
 

 
AbstractThe inverse problem of recovering the potential 

transformer primary signal waveform using secondary signal 
waveform and information about the secondary load is solved 
here via two inverse neural network models. The first model uses 
two recurrent neural networks trained in an off-line mode. The 
second model is designed with the use a Dynamic Evolving 
Neural-Fuzzy Interface System (DENFIS) and suited for on-line 
application and integration into existing protection algorithms as 
a parallel module. It has the ability of learning and adjusting its 
structure in an on-line mode to reflect changes in the 
environment. The model is suited for real time applications and 
improvement of protection relay operation. The two models 
perform better than any existing and published models so far and 
are useful not only for the reconstruction of the primary signal, 
but for predicting the signal waveform for some time steps ahead 
and thus for estimating the drifts in the incoming signals and 
events.  
 

I. INTRODUCTION 

The growing of power system complexity and size leads to 
an increased importance of protective relays. An accurate 
reproduction of the real signals from the power system is 
needed. Iron-core measurement transformers are not ideal, 
because of the non-linearity of their excitation characteristics 
and their ability to retain large flux levels in their cores, known 
as remanent flux. The distorted waveforms can introduce large 
uncertainties, leading to delays or malfunction in relay tripping 
It is important to investigate the deformation of the real 
signals, caused by the transformers, and to recover the primary 
signals using the secondary ones. 

Electric power systems are subjected to many types of 
disturbances that result in electrical transients due to faults or 
routine switching operations. During the first few cycles 
following a power system fault, high-speed protective relays 
are expected to make a correct decision as to the presence and 
location of the fault in order to preserve system stability and to 
minimize the extent of equipment damage. The dynamic 
performance of the protective relays depends to the large 
extent on the signals produced by the potential transformers 
(PT) and the current transformer (CT). Power system faults or 
other transients can cause saturation in the PT and CT, leading 

to distortion of their signals. The PT and CT transient errors 
can have a major impact on the security of the protective 
relays and can cause relay protection misoperations; 
unacceptably delayed operations or failures to operate. 

Additional algorithms for prediction of PT primary signal for 
a few time samples ahead can increase the operational speed 
and reliability of the existing protection algorithms that would 
result in an improved decision-making and an increased 
overall performance of the relay protection. 

There are several methods used so far to achieve the above 
goal. The methods of neural networks (NN), fuzzy systems 
(FS) and knowledge engineering have been used extensively 
for solving prediction and control problems across areas of 
applications [1]. NN-based predictors have been developed for 
systems, governed by linear models [2]. A recurrent NN 
predictor of power transformer magnetizing current, using 
terminal voltages as input values is realized in [3]. In [4] a 
reconstruction of primary current waveform for partially 
saturated CT is suggested via logical block and 3-layered time-
delay feed-forward NN (FNN). The use of FNN for CT 
saturation correction is considered in [5]. The CT is modelled 
in inverse direction by the FNN. In [6] and [7] the 
reproduction of CT primary current is considered, assuming 
steady state conditions for the magnetic flux and without 
remanent flux. 

Despite of the successful applications of the above systems, 
there is a need for on-line learning and adaptive prediction 
techniques. One paradigm introduced for this purpose is called 
evolving connectionist systems (ECOS) [8]. ECOS evolve 
their structure and functionality through on-line, incremental, 
life-long learning from incoming data, thus being able to better 
predict future events. For the purpose of improving the relay 
protection performance we are introducing here the use of 
Dynamic Neuro-Fuzzy Inference Systems DENFIS [9], which 
is a specific prediction technique from the class of ECOS [8]. 
DENFIS is used here not only for the prediction and the 
recovery of the power system real current and voltage signals, 
but also for the prediction of future events. For initial training 
of the predictors, classical PT model is built first. Then the 
DENFIS predictor is used for on-line, real time learning and 
prediction.  

Neural Systems for Solving the Inverse 
Problem of Recovering the Primary Signal 

Waveform in Potential Transformers 
Nikola Kasabov Senior Member IEEE, Gancho Venkov and Stefan Minchev Student Member,IEEE  

©Copyright 2003 by ACM, Inc 

http://www.acm.org/pubs/copyright_policy/#Notice


 

This paper is organized as follows: Section II presents the 
mathematical modelling of PT and its classical description as a 
non-linear dynamic system with hysteresis. Section III refers 
to the design of inverse model via two recurrent neural 
networks in a series. Simulation results that prove its adequate 
behaviour are shown. Section IV introduces a novel method 
for the design of neural-fuzzy predictors with the use of 
DENFIS. Verification test and simulation results are applied. 

II. MATHEMATICAL DESCRIPTION OF POTENTIAL 
TRANSFORMERS 

In this section a classical non-linear PT model with 
hysteresis is built for the purpose of generating training 
sequences that are used for the training the neural systems. 
The model is realized in MATLAB. The PT equivalent circuit 
is shown on fig. 1. 

 
Fig. 1. Equivalent circuit of a single phase PT. 

As a non-linear system with hysteresis, a 1-phase, 2-winding 
PT can be described mathematically via non-linear system of 
differential-algebraic equations [10]: 
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The supplying voltage ( )tu1  is the excitation signal; ( )tu2  is 

the secondary voltage; 1Ψ  and 2Ψ  are flux linkages; 1r , 2r , 

σ1L , σ2L  are parameters of the windings; B  is magnetic flux 

density; eGµ  is the equivalent permeance of the magnetic 

core; es  and el  are geometrical parameters of the core; loadr  

and loadL  are load resistance and inductance. The auxiliary 

variables ( ) ( ) ( )ttiLt 1111 Ψ+= σϕ  and 

( ) ( ) ( ) ( )ttiLLt load 2222 Ψ++= σϕ  are introduced. The 
secondary voltage is calculated from: 
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(3) 

 
The non-linear implicit relation (2) is given as data set 

( )BfDYN =µ  and shown on fig. 2. According to [11] eddy 
current and hysteresis losses are combined into one core loss 
term, which is accounted for by a voltage-dependent resistance 
additional load ( )( )turr hh 222 =  on the PT secondary. This 
explicit relation is shown on fig. 3.  
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Fig. 2. The relation ( )BfDYN =µ . 
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Fig. 3. The relation ( )( )turr hh 222 = . 

The classical PT model based on (1), (2), (3) and also based 
on the non-linear relations ( )BfDYN =µ  and ( )( )turr hh 222 =  
is constructed for generation of training samples. Certain PT 
parameter values are chosen as follows: 

VU 2201 = ; VU 22002 = ; AI 21 = ; AI 12 =  and the model 

parameter values are: Ω= 991.21r ; 

Ω= 99.1212r ; mHL 051.01 =σ ; mHL 45.22 =σ ; Ω= krload 20 ; 

HLload 27.1= . 

III. INVERSE MODEL FOR RECOVERING PRIMARY SIGNAL 



 

WAVEFORM BASED ON RECURRENT NEURAL NETWORKS 

The idea for construction of recurrent neural network (RNN) 
using FNN and feedbacks from its outputs to the inputs is 
presented in [12]. For the training phase the input to a FNN 
includes the excitation signal and the past values of the 
classical model output. We assume that after a suitable training 
the FNN gives a good representation of the original dynamic 
system. For the subsequent post-training purposes the FNN 
output itself (and its delayed values) can be fed back and used 
as a part of the NN input. In this way the initial FNN can be 
upgraded to time-delayed RNN and can be used independently 
of the original system. 

The algorithm for construction of PT neural based inverse 
model has two steps. In the first step simulations with various 
excitations - supplying voltages ( )tu1  and different load 

parameters ( loadload Lr , ) have been conducted and the 

corresponding classical model responses ( )tΦ  and ( )tu2  have 

been recorded. The excitations ( )tu1  are constructed for 
thorough characterization of the considered dynamic system. 
They are composed of sine waves (with fundamental 
frequency 50 Hz and different magnitudes from 1 to 1000V) 
and random noise with normal distribution. The sample time is 

s410125.3 −×  or 64 points pre fundamental frequency cycle 
(0.02s). Furthermore, to cover more of the real secondary 
loads the simulations were performed with varying loadr  and 

loadL  and a sample time of 0.1s. The limits for the load 

resistance and inductance are [ ]Ω∈ 5000;5.02loadr  and 

[ ]HLload 10;01.0∈ . The excitations, the load variations and 

the corresponding classical model responses are used for 
construction of training sequences. 

In the second step the two RNNs – NN1 and NN2 are trained 
independently, using standard backpropagation training 
technique, available in MATLAB. NN1 is for approximation 
of magnetic flux ( )tΦ  waveform. It has two hidden layers 
with neurons (10-10) having tansig activation functions. The 
output layer has one linear neuron. After the training error is 

driven to sufficiently small value (less than 8100.1 −× ) the 
training process is stopped. The parameters of the FNN are 
fixed and after inclusion of the feedback connections and 
buffers for 3 past values the training is finished. The second 
RNN- NN2 is for approximation of the primary voltage ( )tu1  
waveform. It has two non-linear layers (17-12) with tansig 
activation functions and one linear output neuron. NN2 is 
constructed and trained in the same way like NN1. Then the 
two RNN are combined to work in series (fig.4) and they form 
a complex neural system for modeling of the PT inverse 
dynamics. 

The designed neural system was tested thoroughly with wide 

range of signals and loads, different from those, used in the 
training samples. The neural inverse model approximates the 
classical model results with acceptable accuracy (less than 
5%). We found that the neural system has not only learned the 
training samples, but also exhibited a good capability for 
generalization beyond the training data. 

To show the capabilities of the presented inverse model we 
have used an extreme case (not included in the training 
samples), the transformer load changes rapidly while the 
dynamics in the secondary voltage is considerable. This is a 
demonstration of the high non-linear inverse dynamics of the 
physical object, as it is driven to saturation levels. 

 
Fig. 4. Potential transformer inverse model architecture. 

The PT inverse model, realized by means of RNN 
structures is described by: 
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where ( )•γ  and ( )•δ  are non-linear functions.  
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Fig. 5. Secondary voltage ( )tu2  the input signal to the neural model. 
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Fig. 6. Secondary load variations during the simulation test: a) load 

resistance loadr ; b) load inductance loadL . 
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Fig. 7. Magnetic flux ( )tΦ  obtained from the neural model. 
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Fig. 8. Magnetic flux ( )tΦ  obtained from the neural model. 

A simulation test results are presented on fig.5 – fig.12. The 
input signal ( )tu2  is shown on fig.5 and the load variations are 
on fig. 6. The result from NN1 (fig.7) is approximation of the 
magnetic flux waveform and is in good agreement with the 
classical model dynamic trajectory, shown on fig.8. The 
reconstructed primary voltage waveform ( )tu1 , obtained from 
the inverse neural model is on fig.9 and the corresponding 

signal concerned with the classical model is on fig.10. The 
errors of the neural system versus the classical model reactions 
are depicted on fig. 11. 
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Fig. 9. Primary voltage ( )tu1  obtained from the neural model. 
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Fig. 10. Primary voltage ( )tu1  obtained from the classical model. 
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Fig. 11. The errors: a) in approximation of the magnetic flux; b) in 
approximation of the primary voltage. 

 



 

IV. PRIMARY VOLTAGE PREDICTOR VIA DENFIS MODELLING 

A. DENFIS: Dynamic Evolving Neural-Fuzzy Interface 
System 
DENFIS belongs to the paradigm of the evolving 

connectionist systems (ECOS) [8]. DENFIS evolve through 
incremental learning and accommodate new input data through 
local element tuning [9]. New fuzzy rules are created and 
updated during the operation of the system. A new evolving 
clustering method is employed in DENFIS. At each time step, 
depending on the position of the input vector in the input 
space, the DENFIS output is calculated through a fuzzy 
interface system, based on m -most activated fuzzy rules, 
which are dynamically chosen from a fuzzy rule set. Papers 
and software written in MATLAB of several ECOS models 
that include DENFIS, can be found in [8] and also downloaded 
from www.kedri.info (the book ref. [8] entry) or from 
(www.spinger.de -> the book  ref. [8] entry ). 
 

B. Problem Definition 
The diagram for prediction of PT input signal is shown on 

Fig. 12. The input value )(kx is the primary signal at instant 
k . After sampling the secondary signal )(ky  together with 
information about the load are fed to the predictor. The aim is 
to predict the primary signal value ( )1+kx  for some time 
sample ahead in the future and thus to predict possible drifts in 
the real power system voltages. 

The construction algorithm has two steps. In the first step 
simulation with various signals - supplying voltages and 
different load conditions have been performed with the 
classical PT model. The input signal waveforms, the load 
variations and the corresponding secondary signal waveforms 
are recorded and used for construction of training sequences. 
The chosen sample time is 3100.1 −× s. In the second step the 
DENFIS model is trained as an initial training and initial 
adjustment of its structure, as it will further adapt to new data 
in an on-line mode.   

C. Simulation Results 
The constructed DENFIS based predictor for primary 

voltage was tested with wide range of excitation signals and 
load conditions to prove its validity. To demonstrate its 
adequate operation, simulation results are shown below. Fig. 
13 shows the desired and the predicted over time values of the 
PT primary voltage with the use of a DENFIS operating in an 
on-line learning mode. The prediction error is much lower that 
the error produced by other prediction models so far. 

 
Fig. 12. Block diagrams for construction of PT primary signal 
predictor. 

The designed predictor for estimation of PT primary voltage 
( )tu1  waveform or power system real voltage, constructed 

according the diagram from Fig. 12 is suited for on-line 
operation. The testing results (fig. 13) show good coincidence 
of the two time series data with acceptable differences. The 
time series values are scaled with the primary voltage rated 
value ( V220 ). 
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Fig. 13. PT primary voltage predictor results from verification test. 

V. CONCLUSION 

It is well known (see [6], [7]) that an accurate estimation of 
the primary signal waveform using the measured secondary 
signal waveform can not be achieved in real time using 
conventional modeling methods, because of the complexity in 
modeling of transformers magnetic systems. The first NN 
inverse model based on two recurrent NN is trained in an off-
line learning mode and has a great computational power and is 
suited for real-time application. The results show that one high 
non-linear dynamic system with hysteresis can be modelled 
successfully with NN system. The inverse PT neural model is 



 

adopted for being integrated into the existing digital protection 
ralays algorithms as a parallel function. The incorporation of 
the proposed routine in digital protective relaying algorithms 
provides much more accurate estimate of the real primary 
signal waveform than the usually achieved with using the PTs 
nominal ratio. The added element of artificial intelligence 
improves the protection relays reliability and increases the 
operational speed. The first model, based on RNN is difficult  
to train on new data in an on-line mode as it operates in a 
working environment.  

The complexity and dynamics of power system transients 
require sophisticated methods and tools for building on-line 
adaptive intelligent systems for an improved relay protection 
operation. They should be able to adapt as they operate, and to 
refine their algorithms with possible environmental changes.  

The second model in this paper is an application of a new 
fuzzy interface system, DENFIS for the design of an on-line 
primary voltage value predictor for relay protection purposes. 
It is suited for real time applications. 

The two models perform better than any existing and 
published models so far and are useful not only for the 
reconstruction of the primary signal, but for predicting the 
signal waveform for some time steps ahead and thus for 
estimating the drifts in the incoming signals and events.  

The analysis of the results indicates clearly the advantages of 
DENFIS when used for on-line applications for predicting 
input-output signals of high non-linear dynamic systems with 
hysteresis. 

The ECOS [8] are not only adaptive learning systems, but 
also knowledge-based systems as they allow for rules to be 
extracted from a trained system. These rules can be further 
analyzed for a better understanding of the relation between 
environmental changes and power security protection. 
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