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Abstract—This paper introduces a method utilizing spiking neu-
ral networks (SNN) for learning, classification, and comparative
analysis of brain data. As a case study, the method was applied to
electroencephalography (EEG) data collected during a GO/NOGO
cognitive task performed by untreated opiate addicts, those under-
going methadone maintenance treatment (MMT) for opiate depen-
dence and a healthy control group. Methods: the method is based
on an SNN architecture called NeuCube, trained on spatiotempo-
ral EEG data. Objective: NeuCube was used to classify EEG data
across subject groups and across GO versus NOGO trials, but also
facilitated a deeper comparative analysis of the dynamic brain
processes. Results: This analysis results in a better understanding
of human brain functioning across subject groups when perform-
ing a cognitive task. In terms of the EEG data classification, a
NeuCube model obtained better results (the maximum obtained
accuracy: 90.91%) when compared with traditional statistical and
artificial intelligence methods (the maximum obtained accuracy:
50.55%). Significance: more importantly, new information about
the effects of MMT on cognitive brain functions is revealed through
the analysis of the SNN model connectivity and its dynamics.
Conclusion: this paper presented a new method for EEG data
modeling and revealed new knowledge on brain functions associ-
ated with mental activity which is different from the brain activity
observed in a resting state of the same subjects.

Index Terms—Electroencephalography (EEG) comparative
analysis, EEG data, EEG data classification, evolving spiking neu-
ral networks (eSNNs), GO/NOGO tasks, methadone maintenance
treatment (MMT), NeuCube, opiate addicts, spatiotemporal brain
data (STBD).
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I. INTRODUCTION

THE human brain can be considered a complex system
that processes input information through the interaction

of around hundred billion neurons. The brain data are trans-
ferred between these neurons in the form of binary events called
spikes. Every neuron transfers and receives chemicals, such as
potassium, chloride ions and sodium, and produces electrical
current. These signals can be recorded as spatiotemporal brain
data (STBD). Over the past decades, a variety of techniques
have been developed to capture STBD when the human brain
is activated by a cognitive task. Electroencephalography (EEG)
is one of the techniques that records brain cortical activity via
electrodes that are attached to the head [1]. EEG captures STBD
with high temporal resolution is able to detect changes of cortical
activities that occur in milliseconds. Therefore, EEG is a direct
measure of the neurocortical dynamic changes associated with
perception and cognitive function, such as memory and atten-
tion. Over the last four decades, EEG has been used extensively
for brain studies including addiction research. It is recognized
as a sensitive measure of drug effects on the brain, which often
manifest as changes in the size and time course of the postsynap-
tic potentials [2] that are reflected in alterations in EEG activity.
It has also been shown that reinforcing effects of many drugs
mediated by the mesolimbic dopamine pathway modify EEG
recordings [3]. EEG data analysis is a complex task and a range
of methods and applications for interpreting this data have been
applied including using artificial neural networks for classifica-
tion, activation detection, etc. EEG data contains both spatial
and temporal components, and a challenge for information sci-
ence and artificial intelligence is to develop new algorithms and
methods for efficient processing of STBD.

Recently, the brain-inspired spiking neural network (SNN)
models and their neuromorphic highly parallel implementations
have been advancing very fast [4], [5], as is also argued in [6].
In contrast to the traditional statistical analysis, a new frame-
work called NeuCube has been successfully shown to be a rich
platform for the STBD analysis [7], [8].

In this paper, we present a novel methodology, based on
the NeuCube architecture [6] for learning, modeling, classifi-
cation, and comparative analysis of EEG data recorded during a
GO/NOGO cognitive task. Making use of the proposed method,
we aimed to investigate the patterns of EEG activity elicited
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from three groups of human subjects: 1) patients undertaking
methadone maintenance treatment (MMT) for opiate depen-
dence; 2) active opiate users without substitute treatment; and
3) healthy volunteers. We also visualized the neuronal connec-
tivity generated in a 3-D brain-like SNN cube (SNNc) to display
the spatiotemporal differences between spikes emitted by neu-
rons against the EEG patterns generated by different groups of
subjects completing different cognitive tasks. The overall aim
of the study was to extend our understanding of drug-related
effects on cognitive functions along with a presenting a novel
method for EEG data analysis.

This paper is organized as follows: Section II describes the
GO/NOGO task—a frequently used cognitive task that gener-
ates a dynamic spatiotemporal pattern of brain activity across
many areas of the brain. Section III describes the NeuCube
framework [6] and discusses how this framework is used as a
generic methodology for EEG data classification, modeling, and
analysis. Section IV describes an application of this methodol-
ogy on an EEG case study data and demonstrates how this
framework might be used to assist the understanding of drug-
related cognitive effects. The final section provides conclusion
and suggestions for future research.

II. COMPLEX DYNAMIC BRAIN ACTIVITIES DURING

THE GO/NOGO TASK

The ability to successfully inhibit thought, behavior, and the
response to irrelevant stimuli is crucial for the proper func-
tioning of many other cognitive capacities, such as learning,
decision making, and potentially affects an individual’s func-
tioning in daily life, e.g., safely crossing a busy road [9]. The
GO/NOGO task has been used for several decades as a measure
of the executive functions of the prefrontal cortex, in particular
the ability to inhibit inappropriate automated responses. During
a GO/NOGO task, a participant is required to perform an action
given certain stimuli (e.g., press a button—GO) and inhibit that
action under a different set of stimuli (e.g., not press that same
button—NOGO). Typically, NOGO stimuli are rare and task
instructions are to execute a fast GO response. Therefore, there
is increased conflict when the NOGO stimulus is presented. Al-
though the GO/NOGO task appears simple, requiring a response
according to a conditional rule, it reflects high-level cognitive
functions including decision making, response selection, and in-
hibition. Evidence shows that groups characterized by clinically
relevant impulsivity, e.g., drug users, tend to show diminished
inhibition of responses to NOGO stimuli, thus making more
errors of commission [10].

Brain dynamic changes in the GO/NOGO task have been
widely investigated using EEG recordings. In this paper, we
present the potential for using the SNN model for the analy-
sis of EEG data that measure complex dynamic brain activity
during the GO/NOGO task across healthy subjects and subjects
under drug treatment. The use of SNN is of crucial importance,
especially their ability to learn dynamic spatiotemporal patterns
in a NeuCube organized architecture [6].

III. PROPOSED SNN NEUCUBE-BASED METHOD FOR STBD
LEARNING, CLASSIFICATION, AND COMPARATIVE ANALYSIS

A. SNNs and the NeuCube Framework

SNN models are inspired by a biologically realistic model
of the brain that processes dynamic input information across a
large number of spiking neurons. SNN are considered the third
generation of neural networks with potential to solve complex
STBD through evolving computation [11]. In SNN models, in
addition to the neurons’ synaptic states, the time component is
also incorporated in their operations. Every neuron in the SNN
model can be implemented using the Leaky-Integrate and Fire
Model of a spiking neuron [6].

In order to facilitate a SNN learning process, connection
weights between neurons are modified by transferring spikes
across synapses. Many methods for SNN have been already
created: Encoding continuous data, such as image and speech
data, into trains of spikes [12]–[14]; spatiotemporal data learn-
ing [11], [15], [16]; SNN reservoir computing and liquid state
machines (LSMs) [17], [18]; classification systems [19], [20].

Based on SNN, methods and systems have been devel-
oped and applied for audio–visual information processing [20];
STBD modeling [6]; brain–computer interfaces [21]; moving
object recognition [22]; cognitive data modeling [8]; finite au-
tomata modeling [23]; personalized prediction systems [24], etc.

Some of the remarkable features of SNN are: compact repre-
sentation of space and time; fast data learning; and time-based
and frequency-based information representation. For these rea-
sons, SNN can be considered a suitable technique for STBD
analysis, such as EEG, fMRI [7], [8], etc. These features of the
SNN are used in [6] for the creation of a new type of computa-
tional architecture—a spatiotemporal machine called NeuCube
that is a brain-inspired evolving spiking neural network (eSNN)
architecture for STBD learning, modeling, knowledge extrac-
tion, and the analysis of the brain processes that generated the
data [6], [19], [22], [25].

B. The NeuCube Framework

The NeuCube SNN architecture consists of several mod-
ules: STBD encoding and mapping; unsupervised learning in
an SNNc; supervised learning and classification; and parameter
optimization.

1) Module 1—NeuCube Encoding and Mapping:
a) STBD Encoding: STBD signals are transformed into

temporal spike trains using a threshold-based representation
(TBR) method [13]. The generated spike trains represent
changes in the STBD that exceeded a threshold TBRthr .

b) STBD Mapping: Regarding the STBD mapping, a 3-
D brain-like SNNc is created to map the spatial components
of STBD. SNNc is scalable in size, i.e., it is adaptable to any
number of neurons to map different brain templates (e.g., Ta-
lairach, MNI, etc. [26]). After mapping the brain template, input
neurons are allocated in SNNc to transfer the spike trains. In or-
der to preserve the spatial information, each allocated input
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neuron has the same (x, y, z) coordinates with the correspond-
ing variables’ coordinate in the used brain template.

c) SNNc Initialization: Neurons in SNNc are initially
connected together using the small-world connectivity rule [6].
Each neuron in the SNNc is connected to its nearby neurons
which are within a distance threshold Dthr . These connections
are later modified based on the learning of new incoming spikes
[6] during the unsupervised learning stage.

2) Module 2—Unsupervised Learning and SNNc Visualiza-
tion: After mapping the spatial components to the SNNc, we
train the SNNc with the input spike sequences using the spike-
timing-dependent plasticity (STDP) learning rule [15], which is
used in an unsupervised learning phase. STDP adjusts the con-
nection weights between the neurons based on the relative tim-
ing of a particular neuron’s output and input spikes. Therefore,
the STDP learning process encodes the “hidden” spatiotempo-
ral relations between STBD variables in the form of neuronal
connections and spiking activities in the SNNc.

3) Module 3—Supervised Training and Classification: The
second training phase is performed using dynamic evolving
spike neural networks [22], which trains the output classifier
based on the association between class labels and training sam-
ples. The same data that has been used for the unsupervised
training phase is propagated to the SNNc to train the output
neurons of the classifier. At this step, for each training sam-
ple, an output neuron is dynamically created and connected to
all neurons of the SNNc. The initial connection weight Wij

between a neuron ni and a neuron nj is set to zero and later
modified depending on the order of the first arrived spike from
ni to nj and a modulation factor (mod) as

Wij = modorder(i,j ) . (1)

The classification results can be evaluated using random sub-
sampling cross validation (RRSV) or leave-one-out cross vali-
dation (LOOCV).

4) Module 4—Parameter Optimization: A NeuCube model
is a stochastic model (i.e., initial connections between the neu-
rons in the SNNc are randomly generated using small world
connectivity). The output classification accuracy depends on
the parameter settings. In order to optimize the classification
accuracy results, modules 1–3 are repeated using different Neu-
Cube parameter settings to obtain the best results. The best
classification as well as the optimal parameters can be saved
and reported. A number of prime parameters of the NeuCube
are listed as follows:

TBRthr : A self-adaptive bidirectional threshold for STBD en-
coding to spike trains;

Dthr : Distance threshold for the neuron connectivity in small
world connectivity rule;

STDP learning rate (α): A parameter to modify the neuronal
connections with respect to repetitive arrived spikes to the
synapses. If a neuron i fires before a neuron j then, its connec-
tion weight increases, otherwise it decreases, with respect
to the STDP learning rate (α).

(Tho): Threshold of firing is used to represent the firing state of
the output neurons in classifier;

Mod: According to the rank-order learning [22], connection
weight between neuron i to neuron j is computed depend-
ing on a modulation factor mod and the order of the first
incoming spike, order (i, j), as mentioned previously in (1).

Drift: To modify the initial connection weights, the occurrence
of following spikes is taken into account with respect to
time. If there is a spike arriving from neuron i at time t after
the first one was emitted, then the weight increases by drift
value, otherwise it decreases.

C. Proposed SNN NeuCube-Based Method for EEG Data
Learning, Classification, and Comparative Analysis

Owing to the advantages of the SNN model and the inter-
pretability of the 3-D SNNc, successful NeuCube models have
been developed across cognitive and other applications [24],
[25], [27]. Fig. 1 depicts the proposed NeuCube based method
of EEG modeling, classification, and pattern recognition on the
case study of GO/NOGO task performed by different groups of
subjects.

Fig. 1 (top row) represents brain processes captured as EEG
data during a cognitive GO/NOGO task. Then the EEG signals
are encoded to spike trains using the TBR or an other method.
Fig. 1 (middle row) shows the mapping of the EEG data vari-
ables to the SNNc, which contains 1471 spiking neurons, each
representing 1 cm3 brain area according to the Talairach atlas.
Also, for each EEG channel, one input neuron is allocated to
transfer the spike trains to the SNNc. After mapping the SNNc,
the cube is trained using temporal components of the data (spike
trains). During the unsupervised STDP learning (module 2), the
spatiotemporal spike trains, that represent the EEG STBD, are
transformed into neuronal connections. These connections cap-
ture repetitive spatiotemporal patterns from the EEG data.

The learned connections can be observed, visualized, and
analyzed for a better understanding of the data and for compar-
ative analysis across EEG data from different subject groups.
The transparent structure of the SNNc and its spatial organiza-
tion, that maps spatially the brain data allows tracing changes
in the connections in a step-wise manner in response to the
EEG spike input sequences. The evolution of SNNc connectiv-
ity throughout the learning process is illustrated in Fig. 2. Fig. 2
shows that starting with small random connections (initialized
SNNc), the SNNc created new connections over time, reflecting
the spatiotemporal relationships in the EEG data.

IV. ACTIVITY EEG STBD CLASSIFICATION AND

COMPARATIVE ANALYSIS OF GO/NOGO TASK

PERFORMED BY HEALTHY-, ADDICTION TREATED-,
AND ADDICTION NOT TREATED SUBJECTS

A. Case Study Problem Specification

Methadone has been used as a pharmacological substitute
for the treatment of opiate dependence since the mid-1960s.
The benefits of MMT have been demonstrated by many studies.
For example, MMT has been shown to effectively reduce the
use of other drugs, injection-related risky behavior, criminal
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Fig. 1. Block diagram of the NeuCube modules for EEG data encoding, mapping, visualization, learning, and classification. The mapping module illustrates the
allocation of 26 EEG channels as 26 input neurons in an SNNc of 1471 neurons. The initial spatiotemporal connections between the spiking neurons in the SNNc
are created with the use of the small-world connectivity before unsupervised training is applied.

Fig. 2. Dynamic visualization of the evolution of neuronal connectivity and spiking activity in a SNNc of 1471 spiking neurons with Talairach-based coordinates
[26]. (a), (b) Step-wise neuronal connectivity and spiking patterns of the SNNc at two steps during a SNNc unsupervised learning. The blue lines are positive
(excitatory) connections, while the red lines are negative (inhibitory) connections. The brighter the color of a neuron, the stronger is its activity. Thickness of the
lines identifies neuronal-enhanced connectivity.
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activity, mortality, transmission of HIV, and other blood-borne
pathogens, such as hepatitis-B [28]–[30].

MMT is now the most common treatment for opiate depen-
dence in many countries, including the United States of Amer-
ican (USA), Australia, the United Kingdom (U.K.), and New
Zealand (NZ). Despite methadone’s effective clinical use, it re-
mains uncertain whether MMT has negative effects on some
cognitive functions, given methadone has clinically similar ac-
tions and analgesic effects to morphine [31]. There is particular
concern about whether long-term use of a sedative opiate ago-
nist, such as methadone has effects on cognitive function. One
way to address this problem is to measure EEG data during
cognitive activities of groups from MMT, opiate, and healthy
subjects and to comparatively analyze the results through model
creation and model interpretation.

B. Participants

1) The MMT group: The group undertaking MMT were re-
cruited following recommendations from the case man-
agers of Auckland Community Alcohol and Drug Ser-
vices, NZ. The MMT group consisted of 18 males and 14
females, with a mean age of 39.36.

2) The Opiate user group (OP): Opiate users were recruited
from the Auckland Drug Information Outreach Trust Nee-
dle Exchange Services by advertisement. The group in-
cluded 11 males and 6 females, with a mean age of 37.38.

3) The Healthy control group (CO): A group of 21 healthy
control subjects was recruited by advertisements in a range
of local communities. This group included 14 males and
11 females, with a mean age of 36.12.

C. EEG Data Acquisition

The EEG data was recorded via 26 cephalic sites: Fp1, Fp2,
Fz, F3, F4, F7, F8, Cz, C3, C4, FC3, FCz, FC4, T3, T4, T5, T6,
Pz, P3, P4, O1, O2, and Oz electrode sites (10–20 International
System).

D. GO/NOGO Task

GO/NOGO task is a psychological test to measure a partic-
ipant’s capacity for response control and sustained attention.
During the task, the participants were repeatedly presented with
the word “PRESS” (for 500 ms). The color of the word “PRESS”
was presented randomly in either red or green. Participants were
instructed to respond by pressing a button with the index finger
of both hands in response to the word that appeared in green
(GO) and not respond to the word that appeared in red (NOGO).

Participants were asked to complete the practice trial prior
to the real test to ensure that they understood the task. At this
stage, the word “PRESS” was presented in the same color six
times in a row. There were 28 sequences, 21 of which were
presented in green, and 7 in red, presented in a pseudorandom
order, with an interstimulus interval of 1 s. The task duration
was approximately 5 min. Speed and accuracy of response were
stressed equally in the task instructions.

E. Input EEG Data Preparation for the SNN
NeuCube Modeling

In this study, the EEG signal patterns of the MMT, OP, and
control subjects were used as the input STBD to the SNNc
to demonstrate the differentiation between their brain activity
patterns against the GO/NOGO task. For this purpose, we ex-
tracted several EEG sample files from the recorded EEG data and
analyzed them separately using the NeuCube model during the
following experimental sessions.

Session I: Six EEG sample files were created separately, each
containing EEG data captured from one group (MMT/OP/CO
subjects) per cognitive task (GO versus NOGO). Then each
sample file was entered separately for training a SNNc and
the resulted SNNc were compared to capture the differences
between brain activity patterns of each group of participants
performing GO vs NOGO.

Session II: In this session, we only considered the EEG data
related to the GO trials to compare the brain activity patterns of
different groups of subjects against the same cognitive task.

Session III: In this session, we only considered the EEG data
related to the NOGO trials as these trials are common interest
of studies on response inhibition, we compared the NeuCube
models created for each group.

The organization of the data is presented in Table I.

F. Tracing, Interpreting, and Understanding Dynamic Brain
Activities During the GO/NOGO Task Performed by the Three
Subject Groups of CO, MMT, and OP Through the
Connectivity and Spiking Activity Visualization

During the learning process in SNNc, when neuron ni fires
at time t, neurons that are connected to ni will receive a spike
from it and their potentials increase by synaptic weight of the
entered spikes. However, the potentials of those neurons that do
not receive the spike will leak. Hence, greater transmitted spikes
between two neurons lead to stronger connectivity. According
to Fig. 3, control subjects exhibited less excitation in NOGO tri-
als when the response must be withheld in comparison with GO
trials when the response is required. In contrast, excitations in-
duced during the NOGO trials were much greater than those in-
duced during the GO trials in either MMT or OP subjects. These
findings reflect the group differences on brain activity induced
by the two competing response tendencies (GO versus NOGO),
implicating deficits in inhibition to prevent the execution of the
GO response in the subjects with history of opiate dependence
no matter what their current treatment status. After the SNNc un-
supervised training, neuronal connections with stronger weights
reflect more spike transmissions between neurons’ synapses.
Therefore, the induced brain functional pathways that reveal the
connection strength in SNNc, can be visualized. In Fig. 4, we
cluster functional communications created through the spiking
input data from 5 EEG channels, namely C3, Fz, Cz, C4, and
P4. These channels were chosen because of their significant in-
volvement in the human response inhibition. Fig. 4 represents
this information for the control, MMT, and OP subjects while
they were responding to GO trials versus NOGO trials. The
functional pathways of the control subjects [see Fig. 4(a1)] show
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TABLE I
EEG DATASETS FOR THE THREE EXPERIMENTAL SESSIONS TO COMPARE THE BRAIN ACTIVITY PATTERNS

OF THE CONTROL (CO), MMT, AND OPIATE (OP) SUBJECTS IN A GO/NOGO TASK

Classifications Samples per class EEG sample file size

Session I: EEG data sample files for GO versus NOGO classification
GO Trials class 21 control Subjects

18 OP subjects
29 MMT subjects

75 EEG time points ∗ 26 channels ∗ 21 samples
75 EEG time points ∗ 26 channels ∗ 18 samples
75 EEG time points ∗ 26 channels ∗ 29 samples

NOGO Trials class 21 control Subjects
18 OP subjects
31 MMT subjects

75 EEG time points ∗ 26 channels ∗ 21 samples
75 EEG time points ∗ 26 channels ∗ 18 samples
75 EEG time points ∗ 26 channels ∗ 31 samples

Session II: EEG data sample files captured during GO trials
MMT class versus CO class 29 MMT samples (class 1)

21 control samples (class 2)
75 EEG time points ∗ 26 channels ∗ 50 samples

OP class versus CO class 18 Opiate samples (class 1)
21 control samples (class 2)

75 EEG time points ∗ 26 channels ∗ 39 samples

MMT class versus OP class 29 MMT samples (class 1)
18 Opiate samples (class 2)

75 EEG time points ∗ 26 channels ∗ 47 samples

Session III: EEG data sample files captured during NOGO trials
MMT class versus CO class 31 MMT samples (class 1)

21 control samples (class 2)
75 EEG time points ∗ 26 channels ∗ 52 samples

OP class versus CO class 18 OP samples (class 1)
21 control samples (class 2)

75 EEG time points ∗ 26 channels ∗ 39 samples

MMT class versus OP class 31 MMT samples (class 1)
18 OP samples (class 2)

75 EEG time points ∗ 26 channels ∗ 49 samples

that the spatiotemporal relationship was extensively observed in
the neurons connected to the allocated input neuron for the Cz
channel. By tracing the neuron connections that contain the most
number of transmitted spikes, several functional pathways were
traced for the Cz channel as a spike sender neuron. Fig. 4(b1)
illustrates the brain information pathways captured from the
MMT subjects during the GO trials. The spike transition from
the Cz was decreased in the MMT subjects in comparison with
the Control subjects. On the other hand, the functional pathways
generated by Fz channel were increased. Although the brain ac-
tivity patterns of the Cz and Fz channels appeared differently
in MMT and Control subjects, their brain functional pathways
were comparable. In contrast, the brain functional pathways of
the Opiate subjects were significantly different from either the
Control or the MMT subjects indicated by the absence of func-
tional pathways initiated from the Cz channel [see Fig. 4(c1)].
Consistent with our previous studies [32]–[34], these findings
indicate the possible abnormality of brain function associated
with the long-term exposure to opioid-type drugs. However,
patients undertaking MMT for opiate addiction appeared less
impaired than those current opiate users.

G. Comparative Analysis of Brain Activities of MMT Subjects
Under Different Drug Doses Versus CO and OP Subjects

Members of the MMT group were receiving different doses
of methadone. To examine the dose-related effects, the EEG
patterns of the MMT subjects were categorized into two groups
based on their current methadone dose: High dose (>60 mg/day)
and low dose (�60 mg/day). The EEG patterns of these two
groups were learned in an SNNc and their functional path-
ways were visualized. Fig. 4(d) captures the differences between
model functional pathways generated by five EEG channels in
MMT subjects on low and high methadone dose. The captured
model functional pathways of those MMT subjects that used

a high dose were more similar to the OP group. On the other
hand, the MMT subjects with less amount of methadone dose
performed similar functional pathways to the control group.
Fig. 5 captures the information spike communication between
26 EEG electrodes after NeuCube unsupervised training. Each
vertex represents a neuronal cluster corresponding to an EEG
channel and the arcs represent relative spike amounts transmit-
ted between different neuronal clusters. The wider the line be-
tween input neurons, the more spikes were transmitted between
the corresponding clusters.

In Fig. 5(a), by comparing two graphs obtained from control
subjects in GO versus NOGO trials, it is clear that the spike com-
munication was especially enhanced between neuronal clusters
while the subjects were performing GO trials. Consequently,
we can conclude that less spike interactions were manifested,
while subjects increased inhibition of responses during NOGO
trials in comparison with GO trials. Perhaps, the green appur-
tenance of the word “PRESS” helps to strength the visibility to
healthy subjects and induces an enhanced activation in the cen-
tral parietal and occipital areas, which probably encompasses
the primary and secondary visual areas.

However, this trend is absent in either the MMT or opiate sub-
jects. Furthermore, both the MMT and opiate subjects demon-
strated increased spike communication in a wide range of areas,
in particular, in the frontal, central, and temporal areas during
the NOGO trials, implicating increased stimulation induced by
NOGO stimuli in the areas related to attention, visual memory,
and execution of voluntary movements. Our findings suggest
anatomically and functionally different inhibition processes be-
tween people with history of opiate use and healthy control
subjects. It is also noted that alternation of inhibition process
are greater in the opiate users compared to the MMT subjects.
For opiate subjects in NOGO trials, the majority of the wide lines
were created between channel F4 and channels T6, P4, PZ, P3,
T5, CP4, T4, C4, and CZ. These connections represented more
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Fig. 3. Illustration of the SNNc connectivity after the NeuCube training with EEG data of 26 features (channels) for the experimental GO/NOGO task. The learnt
connectivity of the SNNc is different for the control (healthy), MMT, and OP subjects related to the GO vs NOGO task. The blue lines are positive (excitatory)
connections, while the red lines are negative (inhibitory) connections. The brighter the color of a neuron, the stronger is its activity with neighboring neurons.
Thickness of the lines also identifies the neuron’s enhanced connectivity. The 1471 neurons of the brain-like SNNc are spatially mapped according to the Talairach
brain atlas [26].

spikes transmitted between neuronal clusters corresponding to
the channel F4 and the other neuronal clusters while the sub-
jects were undertaking NOGO trials. Consequently, the ability
of the opiate subjects to inhibit their voluntary responses may
be impaired during NOGO trials.

On the other hand, the interactions between these channels
are not observed in the control subjects during NOGO trials.
It means that there were not many spikes transmitted between
the neuron clusters related to channel FZ and the other EEG
channels. In the graph obtained from MMT subjects in NOGO
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Fig. 4. Model functional pathways clustered for Control, MMT, and OP subjects generated by five EEG channels (sender spike neurons) and the rest of the
neurons inside the SNNc (receiver spike neurons) while doing GO trials versus NOGO trials. The big solid dots represent the input neurons and other neurons that
are labeled with ∗ sign are receiver spike neurons. The lines represent the connectivity between neurons. Unconnected dot means no spikes arrived at this neuron.
(a1) Model functional pathways of the control subjects in GO trials. (a2) Model functional pathways of the control subjects in NOGO trials. (b1) Model functional
pathways of the MMT subjects in GO trials. (b2) Model functional pathways of the MMT subjects in NOGO trials. (c1) Model functional pathways of the OP
subjects in GO trials. (c2) Model functional pathways of the OP subjects in NOGO trials. (d1) Model functional pathways of MMT group that received less than
60 mg methadone dose per day. (d2) Model functional pathways of MMT group that received more than 60 mg methadone dose per day. All figures are rotated
and illustrated in 2 views.

trials, there were strong spike communications between FZ,
CP4, and T4 clusters, although these connections were less
in comparison with opiate subjects. The observed differences
in spike communication implicate that the control and Opiate
subjects performed differently while they were doing cognitive
GO/NOGO tasks.

To achieve a better understanding of the spike occurrence
and propagation inside the SNNc, the number of the spikes
emitted by each neuron during the unsupervised training is illus-
trated in Fig. 5(b). While the SNNc was training with EEG data,
the postsynaptic potential of each neuron ni at time t PSPi(t)
[35] increased by the sum of the input spikes received from all
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Fig. 5. (a) Total interaction between 26 neuronal clusters representing 26 EEG channels in terms of spike communication. The thicker the line that connects two
nodes of the graph that represent the corresponding clusters of connected neurons in the SNNc, the more spikes are transmitted between these clusters. (b) Number
of spikes emitted by each neuron of the SNNc after SNNc unsupervised training with an exemplar EEG data recorded from Control, MMT, and Opiate subjects in
GO versus NOGO trials. The blue lines are the positive spikes (excitatory) emitted by all neurons in the SNNc, while the red lines are negative spikes (inhibitory)
emitted only by the input neurons representing the EEG channels.



DOBORJEH et al.: SNN METHODOLOGY AND SYSTEM FOR LEARNING AND COMPARATIVE ANALYSIS OF EEG DATA 1839

TABLE II
OPTIMAL NEUCUBE PARAMETERS THAT RESULTED FROM A GRID SEARCH TO OPTIMIZE THE

CLASSIFICATION ACCURACY AS AN OBJECTIVE FUNCTION

Session EEG sample files used in NeuCube classification TBRt h r Dt h r STDP rate

I Control subjects in Go versus Control subjects in NOGO 0.551 0.150 0.010
MMT subject in GO versus MMT subject in NOGO 0.949 0.150 0.010

II OP subjects in GO versus OP subjects in NOGO 0.777 0.150 0.010
MMT subject versus Control subjects (GO task) 0.463 0.225 0.014
Opiate subjects versus Control subjects (GO task) 0.450 0.075 0.013

III MMT subject versus Opiate subjects (GO task) 0.669 0.208 0.008
MMT subjects versus Control subjects (NOGO task) 0.532 0.225 0.006
Opiate subjects versus Control subjects (NOGO task) 0.468 0.175 0.005
MMT subjects versus OP subjects (NOGO task) 0.886 0.225 0.014

TABLE III
EEG DATA CLASSIFICATION ACCURACY RESULTS FROM THREE EXPERIMENTAL SESSIONS VIA RRSV METHOD OF THE NEUCUBE

Control subjects (CO), Opiate subjects (OP), Accuracy is reported in %

Session Classification NeuCube SVM MLP MLR ECMC

Session I: GO versus NO classification Control subjects in Go versus NOGO 90.91 50.55 48.50 50.38 29.71
MMT subjects in Go versus NOGO 83.87 50.39 49.72 50.17 42.65
Opiate subjects in GO versus NOGO 83.33 50.40 47.81 50.00 45.43

Session II: OP, MMT, CO classification in GO MMT subject versus Control subjects (GO) 77.00 47.12 45.36 49.86 50.47
Opiate subjects versus Control subjects (GO) 85.00 50.50 50.64 48.60 48.60
MMT subject versus Opiate subjects 79.00 47.90 45.22 50.53 49.98

Session III: OP, MMT, CO classification in NOGO MMT subjects versus Control subjects 85.00 49.13 48.62 50.49 50.15
Opiate subjects versus Control subjects 90.00 50.24 49.83 50.24 49.83
MMT subjects versus OP subjects 88.00 46.57 50.51 50.00 48.71

50% of the data was used for training and 50% used for testing. The results of the traditional methods were obtained via LOOCV.

presynaptic neurons. Once the PSPi (t) reaches the firing thresh-
old, neuron ni emits a spike. After the SNNc unsupervised learn-
ing, temporal activities of the spiking neurons can be interpreted
in terms of brain activities measured by the corresponding EEG
channels.

An example of the number of spikes emitted by every neuron
of the SNNc related to the EEG data is given in Fig. 5(b). By
comparing the results obtained from GO versus NOGO trials,
we can conclude that the average number of emitted spikes in
control subjects were greater when they were doing GO trials
in comparison with NOGO trials. In contrast for OP subjects,
the emitted spikes were greater during the NOGO trials. The
plots indicate that the number of emitted spikes of each neuron
was less than 100 in control subjects and greater than 100 in OP
subjects during the NOGO trials. These findings support our
argument that OP subjects may experience difficulty in inhibit-
ing their inappropriate automated responses when they were
expected to not press the button in NOGO trials.

Conversely, by comparing the plots obtained from GO task,
we can see that the maximum number of spikes emitted by each
neuron was less than 100 spikes in OP subjects. However, this
number was increased in MMT and control subjects. Therefore,
the spike patterns of the MMT subjects were more similar to the
control subjects due to the greater number of emitted spikes, in
comparison with OP subjects in GO trials.

H. EEG GO/NOGO Pattern Classification Using
the NeuCube Model

In order to learn and classify the EEG signal patterns, the EEG
data was entered into a 3-D SNNc for unsupervised learning.
Then output classifier neurons were trained using supervised
learning algorithm to classify the activity patterns of the SNNc
into the predefined classes. The classification accuracy results
were evaluated using repeated RRSV. In this experiment, the
RRSV method was applied with 50% of the data for training
and 50% for testing. In order to optimize classification accuracy,
the values of the NeuCube parameters were altered through
iterative applications of the NeuCube modules 1–3 as discussed
in Section III-B.

In this experiment, the TBR threshold, Connection distance
(Dthr), and STDP rate parameters were changed during 1000
optimization iterations and then the best accuracy was recorded.
The parameters that generated the best classification accuracy
are reported in Table II. The firing threshold, the mod, and
drift parameters were set to 0.05, 0.4, and 0.250, respectively.
The classification accuracy results were compared with results
obtained using traditional machine learning methods, as these
methods are still being actively used in the literature for the
purpose of classification of EEG data.

The methods we used for comparison are: support vec-
tor machine (SVM); multiple linear regression (MLR);
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multilayer perceptron (MLP); and evolving clustering method
(see www.theneucom.com). The classification accuracy results
of the three experimental sessions for the three output classes of
subjects are summarized in Table III.

The classification accuracy results obtained in session I show
that the control subjects took actions more differently in GO tri-
als versus NOGO trials. Therefore, their EEG spike trains were
classified with a higher accuracy of 90.91% in comparison with
MMT and opiate subjects. In session II, the classification accu-
racy of 85% in OP versus CO is higher than the accuracy of 77%
in MMT versus CO, which means that the similarity between
the EEG data of the MMT and control subjects was greater than
the similarity between EEG data of the opiate and control sub-
jects. Consequently, we can conclude that some of the MMT
subjects respond to the methadone treatment and their brain ac-
tivity patterns may be improved and become comparable to the
CO subjects. Also, the classification accuracy of 100% in MMT
versus OP demonstrates that all MMT subjects were classified
correctly into the MMT class. In fact, this result indicates that
the EEG data patterns of the MMT subjects are greatly different
from opiate subjects.

In session III, the classification accuracy of 90% in OP versus
CO is higher than the classification accuracy of 85% in MMT
versus CO. These results show that the differences between
the brain activity patterns of MMT and control groups can be
minimum in contrast to OP group and MMT group. It may
represent that the MMT has a potential positive effect on brain
function and contribute to functional recovery.

V. CONCLUSION

A NeuCube model includes several methods and algorithms
that allow different aspects of EEG data to be studied and an-
alyzed: Spatial mapping of the data into a 3-D SNN structure
SNNc; unsupervised learning in the SNNc; visualization of the
connectivity and the spiking activity of the trained SNNc for
the discovery of new information related to the data and the
brain processes that generated it; supervised learning in an SNN
classifier; parameter selection and optimization; and model val-
idation. A NeuCube model is a special type of a LSM [11] that
has new features of learning, spatial variable mapping, model
visualization, etc. These features make a NeuCube model mean-
ingful in terms of its interpretation for the sake of understand-
ing the spatiotemporal characteristics of the data. The proposed
method is a method for modeling brain data in terms of learning
functional patterns of dynamic changes across the learned vari-
ables (in this case—EEG channels) using SNN. In this study,
we used a case study of EEG data captured from three different
subject groups (MMT, Opiate, and Control) while undertaking
the GO/NOGO cognitive task. The experimental results proved
the following phenomena:

1) In all experiments, the NeuCube-based models obtained
superior classification accuracy when compared with tra-
ditional machine learning methods.

2) The brain activity patterns of healthy volunteers were sig-
nificantly different from people with history of opiate de-
pendence. The differences appeared less pronounced in

people undertaking MMT compared to those current opi-
ate users.

3) The brain functional pathways of the healthy volunteers
were greater and broader than either people undertaking
MMT or those opiate users.

4) The STBD patterns of people on low dose of methadone
appeared more comparable to healthy volunteers com-
pared to those on high dose of methadone.
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