNN structures:
In case of self-optimisation there is no need to specify (fix) any of the

parameters of the EFuNN. The structure defines its parameters based on the
incoming data. Each rule node rj has its own parameters – sensitivity thresh-
old Sj, receptive field radius Rj=1-Sj; error threshold Ej; learning rates lr1(j)

and lr2(j).   Each of these parameters is automatically defined during learning
and aggregation. Aggregation is based on the distance measure D1(W1(rj),
W1(ri)) between  rule nodes rj and ri in the fuzzy input space and the distance
measure D2(W2(rj), W2(ri)) in the fuzzy output space. Two thresholds T1
and T2 define if rule nodes will be aggregated – the two distances D1 and
D2 should be both less than the corresponding thresholds T1 and T2.The
following are the main points of the method:
• There are initial values for the parameters assigned to each neuron:

S=1; R=0; E=0; lr1=lr2=0; T1=0.5 (this threshold defines when rule
nodes in the same fuzzy subspace of the input space can be aggre-
gated); T2. The threshold T2 could have different values depending
on the class of problems, e.g. T2 =0.05 for function approximation
and prediction, which gives sufficient tolerance for generalisation, and
T2=0.2 for classification.

• Rule nodes are linearly and spatially ordered and perform one-
dimensional vector quantisation of the input space. A new rule node is
inserted next to the highest activated one, either on the left or on the
right side depending on where the second highest activated neuron is
located.

• After a certain number of epochs (depending on the task) aggregation
is performed as follows:
(a) Let us assume that rj-1 and rj are the first two rule nodes (considering

the number of the nodes in an ascending order) such that D1 (W1(rj), W1(rj-

1)) <T1 and D2(W2(rj), W2(rj-1)) < T2. The two distances D1 and D2 be-
tween the rule node rj and each of its consecutive neighbouring rule nodes
rj+1,rj+2,…,rj+m,…, etc. are measured and both are less than the corresponding
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thresholds T1 and T2, until a rule node rj+m+1  is reached  for which either
D1(W1(rj),W1(rj+m+1))>T1, or D2(W2(rj),W2(rj+m+1))>T2. The rule nodes rj+m

and  rj+m+1 represent the border between one class (cluster) of data and an-
other – they are the “guards” .

(b) The rule node rj is then aggregated with all rule nodes rj+1,rj+2,…,rj+m-1

such that the new rule node r j 
agg

   is placed at the geometrical centre of all
the aggregated nodes:

W1(r j 
agg )= Σ i= j, j+1, j+2,…, j+m-1  (W1 (r i )) / m

W2(r j 
agg )= Σ i= j, j+1, j+2,…, j+m-1  (W2 (r i )) / m

(c) The new receptive field R(rj
agg) and the sensitivity threshold S(rj

agg)
are defined as follows:

R (rj
agg)= max { D1 ( W1(rj

agg ), W1(r i ))} , for i= j, j+1,j+2,…,j+m-1

S (rj
agg) = 1 - R(rj

agg)
(d) The new error threshold of the  aggregated rule node is defined as:
E (rj

agg) = max { D2 (W2(rj
agg), W2(ri ))} , for i= j, j+1,j+2,…,j+m-1

For all rule nodes rk that are not aggregated during the current aggrega-
tion procedure the sensitivity threshold and the error threshold decay
slightly:

S(rk) = S(rk)  - αS(rk), where α is a small decay constant, e.g. α=0.001.
E(rk) = E(rk)   + βE(rk) , where β is a small decay constant, e.g. β=0.001.
When a new input-output fuzzy pair of vectors x = (EX,TE) is accom-

modated into a rule node r j  and its position is changed from W1(rj ) and
W2(rj ) to W1(rj 

upd) and W2(rj 
upd) in the input and the output fuzzy spaces  as

explained in the main EFuNN algorithm, the parameters of this node change
as follows:

R (rj 
upd

 ) = R( rj ) + D1 (W1(rj 
upd), W1(rj) )

S (rj 
upd

 )= 1 - R (rj 
upd

 )
E (rj 

upd
 ) = E( rj ) + D2 (W2(rj 

upd), W2(rj) )
lr1 (rj 

upd) = lr1 (rj ) + c1. D1 (W1(rj 
upd), W1(rj) )

lr2 (rj 
upd) = lr2 (rj ) + c2. D2 (W2(rj 

upd), W2(rj) )
where: c1 and c2 are small coefficients, for example 0.001.
In the aggregation procedure two thresholds are used T1 and T2, and

every two rule nodes for which the distance in the input space is less than T1
and the distance in the output space is less than T2 get aggregated. A nor-
malised distance as a measure for the similarity between two vectors (two
rule nodes represented by their connection weight vectors W1 and W2) is
used in such a manner that providing the two vectors have been normalised
and all their values are inside the interval [0,1], the distance is also inside
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this interval. Using Eucledian distance does not maintain this requirement
and we have to change the two thresholds used T1 and T2 for different di-
mensions (N) of vectors. So we define this normalised distance as follows.
Here the way the distance is measured is introduced:

Definition: If X and Y are two vectors with dimension N then the nor-
malised distance between them is given by

N

)yx(

D

N

1i

2

norm
XY

ii∑ −
= = .                                                                           (12)

Property: Consider the distance between two vectors X and Y given by
(12) where

∑ −=
=

N

1i

2
XY )yx(D ii  is the Eucledian distance, then if 0≤xi≤1 and 0≤yi≤1

for i=1:N the following condition holds

0≤ Dnorm
XY ≤1

Proof:
If 0≤xi≤1 and 0≤yi≤1 for i=1:N then

1
N

N

N

D
D

maxXYnorm
maxXY ===

and

0
N

0

N

D
D

minXYnorm
minXY ===

where DXYmax is the maximum Eucledian distance and DXYmin is the mini-
mum Eucledian distance. Under the assumptions for X and Y DXymax

= N and  DXYmin=0.
An algorithm for rule extraction from EFuNNs is presented in (Kasabov,

Woodford, 99).
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                                                                                                     class 1

                                                                                                     class 2

                                                                                                     class 3

                 input layer

                 fuzzy logic layer

                 rule layer

                 output layer

Fig. 13. An exemplar EFuNN structure for classification [5-10-5-6-3].

The next section describes a case study on the application of the ASN
from Fig.1 built to recognise English spoken words with different sources of
noise applied.
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5. Experimental Results

The task is recognition of speaker independent pronunciations of English
digits from the Otago Corpus database (http://kel.otago.ac.nz/hyspeech/ cor-
pus/). 17 speakers (12 males and 5 females) are used for training and other
17 speakers (12 males and 5 females) are used for testing. Each speaker ut-
ters 30 instances of English digits during recording session in a quiet room
(clean data) for a total of 510 training and 510 testing utterances. We use 8
mel frequency scale cepstrum coefficients (MFSCC) and log-energy as
acoustic features.

In order to assess the performance of EFuNN in this application, a com-
parison with Linear Vector Quantisation (LVQ) is accomplish. The clean
training speech is used to train both LVQ and EFuNN. Noise is introduced in
the clean speech to evaluate behaviour of the recognition systems in a noisy
environment. Two different experiments are conducted with the use of the
standard EFuNN learning method (Kasabov, 98, 99). In the first instance, car
noise is added to the clean speech. In the second instance office noise is in-
troduced over the clean signal. In both cases the SNR ranges from 0 dB to 18
dB.

The results for car noise are shown in Fig. 14. The word recognition rate
(WRR) ranges from 86.87% at 18 dB to 83.33% at 0 dB in EFuNN case out-
performing LVQ, which achieves WRR=82.16% at 0 dB.

The results for office noise are presented in Fig. 15. The WRR ranges
from 78.63% at 18dB to 71.37% at 0 dB in EFuNN case and is significantly
higher than the WRR of LVQ (21.18% at 0 dB).

Another experiment is conducted with adaptive noise suppression as a
pre-processing technique. The results are summarised in Table 2 and they
show that our system combining EFuNN and adaptive noise suppression is
able to achieve WRR of 91.74% in the case of car noise and 86.63% in the
case of office noise with SNR=0 dB. This is well above the results of the
LVQ algorithm, which is a recognition system most often used as a bench-
mark in designing new recognition systems. This experiment illustrates how
an ASN system works and what its advantages are. The ASN is based on
both the AFA noise suppression method and on the EFuNN training method.
EFuNN outperforms significantly LVQ both in WRR and especially in the
required time for training, which is 3 to 4 orders of magnitude less. It uses
one pass of data propagation, while LVQ (as well as all known connectionist
methods for learning from data) requires many iterations.
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Fig. 14. Word recognition rate (WRR) of two speech recognition systems when car
noise is added: LVQ – codebook vectors – 396, training iterations – 15840. EFuNN

– 3MF, rule nodes – 157, sthr=0.9, errthr=0.1, lr1=0.01, lr2=0.01, thrw1=0.2,
thrw2=0.2, nexa=100, 1 training iteration.

Fig. 15. Word recognition rate (WRR) of two speech recognition systems when of-
fice noise is added: LVQ – codebook vectors – 396, training iterations – 15840.

EFuNN – 3MF, rule nodes – 157, sthr=0.9, errthr=0.1, lr1=0.01, lr2=0.01,
thrw1=0.2, thrw2=0.2, nexa=100, 1 training iteration.

0 2 4 6 8 10 12 14 16 18
82

83

84

85

86

87

88

89

90

91

SNR(dB)

W
R

R
(%

)

EFuNN
LVQ

0 2 4 6 8 10 12 14 16 18
20

30

40

50

60

70

80

SNR(dB)

W
R

R
(%

)

EFuNN
LVQ



Title of Chapter 25

TABLE 2
The performance of an ASN system based on EFuNN and Adaptive Noise Suppres-
sion - 3MF, rule nodes – 157, sthr=0.9, errthr=0.1, lr1=0.01, lr2=0.01, thrw1=0.2,

thrw2=0.2, nexa=100, 1 training iteration.
Type of noise SNR (dB) WRR (%)

0 91.74
car noise

9 91.87
0 86.47

office noise
9 86.63

Preliminary results with an ASN system that uses the algorithm from
(Kasabov, 2000) show improvement across the noise level scope.

6. Conclusions

The ASN method and system proposed here are characterised by the fol-
lowing characteristics:
• effective adaptive noise cancellation that is regardless of the origin of

the noise; the noise suppression module adapts continuously to the
noise added to the speech signal;

• a  theoretical potential for creating unlimited vocabulary of words in
any language (or languages) and accents;

• high recognition and adaptation accuracy;
• different modes of operation depending on the setting of some pa-

rameters: (1) speaker-dependent mode, where the system learns to
recognise only a single user;  (2) multiple speakers mode, where the
system is trained on several speakers; (3) speaker independent mode,
where the system can potentially recognise any speaker that speaks
with a pronunciation and language that is tolerated by the system;

• fast learning and adaptation what concerns adding new words and
speakers if necessary.
The ASN method and system are implementation invariant. They can be

implemented as software or/and hardware with the use of either conventional
or new techniques. The applicability is broad and spans across all application
areas of computer and information science where systems that communicate
with humans in a spoken language (‘hands-free and eyes-free environment’ )
are needed. This includes:
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• Voice dialling, especially when combined with "hands-free" operation
of a telephone system (e.g. a cell phone) installed in a car. Here a
simple vocabulary that includes the spoken digits and some other
commands would be sufficient. The adaptive noise cancellation re-
duces significantly the effect of the engine.

• Voice control of industrial processes. Noise cancellation deals with
the background noise inevitably present in the industrial environment.

• Voice command execution – the controlled device could be any ter-
minal in an office. This provides a means for people with disabilities
to implement simple tasks in an office environment.

• Voice control in an aircraft.
• Speech data entry systems operating in a noisy environment.
• etc.
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