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Abstract— This paper introduces a new methodology for
dynamic learning, visualization, and classification of functional
magnetic resonance imaging (fMRI) as spatiotemporal brain
data. The method is based on an evolving spatiotemporal data
machine of evolving spiking neural networks (SNNs) exemplified
by the NeuCube architecture [1]. The method consists of several
steps: mapping spatial coordinates of fMRI data into a 3-D
SNN cube (SNNc) that represents a brain template; input data
transformation into trains of spikes; deep, unsupervised learning
in the 3-D SNNc of spatiotemporal patterns from data; supervised
learning in an evolving SNN classifier; parameter optimization;
and 3-D visualization and model interpretation. Two benchmark
case study problems and data are used to illustrate the proposed
methodology—fMRI data collected from subjects when reading
affirmative or negative sentences and another one—on reading a
sentence or seeing a picture. The learned connections in the SNNc
represent dynamic spatiotemporal relationships derived from the
fMRI data. They can reveal new information about the brain
functions under different conditions. The proposed methodology
allows for the first time to analyze dynamic functional and
structural connectivity of a learned SNN model from fMRI data.
This can be used for a better understanding of brain activities
and also for online generation of appropriate neurofeedback to
subjects for improved brain functions. For example, in this paper,
tracing the 3-D SNN model connectivity enabled us for the first
time to capture prominent brain functional pathways evoked
in language comprehension. We found stronger spatiotemporal
interaction between left dorsolateral prefrontal cortex and left
temporal while reading a negated sentence. This observation is
obviously distinguishable from the patterns generated by either
reading affirmative sentences or seeing pictures. The proposed
NeuCube-based methodology offers also a superior classification
accuracy when compared with traditional AI and statistical
methods. The created NeuCube-based models of fMRI data are
directly and efficiently implementable on high performance and
low energy consumption neuromorphic platforms for real-time
applications.
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I. INTRODUCTION

THE human brain processes complex input information
across different evoked cognitive states, acting as an

ultimate spatiotemporal data processing machine [1]–[5]. For
a better understanding of brain dynamics, a proper model is
needed to trace this information and the mental processes
that generate it. Over the past decades, a variety of tech-
niques have been developed to address this challenge and
to analyze spatio/spectrotemporal brain activity. Functional
magnetic resonance imaging (fMRI) is a class of neuroimag-
ing methods that measures blood flow changes influenced
by neural activities [6]. fMRI uses blood oxygenation level
dependence (BOLD) contrast method for observing the level
of oxygenation in the blood. fMRI data are rich spatiotemporal
brain data (STBD) that represents the localization of neural
activity with a high spatial resolution even though with a much
lower temporal resolution (i.e., brain activity is measured in
time intervals of hundreds of milliseconds). fMRI recording is
over time at many, three dimensional small areas represented
as voxels. Each of these voxels represents the fluctuation of
the BOLD intensity of thousands of neurons over time [6], [7].
fMRI techniques are noninvasive and have been widely used
in cognitive science and neuroscience, and in clinical practice
and research [8]–[11]. There are numerous common objec-
tives pursued in fMRI data analysis, including: 1) localizing
the activated brain regions during a particular mental task;
2) detecting the brain information pathways corresponding to
functional activities; and 3) diagnosis or prognosis of disease
or psychological states. Many of these tasks have not been
solved efficiently with the use of classical machine learning
techniques, such as support vector machine (SVM), multilayer
perceptron (MLP), and regression techniques [9], [11], the
reason being that traditional machine learning techniques are
designed to process static vector data and cannot model
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both interaction and interrelationship between time and space
components of STBD, which is needed for the modeling and
understanding of fMRI data [1].

At the same time, the brain-inspired spiking neural net-
work (SNN) models and their neuromorphic highly paral-
lel implementations are advancing very fast [1], [12]–[14],
[18]–[25]. The challenge now for information science is
to develop new SNN algorithms and methods for efficient
learning of STBD (EEG, fMRI, and so on) and for their
efficient neuromorphic implementations [1]. In [1] and [22],
an SNN architecture is proposed for modeling spatiotempo-
ral data as evolving spatiotemporal data machine (eSTDM),
called NeuCube. Here, we introduce a new, generic method
for learning, visualization, classification, and interpretation of
fMRI data, based on the NeuCube architecture. The method
can be applied on any fMRI data across areas of study and
applications. We illustrate the method on two benchmark fMRI
data sets [15]. The first one is related to modeling, classi-
fication, and interpretation of fMRI data measuring person’s
brain activity when the person is reading affirmative versus
reading a negative sentence. The second one is related to a
mental task of seeing a picture versus reading a sentence.
The spiking neurons of the NeuCube-based model evolved
neuronal connections according to the temporal information
“hidden” in the fMRI voxel time series data. This information
is visualized in a 3-D SNN cube (SNNc). In Section II, the
NeuCube eSTDM is presented and a generic method for fMRI
data learning, visualization, and classification based on the
NeuCube is introduced. Section III presents the case study
problems and data used in this paper and the design of
NeuCube-based models to solve these problems. Section IV
presents and illustrates the unsupervised learning procedure
and model visualization in a 3-D SNNc. Section V describes
the classification procedure of fMRI data in the NeuCube-
based models and illustrates it on the case study problems.
It compares classification results obtained with the proposed
models versus using standard machine learning techniques.
Finally, the conclusions and future work are discussed in
Section VI that includes discussing new discoveries form the
fMRI data modeling here and future model implementation on
neuromorphic hardware platforms [12]–[14].

II. NeuCube SNN ARCHITECTURE AND THE PROPOSED

NeuCube-BASED METHODOLOGY FOR LEARNING,
VISUALIZATION, AND CLASSIFICATION OF fMRI DATA

A. Spiking Neural Networks for Modeling STBD

The brain processes input information in the form of
spatiotemporal binary events called spikes [16]–[18]. SNN
methods have been already developed and implemented as
neuromorphic engineering systems, e.g., neuromorphic hard-
ware [12]–[14], SNN for image and speech processing as trains
of spikes [19]–[21], unsupervised [23] and supervised learning
and classification systems [25]–[27], and so on.

Compared with traditional neuronal networks, SNNs can
integrate both spatial and temporal components of data.
SNNs are considered the third generation of neural net-
works [28] and some of their remarkable features are compact

Fig. 1. Schematic representation of the leaky integrate and fire model (LIFM)
of a spiking neuron. (a) Schematic representation. (b) Showing an input train
of spikes (top row), the emitted output spikes (second row), and the membrane
potential (from [1]).

representation of space and time, fast data learning, time-based
and frequency-based information representation, minimalistic
information presentation, and low energy consumption. Due
to these reasons, SNN can be considered as suitable models
for STBD analysis, such as fMRI data. These features of the
SNN are utilized in [1] for the creation of a new type of
computational architecture—an eSTDM called NeuCube.

B. NeuCube

NeuCube is a generic eSTDM based on SNN for learning,
classification/regression, visualization, and interpretation of
spatiotemporal data, initially proposed for brain data [1].
NeuCube consists of five main modules: data encoding and
mapping, unsupervised learning in an SNNc, supervised learn-
ing and classification in eSNN, parameter optimization, and
model visualization and interpretation. The size of the SNNc
is scalable and controlled by three parameters: nx , ny , and nz

representing the neuron numbers along the x-, y-, and z-
directions. This cube can be used to map the (x , y, z)
coordinates of input variables, so that spatial information in
the data is preserved. The SNNc is trained in an unsupervised
mode on the spike sequences that represent the input spa-
tiotemporal data. After this first phase of training, an eSNN
output classifier is trained to learn the SNNc spatiotemporal
activities that represent data patterns and their predefined
classes. A dynamic evolving SNN (deSNN) can be used as
an output classifier [25], but other classifiers can also be
employed [24]–[28].

C. Proposed NeuCube-Based Methodology for fMRI Data
Mapping, Learning, Visualization, and Classification

The proposed methodology includes the following
procedures.

1) fMRI STBD Encoding and Mapping: The input data
features (e.g., fMRI voxels) are spatially mapped into spa-
tially allocated spiking neurons in a 3-D SNNc according
to the spatial location of these features as brain coordinates.
An SNNc is created as a 3-D SNN structure of a suitable size
that maps spatially a brain template (such as Talairach [33]
and MNI [34]) or voxel coordinates of individual brain data.
Then, continuous value time series of voxel data that measure
activity at a certain brain location is encoded into a spike
train using threshold-based representation (TBR) method or
other methods [19], [22], [24]. The timing of the spikes
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Fig. 2. Schematic representation of the NeuCube-based methodology for fMRI data mapping, learning, visualization, and classification.

corresponds to the time of the changes in the data. A spike time
sequence, obtained after the encoding process, represents a
new input information to the SNNc where the time unit maybe
different from the real time of the data acquisition (machine
computation time versus data acquisition time). The SNNc
can be implemented using the popular leaky-integrate and fire
neuronal model (LIFM) (Fig. 1) or other SNN models [29].

The neuronal postsynaptic potential, also called membrane
potential u(t), increases with every input spike at a time t ,
multiplied by the synaptic efficacy (strength), until it reaches
a threshold θ . After that, an output spike is emitted and the
membrane potential is reset to an initial state. The membrane
potential can have certain leakage between spikes, which is
defined by a temporal parameter τ .

2) Deep, Unsupervised Learning of fMRI Data in an SNNc:
The connectivity of the SNNc is initialized using the “small-
world” connectivity rule [1], [30], [44]. The small world
connectivity rule is phenomenon observed in biological sys-
tems [31], [32]. Unsupervised learning is performed using
spike-timing-dependent plasticity (STDP) learning rule [23] as
one implementation. In this paper, the unsupervised learning
allows for the SNNc to evolve its connections, so that they
capture spatiotemporal associations between voxels represent-
ing consecutive spatiotemporal brain activities. For every input
spatiotemporal fMRI sample, a trajectory of connections is
formed in the SNNc. The length (the depth) of these trajecto-
ries depends on the spiking sequence representing the sample
and the time of presentation.

3) Supervised Learning and Classification: An output clas-
sification module for supervised learning of spatiotemporal
spike sequences, activated in the SNNc by the input data, is
implemented using the deSNN classification algorithm [25].
During the supervised learning, output neurons are evolved
and trained to recognize whole patterns of activities of the
SNNc. A whole pattern of SNNc activity is defined as the
spatiotemporal spiking activity of the SNNc during the time
of the presentation of a whole input data sample labeled by a
class label. The duration of the fMRI samples used can vary
in time and number of voxels used. The use of eSNN allows
for a further adaptation of the NeuCube model on new data in
an incremental way without retraining the model on old data.
The model can be further evolved, with new samples used for
training and new classes introduced in an incremental way.

4) Parameter Optimization: The output classification accu-
racy depends on the combination of NeuCube model parameter
values. This combination can be optimized using different
algorithms, such as grid search (exhaustive search), genetic
algorithm, and quantum inspired evolutionary algorithm [24].
A number of default parameters are listed in Section III.

5) Model Visualization and Interpretation: The trained
NeuCube model of fMRI data can be dynamically visualized
in a 3-D virtual reality space for the analysis of brain activities
and for the discovery of new spatiotemporal causal relation-
ships from the data [22].

Here, the proposed NeuCube-based methodology for map-
ping, learning, and classification of fMRI data is shown
graphically in Fig. 2. Section III explains the details of the
procedures of the proposed methodology with the use of
benchmark fMRI data sets.

III. CASE STUDY PROBLEMS ON fMRI DATA AND THE

DESIGN OF NeuCube-BASED MODELS

The STAR/PLUS fMRI data set, originally collected by
Marcel Just and his colleagues at the Carnegie Mellon Uni-
versity’s Center for Cognitive Brain Imaging [15], [35], was
selected for the illustration of the proposed methodology.
STAR/PLUS fMRI data sets consist of sequences of images
from the whole brain volume captured every 500 ms during
a cognitive task. For each subject conducting a picture versus
sentence task, data from 40 trials have been collected, each
trial starting by presenting a stimulus (picture or sentence) that
remains on the screen for 4 s (eight brain images recorded).
Then, a blank screen appears for another 4 s. After that, the
next stimulus is presented for the next 4 s. The fMRI data are
spatially partitioned into 27 distinct regions of interest (ROIs),
each corresponding to different number of voxels. From the
STAR/PLUS fMRI data, two different subsets were extracted
and used for two case studies illustrating our methodology. The
first data set relates to modeling fMRI STBD when subjects are
reading affirmative versus negative sentences. The second data
set relates to modeling fMRI STBD when a subject is seeing
a picture versus reading a sentence. In order to analyze and
classify voxel activity patterns generated by different stimuli
types (picture/sentence), the fMRI data are divided into two
classes (first—a subject is seeing a picture and second—
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Fig. 3. SNR index (on the y-axis) of top voxels (on the x-axis) extracted from (a) affirmative versus negative sentence fMRI data set and (b) picture versus
sentence fMRI data set.

TABLE I

SUBSET OF VOXELS IS SELECTED via SNR FEATURE SELECTION METHOD FROM TWO fMRI DATA SETS

Fig. 4. Example of encoding five voxel time series captured during 8 s (16 brain images) into trains of spikes.

a subject is reading a sentence). We will demonstrate in Sec-
tions III–V that using the proposed methodology, we can not
only classify these activities, but obtain a better understanding
of their spatiotemporal manifestation in the brain.

A. Voxel Feature Selection From the fMRI Data

To analyze the voxel activity patterns of the activated ROIs,
either all voxels can be used and mapped in an SNNc model
or a suitable subset of voxels can be selected. Different
methods for feature selection can be used for the purpose.
In our experiments, we have used a standard statistical measure
known as signal-to-noise ratio (SNR) [26] via available online
NeuCom platform [36]. For a two-class problem, an SNR
index for a variable x is calculated as an absolute value of
the difference between the mean value M1x of the variable
for class 1 and the mean M2x of the variable for class 2,
divided to the sum of the respective standard deviations. Fig. 3
shows a set of selected voxels from the fMRI data for each
of the two case studies, while Table I shows how many of
these voxels belong to which ROI. We conclude from Table I

(left column) that when a subject is making a decision about
sentence polarity, more activated voxels are located on the left
dorsolateral prefrontal cortex (LDLPFC), left temporal (LT),
LOPER, and the inferior parietal lobule. Table I (right column)
contains the selected voxels while the subject deals with
picture/sentence stimuli. Calcarine (CALC) is more activated
than the other parts of the brain.

B. Encoding fMRI Data Into Spike Sequences

TBR method was applied on each voxel time series data to
transfer the data into a sequence of spikes. If a voxel BOLD
intensity value exceeds the TBR threshold, a spike occurs [22].
Fig. 4 shows an example of five voxel time series.

C. Spatial Mapping of fMRI Voxels Into
a 3-D SNNc Structure

Here, we have illustrated two types of voxel coordi-
nate mappings in a 3-D SNNc structure: 1) direct map-
ping of individual fMRI voxel coordinates and 2) mapping
fMRI voxel coordinates first into a standard brain template,
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Fig. 5. Direct mapping of voxels into an SNNc. The dimensions of the SNNc are defined by the maximum values of x , y, and z voxel coordinates, which in
this case study equal to 51×56×8. In this dimensional space, 5062 voxels are mapped from the STAR/PLUS geometric voxel coordinates of a single person.
The selected voxels in Fig. 3 for each case study problem are shown as input variables as circles, along with the ROI (as text in boxes) for (a) affirmative
versus negative sentence fMRI data and (b) picture versus sentence fMRI data.

Fig. 6. Mapping voxels into SNNc using the Talairach brain template. The 5062 voxel data of one subject were first mapped into 1471 Talairach template
coordinates according to [1], [33], and [38]. Then, each template coordinate is mapped into a corresponding neuron from an SNNc. The selected top informative
voxels in Fig. 3 for each case study problem are used as input variables and shown as circles along with the ROI (as text in boxes) for (a) affirmative versus
negative sentence fMRI data and (b) picture versus sentence fMRI data.

such as Talairach [33], and then mapping the Talairach
coordinates into a 3-D SNNc. The two methods are shown
in Figs. 5 and 6 correspondingly and explained in the
following.

1) Direct Mapping of Individual fMRI Coordinates Into a
3-D SNNc: We have used the fMRI data of subject “05680”
from the STAR/PLUS fMRI data. The fMRI data dimensions
are defined by the maximum value of x , y, and z voxel
coordinates, which equal in our case study data to 51×56×8
as can be seen in Fig. 5. Using these dimensions, 5062 voxel
coordinates are recorded from the entire brain volume.
We mapped all voxel coordinates into an SNNc, so that
the spiking neurons have the same 3-D coordinates as the
corresponding voxels. Fig. 5(a) shows the spatial mapping
of all fMRI voxels into an SNNc. Twenty of these neurons
are allocated and labeled to represent input features as per
the selection in Fig. 3(a). Fig. 5(b) represents the same brain

structure with different preselected voxels for the picture
versus sentence data set for the same subject.

2) Mapping fMRI Coordinates to a Standard Brain Template
(Talairach) and Then Mapping the Template Coordinates Into
an SNNc: When we create a model of fMRI data collected
from many subjects, we need to use a unifying structural
brain template, such as the Talairach atlas [33], the MNI
atlas [34], or other [37]. In this paper, we transformed the
coordinates of the preselected voxels and mapped them into
a NeuCube of 1471 spiking neurons according the Talairach
brain template. Each of these neurons represents the center
coordinate of one cubic centimeter area from the 3-D Talairach
atlas [38].

In this experiment, for every voxel from an fMRI data
set, we calculate the nearest Talairach-based coordinate in the
relevant Brodmann area. After mapping the coordinates of the
preselected voxels to the Talairach-based coordinates, every
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voxel is mapped into a spiking neuron in the SNNc according
to its new, Talairach transformed coordinates (shown in Fig. 6).

D. Model Parameter Setting

A NeuCube model performance is highly sensitive to para-
meter setting. Some of the most important parameters are as
follows.

1) T B Rthr : A self-adaptive bidirectional threshold for
STBD encoding to spike trains.

2) Dthr : Distance threshold for the initialization of the
neuronal connectivity in the used here small world
connectivity rule.

3) STDP Learning Rate (α): A parameter used to modify
the neuronal connections in an SNNc with respect to
repetitively arrived spikes to the synapses. If a neuron i
fires before a neuron j , then its connection weight
increases, otherwise it decreases with respect to the
STDP learning rate (α).

4) T ho: Threshold of firing for the neurons in the SNNc.
5) deSNN Classifier Parameters: These parameters are:

mod and drift. As explained in [1] and [25], an output
neuron is evolved for every training sample and con-
nected to all neurons of the SNNc. The weight ini-
tialization of every new connection is based on the
RO learning rule [39]. The weight is calculated as a
modulation factor (the variable mod) to the power of
the order of the incoming spikes. The initial connection
weights are further modified to reflect the following
spikes, using a drift parameter [25]. Once the structure
of the NeuCube-model is defined, along with the method
for data encoding and the method for voxel spatial
mapping into a 3-D SNNc, the model is trained and
analyzed. These steps are illustrated in Sections IV–V.

IV. DEEP, UNSUPEVISED LEARNING IN A 3-D SNNc,
CONNECTIVITY VISUALIZATION, AND ANALYSIS

After a NeuCube model is defined, the SNNc is trained
with the encoded fMRI data using the STDP method [23].
A whole spatiotemporal pattern of a known class is used
as one sample. Depending on the method used for mapping
the fMRI voxels (features) into the SNNc, different aspects
of the fMRI data can be revealed and studied during the
SNNc training as explained in the following. Experimental
results are illustrated here mainly to enable visual exploration
of the models, but numerical analysis is also facilitated in
NeuCube, where numerical and statistical data about connec-
tion weights, spiking intensity, and time of activation, are
obtained from the model and analyzed (see the NeuCube
software—www.kedri.aut.ac.nz/neucube/). The main aspect of
this type of learning in the SNNc is that the length of the
spatio-temporal patterns used as single samples is not limited
and the learning is as deep as it needs to be, restricted only by
the number of the neurons in the SNNc which can be made
large enough during initialization of the Cube.

A. Learning and Visualization of Spatiotemporal Connections
in the SNNc With the Use of the Talairach Template Mapping

1) Case Study of Affirmative Versus Negative Sentence:
Fig. 7 shows the initial connections in the SNNc and
the modified ones after the deep, unsupervised learning
process using both affirmative and negative sentence fMRI
samples.

Our findings confirm studies that suggest that language com-
prehension, including a reading task, is processed in particular
brain areas, such as LDLPFC, Broca, and Wernicke [40]. Fig. 7
shows more and stronger neuronal connections generated in
the left hemisphere. These connections were established as a
result of more spikes transferred between the neurons located
in these areas, reflecting on the changes in the corresponding
voxels in the fMRI data. Fig. 8 shows connectivity after the
SNNc was trained with only the affirmative or the negative
sentence data, separately. The observed connectivity from
Fig. 8 confirms that the subject performs differently when
reading an affirmative versus negative sentence and also sug-
gests what the difference is in terms of brain spatiotemporal
activity.

In addition, we can observe that more and stronger con-
nections are formed between neurons located in the left
hemisphere (LDLPFC and LT) than in the right hemisphere
(RDLPFC and RT) while the subject was reading a negative
sentence. The connectivity is especially enhanced between the
input neurons (i.e., the selected voxels) located in the LDLPFC
and LOPER regions. Our interpretation of Fig. 8 is in line with
the neuroscience literature, which reported that comprehension
of negative sentences is cognitively different from affirmative
sentences, involving different parts of the brain. Containing
negative words, such as “not,” in the middle of a sentence
can make it more difficult to comprehend, due to their more
complex syntactic and semantic structures. Therefore, this type
of sentence engages more regions of the brain [41], as shown
in Fig. 8. More detailed analysis on the connectivity related
to the task can be performed by neuroscientists to answer
different research questions.

Another form of analysis of a trained SNNc is clustering of
the neurons that can be performed with the use of the input
variables (corresponding neurons) used as cluster centers.
Each neuron in a trained SNNc belongs to the cluster from
which center it has received most spikes, as shown in Fig. 9.
A spreading algorithm [42] was used to define these clusters.
If there are more transmitted spikes between two neurons,
there will be a stronger information route between them. Fig. 9
shows the SNNc clusters after unsupervised training of an
SNNc with the two fMRI time series separately. Fig. 9(a)
shows that there are not many functional pathways between
LT region and the other parts of the brain while the subject is
reading an affirmative sentence. However, Fig. 9(b) shows that
when a subject is reading a negative sentence, there is more
interaction between neurons located in the left hemisphere.
Therefore, more brain functional paths start from the input
voxels located in the LT region (spike sender neuron) and
continue up to the neurons located in the middle of the brain
(spike receiver neurons).



KASABOV et al.: MAPPING, LEARNING, VISUALIZATION, CLASSIFICATION, AND UNDERSTANDING OF fMRI DATA 893

Fig. 7. Voxels are mapped into SNNc using Talairach template. (a) Initial connections in an SNNc. (b) Learned connections after STDP unsupervised learning
using both affirmative and negative sentence fMRI samples when 20 input voxels selected as in Fig. 3. The dense areas of connectivity evolved in the SNNc
can be analyzed to understand the most active functional areas in the brain during these two tasks and how they interact dynamically.

Fig. 8. Voxels are mapped into SNNc using Talairach template. (a) Learned connections in an SNNc when only fMRI samples of affirmative sentences were
used. (b) Learned connections in an SNNc when only fMRI samples of negative sentences were used. The initialization is the same as in Fig. 7. The dense
areas of connectivity evolved in the SNNc can be analyzed to understand the difference between functional areas in the brain during each of the two tasks
as dynamic interaction.

Fig. 9. Voxels are mapped into SNNc using Talairach template. Clustering of neurons in an SNNc after unsupervised training for (a) affirmative sentence
data and (b) negative sentence data. The size of a cluster indicates the importance of the input feature/voxel at the center of the cluster. This can be used for
feature/voxel selection and marker identification for further studies.

2) Case Study of Learning Picture Versus Sentence
Data: Similar to Fig. 7 and the experiments in Section IV-A1,
here, Fig. 10 shows the learned connections in an SNNc
using the samples of seeing a picture [Fig. 10(a)] and reading
a sentence [Fig. 10(b)], while Fig. 10(c) and (d) shows
a 2-D projection of the connectivity from Fig. 10(a) and (b)
correspondingly.

Visual perception initiates as soon as the eye transfers
light to the retina, where it is absorbed by a layer of
photoreceptor cells. The outputs of the retina then pass through
the optic nerve, cross, and split at the optic chiasm, through the
optic tract to the lateral geniculate nucleus. From there, they
pass to primary visual cortex [43]. After training the SNNc
with the fMRI samples of seeing a picture, Fig. 10(a) and (c)
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Fig. 10. Voxels are mapped into SNNc using Talairach template. (a) Connectivity of an SNNc trained on fMRI data related to seeing a picture. (b) Connectivity
of an SNNc trained on fMRI data related to reading a sentence. (c) 2-D projection of the connectivity of the SNNc from Fig. 10(a). (d) 2-D projection of the
SNNc from Fig. 10(b). The dense areas of connectivity evolved in the SNNc can be analyzed to understand the difference between functional areas in the
brain during each of the two tasks as dynamic interaction.

represents a stronger spatiotemporal interaction between neu-
rons located in the parts of the brain dedicated to vision, such
as CALC region, which is located in the primary visual cortex
in the occipital lobe and defined as the Brodmann area 17. This
result confirms our previous argument that the visual primary
cortex is more activated than the other parts of the brain when
the subject is performing a visual task (seeing a picture).
On the other hand, as shown in Fig. 10(b) and (d), when the
SNNc is trained with spike sequences that represent fMRI
data related to sentence stimulus, more number of neuronal
connections are created in the left hemisphere, in particularly,
in Broca, and Wernicke areas. This corresponds to the stud-
ies about brain areas involved in language comprehension.
Using the NeuCube model, a more detailed analysis can be
conducted in terms of understanding the dynamic patterns
of brain activities represented as connectivity evolution in
time.

3) Learning and Visualization of Spatiotemporal Connec-
tions in a Trained SNNc Using Direct Voxel Mapping: In order
to visualize the neural connectivity and spiking activity inside
an SNNc with 5062 spiking neurons for example (equal to
the number of voxels in the STAR/PLUS fMRI data of an
individual), we have loaded the whole fMRI voxel coordinates
into the SNNc, as explained in Section III. Fig. 11 shows the
neuronal connections before and after unsupervised training
of an SNNc with the use of four different data sets, related

correspondingly to affirmative sentence, negative sentence,
seeing a picture, and reading a sentence.

It is seen from this visualization that the exact locations of
the fMRI voxels are mapped in the same 3-D location of spa-
tial located neurons. These neurons develop their connections
based on the temporal information in the fMRI data during
the STDP learning. As seen in Figs. 8 and 10, the neuronal
connections in the SNNc here evolved differently during the
unsupervised training of the SNNc with fMRI data related
to reading a sentence versus seeing a picture, reflecting the
different evoked cognitive functions in the brain.

As shown in Fig. 11, we obtained similar results by
training an SNNc with the same fMRI data samples, but
through different SNNc mappings. More and stronger neuronal
connections were generated between the neurons located in
the left hemisphere, significantly in the LDLPFC area, when
reading negative sentences. Visual areas were more activated
when seeing a picture. These results represent the NeuCube-
based SNNc stability to generate similar outputs for the same
input spike trains, while using different brain templates for
fMRI voxel mapping. Using standard brain templates, such as
Talairach, MNI, and so on, to map fMRI data into an SNNc
model allows the creation of a model from data collected from
multiple subjects. In contrast, a direct fMRI voxel mapping
would allow for a single person model creation that can be
used for a personalized modeling and a better understanding
of a single individual brain activity during a cognitive task.
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Fig. 11. Voxels are directly mapped into an SNNc model. Initial (A) and final (B) connectivity of an SNNc after training with four different data sets, related
correspondingly to affirmative sentence, negative sentence, seeing a picture, and reading a sentence. The final connectivity is also shown as a 2-D projection
(C). Positive connections are shown in blue and negative connections are shown in red.

To reveal more information about interrelation between
voxel activities, clustering of the spiking neurons in a
trained SNNc can be performed using the same method
as in Section IV-A (see also Fig. 9). This is shown
in Figs. 12 and 13. Here, spiking neurons represent voxels
rather than Talairach coordinates as it is the case in Fig. 9.
A comparison of Fig. 12(c) and (d) shows that more brain
information routes are generated while reading a negative
sentence. In fact, more cognitive states of the brain are evoked
to understand a sentence syntax and semantics. The unlabeled
black dots represent those neurons that did not receive spikes.
Fig. 13(c) and (d) shows the spiking activity clusters in the
SNNc model trained on subject data when seeing a picture
and reading a sentence, respectively.

V. fMRI DATA CLASSIFICATION IN A NeuCube MODEL

USING DYNAMIC EVOLVING SNN CLASSIFIER

A. Classification of fMRI Data in a NeuCube-Based Model

While the SNNc learns fMRI data and creates spatiotempo-
ral patterns of connectivity and spiking activity among spiking
neurons, the output classifier is to classify these patterns into
predefined class labels [1], [25]. After completion of the
unsupervised learning in the SNNc, input data is propagated
again through the now trained SNNc in order to activate the
learned patterns in the SNNc, so that a classifier can be trained
to classify them. For every training sample, a new output
neuron is evolved and connected to all neurons in the SNNc.
Here, we have used the deSNN classifier [25]. It is constructed
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Fig. 12. Voxels are directly mapped into an SNNc model. Clustering of the neurons in a trained SNNc with (a) affirmative sentence data and (b) negative
sentence data, along with their corresponding 2-D projections shown in (c) and (d), correspondingly. The size of clusters indicates the importance of the
feature voxel for the task and can be used for feature/voxel selection for further studies.

Fig. 13. Voxels are directly mapped into an SNNc model. Clustering of the neurons in a trained SNNc with (a) fMRI data related to seeing a picture and
(b) fMRI data related to reading a sentence, along with their 2-D projections shown in (c) and (d), correspondingly. The size of the clusters indicates the
importance of the features (voxels) for the task and can be used for feature/voxel selection for further studies.

TABLE II

OPTIMAL PARAMETER SETTINGS OF NeuCube-BASED MODELS FOR DIFFERENT EXPERIMENTS (SESSIONS) WITH THE BENCHMARK fMRI DATA

and trained to learn and classify different trajectories of the
SNNc spiking activities that represent different input patterns
from the fMRI data that belong to different classes. As a result
of the supervised learning in the classifier, once a new fMRI
data sample of unknown class is entered, the classifier will
classify this data into a known class, or will create a new
class.

The deSNN classifier belongs to the class of evolving
systems [26], so that it can incrementally add new samples and
new classes with no need to retrain it with the old data and
without manifesting the catastrophic forgetting phenomenon.
The deSNN utilizes a combination of rank-order learning [39]
for the establishment of the initial weights of the synapses
based on the order of the first arriving spike, and STDP-type
learning for the tuning of these weights based on the following
spikes arriving at the synapse.

B. NeuCube Model Parameter Optimization and
Classification Results for the Benchmark Data Sets

In a NeuCube fMRI model, the output classification accu-
racy depends on the parameter setting. In the experiments

here, a grid search method was used, where for different
combinations of parameter values (in our experiment 10 000),
a model is created and its classification accuracy evaluated.
Optimal parameter values of a model that are resulting in best
classification accuracy are reported in Table II.

Table III summarizes the fMRI data classification accuracy
of the affirmative sentence class versus negative sentence class
obtained using the NeuCube-based classification model. The
results are compared with results obtained using traditional
machine learning methods, as these methods are still being
actively used in the literature for the purpose of classification
of STBD. The methods used for comparison are SVM, mul-
tiple linear regression, MLP, evolving classification function,
and evolving clustering method (see www.theneucom.com).
The already published classification result of the affirmative
versus negative sentence fMRI data [9] is also reported. The
NeuCube-based models achieved significantly better classifi-
cation accuracy (Table IV). In addition to a better classification
results, the visualization of the trained SNNc reveals new
information about functional brain pathways.

In both experiments, the fMRI data were learned in the
NeuCube models as whole spatiotemporal patterns. In contrast,
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TABLE III

CLASSIFICATION ACCURACY OF THE AFFIRMATIVE SENTENCE (CLASS C1) Versus NEGATIVE SENTENCE (CLASS C2) DATA via A NeuCube
MODEL (50% OF THE DATA USED FOR TRAINING AND 50% USED FOR TESTING AS CROSS VALIDATION) AND ALSO

TRADITIONAL MACHINE LEARNING METHODS (OBTAINED via NeuCom, www.theneucom.com), ALONG

WITH ALREADY PUBLISHED RESULTS [9]. THE fMRI DATA SAMPLE FILE

CONTAINS 40 SAMPLES (20 SAMPLES PER CLASS)

TABLE IV

COMPARISON OF CLASSIFICATION ACCURACY OF PICTURE (CLASS C1) VERSUS SENTENCE (CLASS C2) DATA OBTAINED BY USING NeuCube
(50% OF THE DATA USED FOR TRAINING AND 50% USED FOR TESTING IN A CROSS VALIDATION MODE) AND TRADITIONAL MACHINE

LEARNING METHODS (OBTAINED VIA NeuCom, www.theneucom.com). THE EXPERIMENT IS DONE ON
A TOTAL NUMBER OF 80 SAMPLES (40 SAMPLES PER CLASS)

the same fMRI data were learned in the other methods a
vector-based, where vectors were formed through concate-
nating of temporal frames. No dynamic spatiotemporal fMRI
patterns can be revealed while using these methods.

VI. CONCLUSION AND DISCUSSION

In this paper, we proposed a new, generic methodology
for mapping, learning, visualization, classification, and under-
standing of fMRI data using the NeuCube architecture of
SNN [1]. The methodology includes procedures for feature
selection from fMRI data, spatial mapping of the data and
the features into a 3-D SNN structure SNNc, unsupervised
learning in the SNNc, visualization of the connectivity and the
spiking activity of the trained SNNc for the discovery of new
information and knowledge related to the data and the brain
processes that generated it, supervised learning in an SNN
classifier, parameter selection and optimization, and model
validation. In this respect, a solution to a problem defined

by fMRI data is not a single formula or an algorithm, but
an eSTDM that consists of several modules, each of them
having a set of alternative algorithms and parameter values
that can be optimized. To illustrate the proposed methodology,
we have used part of the benchmark STAR/PLUS fMRI data
that records the activities in an evoked area of the brain while
a human subject was reading a sentence or seeing a picture.
We also analyzed the voxel activity patterns generated by
reading an affirmative sentence versus a negative sentence.
We have used a NeuCube evolving SNN model to classify
the voxel activity patterns into predefined classes. As feature
selection, a subset of voxels was selected using SNR feature
selection [26]. These informative voxels were used as features
to train an SNNc and to classify the data.

In all experiments, the NeuCube-based models were supe-
rior in two aspects when compared with traditional machine
learning methods: 1) they can be interpreted in terms of
understanding dynamic interactions between functional areas
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of the brain during a cognitive task, either for many subjects,
or for an individual subject; none of the traditional methods
(reported in Tables III and IV) can be interpreted in such a
way and 2) a higher classification accuracy is achieved.

Experimental results are illustrated here mainly to illustrate
how the proposed method enables visual exploration of the
models. Numerical analysis is also facilitated in NeuCube,
where numerical and statistical data about connection weights,
spiking intensity, time of activation, and so on can be obtained
from the model and analyzed (NeuCube software is available
at www.kedri.aut.ac.nz/neucube/).

The experimental results proved our hypotheses that the
following holds.

1) The proposed NeuCube-based methodology is superior
in fMRI data learning and classification when com-
pared with traditional statistical and AI methods, as the
NeuCube learns whole spatiotemporal patterns from the
data.

2) NeuCube learns fMRI data in an incremental, adaptive
way, where new data and new classes can be added.

3) As only one-pass learning is used in a NeuCube
model, online learning for real time applications is also
supported.

4) The learned connections in the SNNc represent valid
dynamic spatiotemporal relationships derived from the
fMRI data that can be interpreted for the discovery
and understanding of new functional information about
the brain. The observations from the analysis of the
NeuCube models correspond to the known information
from the brain theory [43]. A NeuCube model can
be further interpreted for finding new spatiotemporal
information. For example, we can not only visually
observe in a trained SNNc that the left hemisphere was
more activated than the right hemisphere when reading
a negative sentence, but discover the dynamics in the
activation of these areas through tracing the evolving
connectivity over time. We can not only observe that the
spatiotemporal connections between the neurons in the
visual primary cortex were stronger than the connectivity
in the LDLPFC, which was more activated while the
subject was seeing a picture, but zooming on particular
areas of the connections in a trained SNNc would
also reveal more information about the spatiotemporal
brain processes related to the tasks and would allow
neuroscientists to answer different research questions.

VII. FUTURE DIRECTIONS

Future work includes the use of other SNN classifiers or
spike-pattern associators, such as tempotron, ReSuMe, and
SPAN [24]. As a NeuCube-based model uses a classifier to
classify SNNc activities that capture meaningful spatiotem-
poral patterns from data, our research question in the future
will be what patterns can be captured in the classifiers.
A NeuCube model is a special type of a liquid state
machine (LSM) [28] that has new features of learning, spatial
variable mapping, model visualization, and so on that make
a NeuCube model meaningful in terms of its interpretation
for the sake of understanding of spatiotemporal characteristics

of the data. The proposed NeuCube models are scalable in
terms of dimensionality of an SNNc that can map with a
high precision large scale fMRI data of tens and hundreds
of thousands of voxels. As a NeuCube simulator is available
in PyNN, along with Java and MATLAB [22], this makes it
possible for a direct implementation of an fMRI model on
many available neuromorphic hardware platforms [12]–[14],
[18]–[21], [44] for fast processing of large volumes of fMRI
data in an online, real time mode. Computational platforms,
such as SpiNNaker [12] and TrueNorth [13], along with hybrid
neuromorphic chips [14] of thousands and millions of spiking
neurons with a very low energy consumption can now be used
for fMRI data. In this respect, the proposed method is the
first to enable a direct use of neuromorphic hardware for a
meaningful fMRI data modeling and analysis.

Overall, this paper offers a principally new and efficient
neuromorphic approach to better model and understand one
of the most used and most complex STBD and fMRI data.
It is a method for learning spatiotemporal patterns of dynamic
changes across the learned variables (in this case—voxels).
The proposed method explores for the first time the use
of SNN for this purpose. The visualization and interpreta-
tion of the learned connections suggest dynamic, functional
spatiotemporal associations between measured areas of the
brain represented by voxels in relation to the task performed.
Potential applications of the proposed methodology span
across all brain cognitive and medical studies. It will boost
the development of neuromorphic supercomputing hardware
platforms, showing how they can be efficiently used for large
fMRI data modeling in a real time.
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