
1

Fuzzy Neural Networks and Evolving Connectionist Systems for
Intelligent Decision Support

NNiikkoollaa KKaassaabboovv11 aanndd MMaarriioo FFeeddrriizzzzii22

11 DDeeppaarrttmmeenntt ooff IInnffoorrmmaattiioonn sscciieennccee,, UUnniivveerrssii ttyy ooff OOttaaggoo,,
PP..OO..BBooxx,, DDuunneeddiinn,, NNeeww ZZeeaallaanndd,, nkasabov@otago.ac.nz,

2 Department of Informatics and Management, University of Trento,
via Inama 5, 38100 Trento, Italy, fedrizzi@unitn.it

Abstract.
The paper presents a general framework of connectionist-
based, intelligent decision support systems and its
realisation with the use of fuzzy neural networks FuNNs
and evolving fuzzy neural networks EFuNNs. FuNNs and
EFuNNs facilitate learning from data, fuzzy rule
insertion, rule extraction, and adaptation. Several
applications of this framework on real problems are
presented as case studies, that include classification tasks
(e.g., classifying applicants for a bank loan) and on-line
prediction tasks (stock index and risk assessment). The
latter requires adaptive, incremental, on-line learning
when the decision-making system has to work in a real-
time mode. This paper suggests that fuzzy neural
networks and evolving fuzzy neural networks are suitable
tools to use for the implementation of the general
framework.

Keywords: fuzzy neural networks, financial data
analysis, decision support systems, adaptive learning, on-
line learning.

1. Introduction

The complexity of many real-world problems, especially
in Economics and Finance, require using sophisticated
methods and tools when building intelligent decision
support systems (IDESS). The methods and tools used
should be able to:

� learn quickly from large amount of historical data;
� learn in an incremental, on-line mode, when the

system is used for real-time decision support;
� accommodate both data and a priori knowledge, e.g.,

existing rules;
� produce explanation about the system’s functioning

and performance (e.g., extract rules);
� adjust to changes in the operating environment,

introducing new variables and features if needed
without the need to re-train the whole system on both
old and new data;

There are different methods and tools that have been used
so far to build decision support systems. They include:
rule-based systems [4]; neural networks [1,2,4]; fuzzy
systems [4]; genetic algorithms [4], fuzzy neural
networks, and hybrid systems [8,14]. These systems are
usually concerned only with part of the above
requirements.

Using neural networks (NN), and especially fuzzy neural
networks (FNN), is a promising approach towards
building IDESS. What is needed is a framework that
facilitates using these techniques in a comprehensive and
coherent way to meet all the above requirements.

This paper presents a general framework of connectionist-
based intelligent decision making systems (CB-IDESS),
that addresses all the above requirements, along with its
realisation with the use of fuzzy neural networks FuNN
[12,13] and evolving fuzzy neural networks EFuNNs
[9,11]. Several applications of this framework on real
problems are presented as case studies, that include
classification tasks (classifying applicants for a bank loan)
and financial assessment tasks (stock index and risk
assessment). The paper suggests that fuzzy neural
networks and evolving fuzzy neural networks are suitable
tools to use when realising the general framework.

2. A general framework for connectionist -
based intelligent decision support systems
(CB-IDESS)

A block diagram of a CB-IDESS is given in fig.1. It
consists of the following blocks:
Pre-processing (filtering) block: data is processed
(filtered) in this block (e.g. checking for consistency;
feature extraction; calculating moving averages; selecting
time-lags from a time-series).
Neural network, multi-modular, learning block: it consists
of many NN that are continuously trained on data (both
old, historical data, and new incoming data).
(3) Rule-based block for final decision: this block takes
the produced by the NN outputs and applies expert rules.
The rules take into account some other variables as inputs
(e.g. economic situation, political situation) for which
there might not be historical data available.
(4) Adaptation block: this block compares what the CB-
IDESS ’suggests’ as decision with the desired, or the real
data obtained over a time period. The error is used to
adjust/adapt relevant NN modules.
(5) Rule extraction, explanation block: this block uses
both extracted from the NN modules rules and rules from
the final block to explain: (1) what the CB-IDESS ’knows’
about the problem it is designed to solve; (2) why a

2

particular decision for a concrete input vector has been
made.

The framework allows for comprehensive information
processing and decision making, including: feature
selection, modelling, final multivariable decision-
making, rule extraction and explanation, and adaptation to
changes in the operating environment and to new
incoming data.

In order to realise different blocks of the framework for a
certain task, different techniques can be used. In the next
sections we present the fuzzy neural networks FuNN and
demonstrate that FuNNs can realise any of the five
functions above and are suitable tools for the overall
realisation of the framework from fig.1. That does not
exclude of course using other techniques for the
realisation of the modules in the framework.

3. Fuzzy neural networks FuNNs

Fuzzy neural networks are neural networks that realise
a set of fuzzy rules and a fuzzy inference machine in a
connectionist manner [7,16,12,13]. They have the
following properties:

� They implement fuzzy rules and fuzzy inference in a
connectionist way.

� They have all the properties of neural networks (e.g.,
learning, generalisation).

� They have several modes of operation: training; rule
insertion; rule extraction; adaptation to new data.

The fuzzy neural network FuNN is a connectionist
feed-forward architecture that has five layers of
neurons and four layers of connections (see fig.2). The
first layer of neurons receives the input information.
The second layer calculates the fuzzy membership
degrees to which the input values belong to predefined
fuzzy membership functions, e.g. small, medium, or
large. The MF can be kept fixed, or can change during
training. The third layer of neurons represents
associations between the input and the output
variables, fuzzy rules. The fourth layer calculates the
degrees to which output membership functions are
matched by the input data, and the fifth layer does
defuzzification and calculates values for the output
variables. A FuNN has both the features of a neural
network and a fuzzy inference machine. Several
training algorithms have been developed for FuNNs
[12,13]:
 (a) A modified back-propagation (BP) algorithm that
does not change the input and the output connections
representing the membership functions.
(b) A modified BP algorithm that uti lises structural
learning with forgetting, i.e. a small forgetting
ingredient, e.g. 10-5, is used when the connection
weights are updated.
(c) A modified BP algorithm that updates both the
inner connection layers and the membership layers.
This is possible when the derivatives are calculated
separately for the two parts of the triangular
membership functions that form a non-monotonic

activation function of the neurons in the condition
element layer.
(d) a genetic algorithm;
(e) a combination of methods from above.

Several algorithms for fuzzy rule extraction from FuNN
have been developed and applied [12,13,8,14]. They are
based on two different approaches:
(1) a rule represents a combination of input variables

with their fuzzy values that can trigger activation of
output variables. Rules can be either weighted rules
(they have weights attached to the condition and
conclusion parts representing their relative
importance within the rule), or simple rules (they do
not have any weights attached);

(2) a rule represents the connections of a rule node in a
trained FuNN. Such rules are called aggregated rules.

FuNNs have several features when compared with the
traditional connectionist systems, or with the fuzzy
systems:
(a) They can be trained to approximate data as the NNs
can;
(b) They can be used to deal with knowledge in the form
of fuzzy rules (insert, extract, modify rules);
(c) They are robust to catastrophic forgetting, i.e. when
further trained only on new data, they keep a reasonable
memory of the old data;
(d) They can be used as replicators, where same input
data is used as output data during training; in this case the
rule nodes perform an optimal encoding of the input
space;
(e) They can work on both real input data and fuzzy input
data represented as singletons (centres of gravity of the
input membership functions);
(f) When structural learning with forgetting and a
consecutive pruning is applied, the FuNN structure
becomes a skeleton structure that contains only the
important input, rule and output nodes and the important
connections between them. In this respect FuNNs are
tools that can be used for feature selection.

Generally speaking, FuNNs are both statistical and
knowledge engineering tools. They can be used to realise
each of the functions of the framework from fig.1: feature
selection - features (e), (f) and (b) from above; modeling -
(a); final multivariable rule-based decision-making - rule
insertion as pointed in (b); rule extraction and explanation
- (b); adaptation to changes in the operating environment
and to new incoming data - feature (c).

The issue of on-line adaptation is crucial when the
system has to learn high-frequency data ’on the fly’
(e.g., to accommodate new data every minute). The
already trained FuNN systems can either be trained for
a few iterations on the new data, in which case
forgetting of old data is inevitable, or the new data is
added to the last part of the old data (e.g., the last 6
months of a stock index data) and then the FuNN is
trained on the new data set. In this case the oldest part
of the data is removed and the new data is added before

3

the FuNN is further trained with the new training data
set.

Here, growing FuNNs (the rule nodes grow with the
number of the data examples), along with shrinking
ones (FuNNs trained with the method of structural
learning with forgetting [6,15]) are appropriate to use.
In section 6 the principles of evolving connectionist
systems (ECOS) and evolving FuNNs (EFuNNs) are
presented as introduced in [9,10,11]. In section 7
EFuNNs are used for adaptive learning and assessment
of a stock index data.

4. Fuzzy neural networks and hybrid systems
for classification and prediction: two case
studies on a bank loan approval task

FuNNs are suitable tools for solving classification or
prediction tasks for the following reasons:
1) FuNNs, being multi-layer perceptrons, learn posterior
class probability from data;
2) FuNNs can be initialised through rule insertion with
initial (a priory) classification rules if such rules are
available prior to (or instead of) using data;
3) FuNNs can be used to extract fuzzy rules from
classification data that explain the process of
classification.

The three points above are illustrated on two case studies
of the bank loan approval task. The first one classifies
applicants for a loan in two groups (loan approved, loan
rejected). The second one predicts the amount that an
applicant will be granted.

Case study 1.

A FuNN is trained on 90 data examples for decision
making on mortgage approval (bank loan) extracted from
a database available from the WWW site:
http://divcom.otago.ac.nz:800/com/infosci/KEL/. The
following attributes are used: Input1: character (0-
doubtful; 1 - good); Input2: total asset; Input3: equity;
Input4: mortgage loan; Input5: budget surplus; Input6:
gross income; Input7: debt servicing ratio;Input8: term of
loan; Output: decision (disapprove; approve). Two MFs
are used both for the input and for the output variables.
Ten FuNNs are trained with the modified BP algorithm,
fixed MFs, for 3500 epochs each, on 10 different sets of
data, each of them containing 10 positive (applications are
approved) and 10 negative (applications are rejected)
examples, and tested on another data of 5 positive and 5
negative examples. The learning rate is lrate=0.1 and the
momentum - 0.8. The average root mean square error
RMSE across the ten FuNNs is 0.02. The average
classification rate on the test data is 100% for the reject
class and 95% for the accept class when a threshold of 0.6
is used to distinguish the reject from the accept class
activation of the output of the FuNN.

Weighted rules are extracted from the trained FuNN (after
a threshold of 1 is applied) that are equivalent to the
aggregated rules extracted from the same FuNN:

r1) if <Input1 is A 2.2> and <Input2 is B 1.0> and
<Input3 is A 1.2> and <Input5 is A 2.7> and <Input8 is
B 1.0> then <Output1 is A 1.9> ;
r2) if <Input1 is B 1.8> and <Input2 is B 2.0> and
<Input4 is B 1.4> and <Input5 is B 2.1> then <Output1
is A 2.8>;
r3) if <Input1 is B 4.3> and <Input2 is A 2.0> and
<Input3 is B 2.7> and <Input4 is B 3.6> and <Input5 is
B 6.2> and <Input7 is B 1.8> then <Output1 is B 5.0>.

The rule extraction part of this experiment is a very
important part of the modelling process. The rules above
point to some conclusions:
(1) Input 6 is not present in the rules, therefore it is not

significant for decision support process.
(2) The most important variables are inputs 1 and 5;
(3) In order to better differentiate some cases, it is

necessary to use more MFs for the representation of
some of the input variables, especially input 5. In this
case the FuNN classifier works in an off-line mode
with static data, its further adaptation can be achieved
through adding new examples to the old ones and
retraining the FuNN on the whole data, or through
additional training of the trained FuNN on the new
data for a few epochs accounting for the forgetting
phenomenon.

Case study 2.

This is a similar case study to the case study 1, but here
different set of attributes is used on the loan approval task
and the task is the one of prediction - to predict the
amount that will be granted. The data used is owned by a
bank in Italy (Trento). The following attributes are used to
make decision on loan applications for each of the
destinations car, furniture, maintenance, health, travelling,
household, repair of a car, sport equipment, clothes,
hobby equipment: 1) credit asked; 2) income spendable
by the applicant 3) patrimony of the applicant; 4) married
or not; 5) job situation; 6) bank account ;7) experience; 8)
previous rejection record; 9) risk of the application; 10)
income spendable by the guarantor; 11) patrimony of the
warrantor; 12) type of warranty; 13) risk of warrantor.
Output: amount granted.

In this experiment a FuNN 13-39-3-3-1 is trained and
tested. The following rules are extracted that explain the
decision on loan applications for buying cars (here A
denotes "small", B- "medium", C- "high"):

r1) if <Input4 is B 0.6> <Input5 is B 0.6> <Input6 is
A 0.9> or <Input6 is B 0.9> <Input7 is A 3.3> <Input8
is A 1.1> <Input9 is not A 1.3> or <Input9 is B 0.6>
<Input10 is A 1.9> <Input11 is A 1.2> <Input13 is A
1.4> then <Output1 is A 4.5>;

4

r2) if <Input1 is A 0.8> <Input1 is B 0.7> <Input2 is
1.3> <Input3 is A 1.4> <Input5 is A 1.1> <Input6 is A
0.8>> <Input6 is B 1.4> <Input7 is A 0.7> or <Input7 is
B 0.7> <Input8 is A 0.5> <Input9 is C 0.7> <Input10 is A
0.7> or <Input10 is B 1.5><Input11 is A 1.3> <Input13 is
B 1.1> then <Output1 is A 3.1> or <Output1 is B 4.5>;
r3) if <Input2 is A 1.1> <Input3 is B 0.9> <Input4 is C
0.7> <Input5 is A 1.3> or <Input5 is B 1.1> <Input7 is B
2.0> or <Input7 is C 0.6> <Input8 is C 0.7> Input9 is A
0.7> <Input10 is B 0.8> <Input11 is B 0.8> <Input12 is
C 0.4> <Input13 is C 1.0> then <Output1 is C 2.6>.

The rules extracted in the second experiment explain what
is in the data and how the FuNN solves this problem.

6. Evolving connectionist systems (ECOS)
and evolving fuzzy neural networks
(EFuNNs)

The ECOS and the EFuNNs paradigms were
introduced in [9,10] and [11] respectively. An ECOS is a
modular ’open’ structure evolving over time. Initially it is
a mesh of nodes (neurons) with very little connections
between them, pre-defined through prior knowledge or
’genetic’ information. These connections mainly connect
modules of the initial connectionist structure. An initial
set of rules can be inserted in this structure. Gradually,
through self-organisation, the system becomes more and
more “wired”. The network stores different patterns
(exemplars) from the training examples. A node is created
and designated to represent an individual example if it is
significantly different from the previous ones (with a level
of differentiation set through dynamically changing
parameters.

The functioning of the ECOS [9] is based on the
following general principles:

(1) Input patterns are presented one by one, in a pattern
mode, having not necessarily the same input feature sets.
After each input example is presented, the ECOS either
associates this example with an already existing rule
(case) node, or creates a new one. A NN module, or a
neuron is created when needed at any time of the
functioning of the whole system. After the presentation of
each new input example the system is able to react
properly on both new and old examples.

(2) The representation module evolves in two
phases. In phase one input vector x is passed through the
representation module and the case nodes become
activated based on the similarity between the input vector
and their input connection weights. If there is no node
activated above a certain sensitivity threshold (Sthr) a new
rule neuron (rn) is created and its input weights are set
equal to the values of the input vector x and the output
weights - to the desired output vector. In phase two,
activation from either the winning case neuron ("one-out
of-n" mode), or from all case neurons with activation

above an activation threshold (Athr) ("many-of-on"
mode) is passed to the next level of neurons. Evolving can
be achieved in both supervised and unsupervised modes.
In a supervised mode the final decision which class (e.g.,
phoneme) the current vector x belongs to, is made in the
higher-level decision module that may activate an
adaptation process. Then the connections of the
representation nodes to the class output nodes, and to the
input nodes are updated with the use of learning rate
coefficients lr1 and lr2, correspondingly. If the class
activated is not the desired one, then a new case node is
created. The feedback from the higher level decision
module goes also to the feature selection and filtering
part. New features may be involved in the current
adaptation and evolving phase. In an unsupervised mode a
new case node is created if there is no existing case node
or existing output node that are activated above Sthr and
an output threshold Othr respectively. The parameters
Sthr, lr1, lr2, Errthr, Athr and Othr can change
dynamically during learning.

(3) Along with growing, an ECOS has a pruning
procedure defined. It allows for removing neurons and
their corresponding connections that are not actively
involved in the functioning of the ECOS thus making
space for new input patterns. Pruning is based on local
information kept in the neurons. Each neuron in ECOS
keeps a 'track' of its 'age', its average activation over the
whole life span, the error it contributes to, and the density
of the surrounding area of neurons. Pruning is performed
through the fuzzy rule:

IF case node (j) is OLD, and average activation of (j) is
LOW, and the density of the neighbouring area of neurons
is HIGH or MODERATE, and the sum of the incoming or
outgoing connection weights is LOW, THEN the
probability of pruning node (j) is HIGH.

(4) The case neurons are spatially organised and each
neuron has its relative spatial dimensions in regards to the
rest of the neurons based on their reaction to the input
patterns. If a new neuron is created when the input vector
x was presented, it is allocated to the neuron, which had
the highest activation to the input vector x.

(4) There are two global modes of learning in ECOS:

(a) Active learning mode - learning is performed when a
stimulus (input pattern) is presented and kept active.

(b) Eco training mode - learning is performed when there
is no input pattern presented at the input of the
ECOS. In this case the process of further elaboration
of the connections in ECOS is done in a passive
learning phase, when existing connections that store
previously 'seen' input patterns are used as ECO
training examples. The connection weights that
represent stored input patterns are now used as
compressed input patterns for training other modules
in ECOS. This type of learning with the use of 'echo'

5

data is called here ECO training. There are two types
of ECO training:

(1) cascade eco training;
(2) sleep eco training.

In cascade eco training a new NN module is created
when a new class data is presented. The module is trained
on the positive examples of this class, plus the negative
examples of the coming next different class data, and on
the negative examples of previously stored patterns in
previously created modules. In the sleep ECO training
mode , modules are created with positive examples only
when data is presented. Then the modules are trained on
the stored in the other modules patterns as negative
examples.

(6) ECOS provide explanation information extracted from
the strcuture of the NNs. Each case (rule) node is
interpreted as an IF-THEN rule as it is in the FuNN fuzzy
neural networks.

(7) ECOS are biologically inspired. Some biological
motivations for evolving systems are given in [10,11].

(8) The ECOS framework can be applied to different
types of NNs, different types of neurons, activation
functions, etc. One realisation that uses the ECOS
framework is the evolving fuzzy neural networks
EFuNNs and the EFuNN algorithm as given in [10,11].

EFuNNs are FuNN structures that evolve according to the
ECOS principles. All nodes in an EFuNN are created
during learning. The nodes representing membership
functions (fuzzy label neurons) can also be modified
during learning. As in FuNN, each input variable is
represented here by a group of spatially arranged neurons
that represent a fuzzy quantisation of this variable. For
example, three neurons can be used to represent "small",
"medium" and "large" fuzzy values of a variable.
Different types of membership functions can be attached
to these neurons (triangular, Gaussian, etc.). New neurons
are created if for a given input vector the corresponding
variable value does not belong to any of the existing
membership functions to a membership degree greater
than a membership threshold, e.g. 0.8. A new fuzzy label
neuron, or an input variable neuron, can be created during
the adaptation phase of an EFuNN. The EFuNN algorithm
is introduced and illustrated in [11]. In the next section
EFuNNs are used for on-line adaptation of a stock index
CB-IDESS.

7. FuNNs and EFuNNs for time series
prediction and decision making: a case study
on stock index assessment

Here the NZ SE40 index is used for a case study. The
NZSE40 index is an aggregated index of the strongest NZ
stock indexes. Its analysis shows that the index can be in
different states at different time intervals (e.g., random,

bullish, chaotic). A good prediction model should perform
better than the random walk method, even if the index is
only slightly different from a random fluctuation. A
FuNN trained with the structural learning with forgetting
algorithm is used in [14] for the prediction of the SE40.
Ten time-lags have been initially set in the training data
and ten rule nodes. After training, only four rule nodes are
left in the FuNN structure suggesting that the rest of the
rules are not important for the prediction task. The results
are better than the obtained by using the random walk
method.

Here, two experiments are presented with the use of a
selected data set from the SE40 data (available from:
http://divcom.otago.ac.nz:800/com/infosci/KEL/home.ht)
- see fig.3a. The first one uses a FuNN and the second one
- an EFuNN.

Experiment 1. FuNNs for the SE40 assessment

Three input variables are used to describe the SE40 time
series: (1) the change in the current value, dS(t)= S(t) -
S(t-1), (2) the change in the 10 days moving average,
dMA10(t)= MA10(t) - MA10(t-1); (3) the change in the
60 days moving average, dMA60(t)= MA60(t) - MA60(t-
1). The output variable is the change dS(t+1) of the
NZSE40 on the next day (t+1). Five MFs for each of the
variables are used. The trained FuNN has the following
architecture: 3-15-10-5-1; training examples 1500; test
examples 49 (the last two months); epochs 1000, lr=0.1,
mom=0.8. The obtained after training test error RMSE is
0.3. Ten rules are extracted from the trained FuNN:

r1) if <Input1 is B 2.8><Input2 is B 3.5> <Input3 is C
1.1> then <Output1 is A 1.6>;
r2) if <Input1 is E 4.5> <Input2 is A 4.6><Input3 is E
2.5> then <Output1 is A 5.3> and <Output1 is B 2.5>;
r3) if <Input1 is A 2.4> <Input2 is A 3.4> or <Input2 is B
4.9> <Input3 is A 3.8>then <Output1 is B 5.9> and
<Output1 is C 9.6>;
r4) if <Input1 is B 3.6> or <Input1 is C 2.6> <Input3 is B
1.6> or <Input3 is C 3.5> then <Output1 is D 6.9>;
r5)if <Input1 is B 3.4> or <Input1 is D 3.3> <Input2 is E
6.5> <Input3 is E 1.3> then <Output1 is D 2.6>;
r6) if <Input1 is B 1.7> or <Input1 is D 8.1> <Input2 is E
4.1> <Input3 is D 1.5> then <Output1 is E 4.1>;
r7) if <Input1 is E 1.5> and <Input2 is A 3.9> and
<Input3 is B 1.1> then <Output1 is C 4.4>;
r8) if <Input1 is E 2.4> and <Input2 is C 4.4> and
(<Input3 is A 1.1> or <Input3 is E 1.3>) then <Output1
is D 2.6>;
r9) if <Input1 is C 9.1> and <Input2 is D 5.5 or E 2.2>
and <Input3 is C 4.2 or E 3.2> then <Output1 is D 4.2>
and <Output1 is E 2.7>.

The average training time for FuNN per example is 107

operations (summation, multiplication, etc). The next
experiment shows a fast adaptive training of EFuNNs for
the same case study.

6

Experiment 2. EFuNNs for adaptive, on-line SE40
assessement.

Here the same input and output variables are used as in
experiment 1. The following evolving parameter values
are used in the EFuNN: sensitivity threshold Sthr=0.92,
error threshold Errthr=0.05, number of rule nodes evolved
rn=910 (after pruning this number is 730); learning rate
lr=0. The SE40 daily change is assessed in an on-line
mode. The root mean square error is RMSE= 0.22 (on the
49 test data points as in the previous case), while the
random walk gives RMSE=4.32. Five more EFuNNs
were evolved to predict two, three, etc. days ahead. The
test error RMSE for them is correspondingly 0.25, 0.28,
0.45, 1.26, 2.78. It can be seen that even 5 days ahead
prediction will give a better result than the random walk
one-day ahead prediction. That justifies the use of
EFuNNs for this particular task. As EFuNNs have
principally the same structure as FuNNs, fuzzy rules can
be extracted as explained before.

7. Conclusions

The paper suggests a general framework and its
realisation for intelligent decision support that includes
classification and prediction tasks. It illustrates how on-
line decision support systems can be built based on fast,
on-line, adaptive fuzzy neural networks evolving, and rule
extraction.

References

1. Baestalus, Dik-Emma, van den Bergh, W.M.,Wood,
D. Neural network solutions for trading financial
market, Pitman Publications, 1994

2. Beltraffi, A., Margarita, S., Terna, P. Neural
networks for economics and financial modelling, Int.
Thomson Computer Press, 1996

3. Carpenter, G.A., Grossberg, S., Markuzon, N.,
Reynolds, J.H., Rosen, D.B., FuzzyARTMAP: A
neural network architecture for incremental
supervised learning of analog multi-dimensional
maps, IEEE Trans. on Neural Networks,vol.3, No.5
(1991), 698-713

4. DeBoeck, L. Trading on the edge. Kluwer
Academics, 1994

5. Heskes, T.M., Kappen, B. On-line learning processes
in artificial neural networks, in: Math. foundations of
neural networks, Elsevier, Amsterdam, (1993)199-
233

6. Ishikawa, M., "Structural Learning with Forgetting",
Neural Networks 9, 501-521 (1996).

7. Jang, R. "ANFIS: adaptive network-based fuzzy
inference system", IEEE Trans. on Syst.,Man,
Cybernetics, 23, 665-685 (1993).

8. Kasabov, N. and Kozma, R. Multi-scale analysis of
time series based on neuro-fuzzy-chaos methodology
applied to financial data. In: Refenes, A., Burges, A.

and Moody, B. eds. Computational Finance 1997,
Kluwer Academic, 1998, accepted

9. Kasabov, N. ECOS: A framework for evolving
connectionist systems and the eco learning paradigm,
Proc. of ICONIP’98, Kitakyushu, Oct. 1998

10. Kasabov, N. Evolving connectionist agents and
systems. IEEE Transactions on Man, Machine and
Cybernetics, submitted

11. Kasabov, N. Evolving Fuzzy Neural Networks -
Algorithms, Applications and Biological Motivation,
in Proc. of Iizuka’98, Iizuka, Japan, Oct.1998

12. Kasabov, N. Foundations of Neural Networks, Fuzzy
Systems and Knowledge Engineering, The MIT
Press, CA, MA (1996).

13. Kasabov, N., Kim, JS, Watts, M. and Gray, A.
FuNN/2 - A fuzzy neural network architecture for
adaptive learning and knowledge acquisition.
Information Sciences 101 (3-4): 155-175 (1997)

14. Kozma, R. and Kasabov, N Generic neuro-fuzzy-chaos
methodologies and techniques for intelligent time-
series analysis. In: Soft Computing in Financial
Engineering. R. Ribeiro, R.Yager, H. J. Zimmermann
and J. Kacprzyk eds. Heidelberg, Physica-Verlag
(1998)

15. Le Cun, Y., J.S. Denker and S.A. Solla, "Optimal
Brain Damage", in: Touretzky,ed., Advances in
Neural nform.Proc.Systems,MorganKaufmann,2,598-
605(90).

16. Lin, C.T. and C.S. G. Lee, "Neuro Fuzzy Systems",
Prentice Hall (1996).

