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a b s t r a c t

The paper presents a methodology for the analysis of functional changes in brain activity across different
conditions and different groups of subjects. This analysis is based on the recently proposed NeuCube
spiking neural network (SNN) framework and more specifically on the analysis of the connectivity of
a NeuCube model trained with electroencephalography (EEG) data. The case study data used to illustrate
thismethod is EEG data collected from three groups—subjectswith opiate addiction, patients undertaking
methadone maintenance treatment, and non-drug users/healthy control group. The proposed method
classifies more accurately the EEG data than traditional statistical and artificial intelligence (AI) methods
and can be used to predict response to treatment and dose-related drug effect. But more importantly, the
method can be used to compare functional brain activities of different subjects and the changes of these
activities as a result of treatment, which is a step towards a better understanding of both the EEG data
and the brain processes that generated it. The method can also be used for a wide range of applications,
such as a better understanding of disease progression or aging.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last four decades, EEG has been used extensively for
the study of brain functional changes under different conditions,
including neurological disease and treatment with drugs. In
principle, EEG data can show changes of cortical activity that occur
during milliseconds (Gevins et al., 2011; Smith et al., 2006), and it
is recognised as a sensitive measure of drug effects on the brain
and, in particular, of drug effects on the size and on the time
course of post-synaptic potentials (Gevins et al., 2011; Smith et al.,
2006). Nevertheless, localisation of changes in cognitive activity is
limited in EEG in contrast to magnetic resonance imaging (MRI).
Recently, a growing number of methods have been developed
to localise the generators of EEG components, for example low
resolution brain electro-magnetic tomography (LORETA) (Pascual-
Marqui et al., 1999; Pascual-Marqui,Michel, & Lehmann, 1994) and
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statistical parametric mapping (SPM) (Penny, Friston, Ashburner,
Kiebel, & Nichols, 2011).

Using standard statistical or machine learning techniques to
classify EEG data fromgroups of patients under different treatment
can suggest whether there is a functional improvement, as a
result of treatment. For example, in already published studies
(Wang, Wouldes, Kydd, Jensen, & Russell, 2014; Wang, Wouldes,
Kydd, & Russell, 2012; Wang, Kydd, Wouldes, Jensen, & Russell,
2015), we demonstrated that improved cognitive functions in
patients undertaking methadone maintenance treatment (MMT)
in contrast to those dependent on illicit opiates. Additionally, we
demonstrated that MMT cognitive functions are comparable to
healthy subjects. Previously,wehave investigated groupdifference
on spectral power of EEG data using traditional statistical methods
(i.e. analysis of covariance, independent sample t-test, etc.), and
the results only reveal the fluctuation of neural activity within an
individual channel. Traditional statistical and AI methods applied
to study functional brain changes lack the ability to explain which
functional areas of the brain are affected during treatment, how
much they are affected andwhat are the changes of the dynamics of
the brain as a chain of spiking activity over time. Time information
is present in spatio-temporal brain data (STBD), such as EEG data,
but when the data is processed (e.g. classified) this information is
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Fig. 1. The NeuCube architecture with its three main modules: input data encoding module; a 3D SNN cube module; an output evolving classification module (Kasabov,
2014). An optional Gene Regulatory Network (GRN) module can be incorporated if gene information is available. The spiking neurons can be implemented as a simple leaky
integrate and fire model or probabilistic models (shown in the lower left section).
compressed and there is no explanation of the final results related
to the time component. In this respect traditional methods can
be considered ‘‘black boxes’’ in a sense (Kasabov, 2014). These
are important questions that need to be addressed for a better
understanding of functional changes in the brain under various
conditions, including: neurological disease progression, disease
treatment over time and ageing.

Recently, a new methodology, the ‘‘NeuCube framework’’,
based on the connectivity analysis of evolving brain-inspired spik-
ing neural networks (eSNN) models has been proposed (Kasabov,
2014). It has been demonstrated that the NeuCube provides sig-
nificant accuracy of classification and interpretation of the brain
data, suggesting its potential application to neurological clinical
research. In this study, we introduce a new method for the con-
nectivity analysis of NeuCube model trained on EEG data to reveal
brain functional changes under different conditions and across dif-
ferent groups of subjects. As a case study, we take the problem of
identifying differences between people with opiate addiction and
those undertaking substitution treatment for opiate addiction.

The paper is constructed in the following way: Section 2
describes the functional characteristics of the NeuCube eSNN
framework. Section 3 presents a methodology for connectivity
analysis of a NeuCube model. Section 4 presents a case study of
EEG data analysis of functional brain changes across groups of
opiate addicts and those who have taken MMT in comparison
with control subjects. This section presents results of the
analysis and discussions based on a comparative analysis between
NeuCube models and traditional statistical and machine learning
techniques. The conclusion in Section 5 clearly identifies the
NeuCube models as being superior to other methods, for the
purpose of revealing functional brain changes and the prediction
of response to treatment across applications.

2. The NeuCube spiking neural network framework

2.1. Spiking neural networks (SNN)

Some of the most valuable techniques used in in silico inves-
tigations are brain inspired machine-learning techniques, such as
SNN. These techniques are potentially able to learn and reveal time,
space and frequency information ‘‘hidden’’ in the STBD. In fact, the
neural activity recorded can be represented as binary events, called
spikes, which are then fed into a model. Each neuron of the net-
work represents a computational unit, which is able to modify and
evolve connections with the other neighbouring neurons to reflect
the timing of the data from the sensory inputs (Kasabov, 2014).
This is one of the main principles of SNN, considered the third
generation of brain-inspired neural network techniques (Gerstner,
1995, 2001; Gerstner, Sprekeler, & Deco, 2012). Some of the main
advantages that SNN techniques provide are: compact represen-
tation of space and time; fast information processing; time-based
and frequency-based information representation; memory-based,
so that they can be studied after training for data understanding.

2.2. The NeuCube SNN framework

The main principles of the NeuCube framework were first
presented in Kasabov (2012, 2014) and further developed in Chen,
Hu, Kasabov, Hou, and Cheng (2013), Scott, Kasabov, and Indiveri
(2013) and Tu et al. (2015). A NeuCube model (Fig. 1) consists
of: input data encoding module; a 3D SNN cube (SNNc); an eSNN
classifier; and an optimisation module.

NeuCube has already been applied successfully for the clas-
sification and knowledge extraction of both EEG (Capecci et al.,
in press; Kasabov & Capecci, 2015) and functional MRI (fMRI)
(Doborjeh, Capecci, & Kasabov, 2014) cognitive data, and to other
type of spatio-temporal data for personalised disease prognosis
(Kasabov et al., 2014;Othmanet al., 2014) andneuro-rehabilitation
(Chen et al., 2013; Taylor et al., 2014). This paper contributes to
the set of methods related to the NeuCube with the introduction
of a newmethodology for connectivity analysis in relation to brain
functions represented in the EEG STBD. The proposed method is
applied on EEG data collected from people with drug addiction to
reveal the possible changes of neural cognitive activity related to
the treatment and the dose of drug administered.More specifically,
we quantified the differences between groups on functional con-
nectivity (e.g. positive/negative connection between neurons). In-
formation processing in the brain involves multiple neurons and
neural pathways distributed across different regions. To perform
a particular task, there is a need to combine individual neuronal
signals into a cognitive process. In this study, we did not examine
the neural activity elicited by a cognitive task, however, the con-
nection between neurons during resting state would implicate the
potential difference between groups on cognitive function.

The NeuCube framework allows for the creation of different
computational models for STBD based on the following informa-
tion processing principles as listed in Kasabov (2014):

• The model has a 3D spatial structure that maps approximately
the spatially located areas of the brain where STBD is collected.

• The same information paradigm—spiking information process-
ing that ultimately generates STBD at a low level of brain in-
formation processing, is used in the model to represent and to
process this STBD.
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• Brain-like learning rules are used in the model to learn STBD,
mapped into designated spatial areas of the model.

• A model is evolving in terms of new STBD patterns being
learned, recognised and added incrementally, which is also a
principle of brain cognitive development.

• A model always retains a spatio-temporal memory that can
be mined and interpreted for a better understanding of the
cognitive processes.

• A visualisation of the model evolution during learning can be
used as a bio-feedback.

All the above principlesmake theNeuCube a suitable SNNarchitec-
ture to learn and reveal complex spatio-temporal patterns, which
justify its choice for the development of the new methodology to
model EEG data and to extract knowledge from it in this paper.

Specific formulas used in the current version of NeuCube for the
experiments in this paper are given in the Appendix.

3. Connectivity analysis of a NeuCube spiking neural network
model trained on EEG STBD

3.1. Modelling EEG data in the NeuCube

The EEG data modelling procedure used here is shown
graphically on Fig. 2 and it consists of the following procedures:

1. The time series data obtained from the EEG device is first or-
dered as a sequence of real-value data vectors. One of the main
advantages of the NeuCube is that there is no need of additional
pre-processing of the EEG data, such as normalisation, scaling,
and smoothing. The model can also deal with noisy data, which
is significantly time-saving.

2. In order to obtain an input compatible with the SNNc, each
real-value input time series (e.g. the measured EEG data in one
electrode) is transformed into a spike train (i.e. sequence of
binary events) using a spike encodingmethod, andmore specif-
ically, the Threshold-Based representation method (TBR). This
algorithmwell suits EEG STBD, since it identifies just differences
in consecutive values, as demonstrated and implemented in the
artificial silicon retina chip (Delbruck, 2007; Dhoble, Nuntalid,
Indiveri, & Kasabov, 2012) and the artificial cochlea chip (Chan,
Liu, & Van Schaik, 2007).

3. The input spike sequences are presented to an evolving brain-
mapped SNNc that reflects the number of input variables
(e.g. the 26 EEG channels in the case study from Section 4), the
functional brain areas associated with them and the size of the
data available.

4. The SNNc is implemented using leaky integrate and fire (LIF)
model (Gerstner, 2001) neurons and is initialised as ‘‘small-
world’’ (SW) connected networks. The SW connectivity princi-
ple has been chosen here as it is based on the biological process
that makes neighbouring neural cells to be highly and strongly
interconnected to each other, therefore, the initialisation is fun-
damental for the learning process of this model.

5. The SNNc is trained in an unsupervised mode using spike tim-
ing dependent plasticity (STDP) (Song, Miller, & Abbott, 2000)
learning rule. This algorithm allows spiking neurons to learn
consecutive temporal associations from the EEG data within-
and across-EEG channels. The neurons becomeable to formnew
connections in the architecture, which can then be analysed
and interpreted. This makes the NeuCube architecture useful
for learning spatio-temporal patterns from EEG data, forming
associative type of memory that can be further explored.
Data
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Fig. 2. A graphical representation of theNeuCube-basedmethodology used for EEG
data modelling and connectivity analysis.

6. The output classifier is trained in a supervisedmode (i.e.method
based on classification of data with a known pattern) using
dynamic evolving SNN (deSNN) (Kasabov, Dhoble, Nuntalid, &
Indiveri, 2013) algorithm to classify the EEG STBD into the re-
spective classes. This classification method combines the rank-
order (RO) learning rule (Thorpe &Gautrais, 1998) and the STDP
(Song et al., 2000) temporal learning for each output neuron
to learn a spatio-temporal pattern using only one pass of data
propagation.

7. The classification results are evaluated using repeated random
sub-sampling validation (RRSV) or leave one out cross valida-
tion (LOOCV).

8. Steps (4)–(7) are repeated using different parameter values in
order to optimise the classification output. The best performing
model can then be recorded for further uses.

9. The trained SNNc is visualised, its connectivity and the dynamic
spiking activity are analysed for a better understanding of the
data and the brain processes that generated it including changes
of brain functionality across different conditions and groups of
subjects.

It is important to highlight that the NeuCube model is a
stochastic model (i.e. initial connection between the neurons
of the network are randomly generated) and therefore the
output classification accuracy depends on the parameters settings.
Based on previous studies that we have conducted, we have
identified some critical variables requiring careful optimisation.
These parameters are:

• The TBR which is applied to the input EEG data streams
transforming them into spike trains. The rates of the spikes
depend on the TBR threshold, which can be determined either
as a particular value for every input variable or as a global
threshold to be applied to all of them (Eq. (A.1) described in
Appendix A).

• Connectivity between neurons of the network. Depending on
the SW connectivity rule, each neuron of the SNNc is initially
connected to its neighbouring neurons within a distance that
depends of a SW connectivity parameter (Eq. (A.2) described in
Appendix A).

• The threshold of firing, the refractory time and the potential
leak rate of the LIF neurons (Eqs. (A.3)–(A.4) described in
Appendix A). When a LIF neuron of the SNNc receives a spike,
its post synaptic potential (PSP) increases gradually with every
input spike according to the time of the spike arrival, until it
reaches an established threshold of firing. An output spike is
then emitted and the membrane potential is reset to an initial
state (refractory time). Between input spikes, the membrane
potential also leaks. In our experiments, the three parameters
were set to 0.5, 6 ms and 0.002 respectively after optimisation.
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Fig. 3a. Example of a step-wise connectivity evolution in a SNNc activity during STDP learning on EEG data recorded from all subjects who belonged to all three groups
– H, O and M – during an EO state (for interpretation—see next section). The figure shows the (x, y) projection only of the 3D SNNc. The six pictures visualise the cube
connectivity during STDP learning from the initial randomly generated connections (1) until unsupervised training is finished—(6). Blue lines are positive connections
(excitatory synapses) generated, while red lines are the evolved negative connections (inhibitory synapses). In yellow are the input neurons with their labels corresponding
to the 26 EEG channels. A video of the step-wise connectivity evolution is included with the supplementary data available online (see Appendix C).
• The STDP learning rate parameter. According to the STDP
learning rule (see Song et al., 2000 for more details), the firing
activity of two connected neurons causes their connection
weight to increase or decrease depending on the order of firing,
so that the connection weight will reflect on the temporal
relationship between the activities of these neurons (Eq. (A.5)
described in Appendix A).

• The number of times that the NeuCube is trained in an
unsupervised mode. This is set by default as 1 which is suitable
for incremental, on-line adaptive learning.

• The parameters mod and drift of the deSNN classifier (Kasabov
et al., 2013) (Eqs. (A.6)–(A.7) described in Appendix A). The
values of these parameters depend on the data and problem in
hand and need to be optimised for an optimal performance.

Optimisation of these parameters can be achieved via grid
searchmethod, genetic algorithm, or quantum-inspired evolution-
ary algorithm (Platel, Schliebs, & Kasabov, 2009). Taking into ac-
count that every parameter tuned also involves a considerable
amount of processing time, we need to select the proper number
of variables to be optimised. In this study, a grid search method
was applied, mainly to find the best value associated to the TBR
parameter, as this threshold is applied to the entire signal gradi-
ent according to the time and therefore the rate of generated spike
trains depends on it. Moreover, since the NeuCube is a stochastic
model, altering this value means also modifying the initial model
configuration each time.

Default parameterswere not set up prior to the experiment, but
they were chosen as considered the ones leading to the optimal
results and in consistence with information reported in previous
neuroscience reports. For instance, the refractory time suggested
by our model was 6 ms. In general, the refractory time interval for
neural spiking reported by previous study is about 5 ms, however,
it might require more time in response to certain events (Berry &
Meister, 1998).

3.2. Connectivity analysis of a NeuCube model trained on EEG STBD
for the study of brain functional changes

A NeuCube model can accommodate data in one pass learning
to dynamically evolve an output classifier. A new output neuron
can be generated in the output classifier for every new input
pattern learned in the SNNc and trained in one pass learning mode
(Kasabov et al., 2013). This ability of the NeuCube models enables
the brain processes to be traced over time and to extract new
information and knowledge about them. First, a NeuCube model
is trained until satisfactory performance (e.g. classification) of the
EEG data. Then, the SNNc connectivity structure is analysed for a
better understanding of the dynamics of the data across different
subjects and different groups of subjects. In fact, the connectivity
of the SNNc represents dynamic spatio-temporal associations of
the brain activities measured by the input variables (the EEG
channels). Through the analysis of NeuCube evolved connectivity,
the following research questions can be addressed and studied in
general:
(a) How the connectivity evolves in a SNNc trained with data of

all subjects from groups (Fig. 3a) versus training a model on
data of an individual subject or a group of subjects performing
a task,when compared to another individual or another group?
Fig. 3a represents an example of a step-wise SNNc connectivity
evolution during unsupervised training on EEG data recorded
from all subjects who belonged to all three groups – healthy
(H), opiate addicted (O) and people using methadone (M) as
treatment – during an eyes open (EO) resting state.

(b) What is the functional change of brain activitieswhen a subject
with history of drug use is compared with a control (healthy)
subject? Fig. 3b (left) illustrates the different SNNc connectivity
generated after a SNNcmodelwhichwas trainedwith EEG data
recorded from all subjects who belonged to theM group versus
the same initial SNNc trained with EEG data recorded from all
subjects who belonged to the H group during an EO resting
state.

(c) What are the differences in the activities of brain regions
between subjects undertaking treatment for drug addictions
and thosewithout treatment. In our case study, these are opiate
addicts versus those undertaking treatment for addiction.
Fig. 3b (right) shows different SNNc connectivity resulted after
a SNNc was trained with EEG data recorded from all subjects
whobelonged to theMgroup versus the connectivity generated
with data recorded from all subjects of O group during the EO
state.
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Fig. 3b. Examples of the SNNc connectivity after unsupervised training is finished. A SNNc was trained using EEG data recorded from all subjects who belonged to the M
group and from all subjects who belonged to either the control H group (left) or the O group (right) during an EO state (for interpretation—see next section). The top figures
show the (x, y) projection only of the 3D SNNc, while the bottom figures show the 3D SNNc together with the corresponding 8 brain functional areas (grey, frontal lobe;
pink, temporal lobe; light-blue, parietal lobe; red, occipital lobe; light-yellow, posterior lobe; orange, sub-lobar region; light-green, limbic lobe; blue, anterior lobe). Blue
lines represent positive connections (excitatory synapses), while red lines represent the evolved negative connections (inhibitory synapses). In yellow are the input neurons
with their labels corresponding to the 26 EEG channels.
Fig. 3c. Examples of the SNNc after unsupervised training is finished. The SNNc was trained using EEG data recorded during the EO state, from 12 subjects who belonged
to the control group (H), from patients taking below 60 mg of methadone (LD) and from M patients taking 60 mg or above of methadone (HD) (for interpretation—see next
section). The top figures show the (x, y) projection only of the 3D SNNc, while the bottom figures show the 3D SNNc together with the corresponding 8 brain functional
areas (grey, frontal lobe; pink, temporal lobe; light-blue, parietal lobe; red, occipital lobe; light-yellow, posterior lobe; orange, sub-lobar region; light-green, limbic lobe;
blue, anterior lobe). Blue lines represent positive connections (excitatory synapses), while red lines represent negative connections (inhibitory synapses). In yellow are the
input neurons with their labels corresponding to the 26 EEG channels.
(d) What is the functional change of brain activities when a
different dose of drug is administered? Fig. 3c represents
the connectivity of a SNNc after training it with EEG data
recorded from patients who have been treated with a
different dose of methadone before completing the same
trial.
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These research questions are illustrated here on EEG data
related to the case study problem and explained in more detail
in the following section. The above research questions are generic
and can be studied in relation to other brain disorders and patients
response to respective treatments.

4. Connectivity analysis of NeuCube models trained on EEG
data for the understanding of functional brain changes related
to opiate substitution treatment (methadone) and predicting
patients response to treatment

4.1. Case study problem definition

Methadone has been used as a pharmacological substitute
for the treatment of opiate dependence since the mid-1960s.
As a substitute for illicitly used opiates, the purpose of MMT
is not to achieve a drug-free state but to reduce the harm
associated with illicit drug use and to improve life quality and
psychosocial functioning for the individual (Lobmaier, Gossop,
Waal, & Bramness, 2010). The benefits of MMT have been
demonstrated bymany studies. For example,MMThas been shown
to effectively reduce the use of other drugs, injection-related risky
behaviour, criminal activity, mortality, and the transmission of
HIV and other blood-borne pathogens, such as hepatitis-B (Ball,
Lange, Myers, & Friedman, 1988; Bell, Hall, & Byth, 1992; Gibson,
Flynn, & McCarthy, 1999; Marsch, 1998). Consequently, MMT is
now the most common treatment for opiate dependence in many
countries, including the United States of America, Australia, the
United Kingdom and New Zealand (Adamson et al., 2012; Joseph,
Stancliff, & Langrod, 1999).

Despite methadone’s effective clinical use, it remains uncertain
whether MMT has negative effects on cognitive function, given
that methadone has clinically similar actions and analgesic ef-
fects to morphine (Dole, 1988), for a review (Wang, Wouldes, &
Russell, 2013). Methadone primarily binds to receptors that are
found throughout the brain and are densely concentrated in the
periaqueductal gray, amygdale, hippocampus, thalamus and stria-
tum (Martin, Hurley, & Taber, 2007; McBride, Chernet, McKinzie,
Lumeng, & Li, 1998). In humans, these areas are critical for pain
perception, visual and sensory processing, memory and attention.
Therefore, there is particular concern whether long-term use of a
sedative opiate antagonist, such as methadone, has effects on cog-
nitive function. To address this question, a more detailed analysis
of EEG data collected from different groups of patients and healthy
subjects is performed in this study, using the NeuCube modelling
framework and its connectivity and activity analysis.

4.2. EEG data collection

Prior to commencing this research, ethical approval was
granted by the Northern Regional X Ethics Committee of New
Zealand and informed consent was given by all participants. All
EEG recordings were conducted between 12 pm and 4 pm, apart
from three participants (one was from the opiate user group and
two were from the healthy control group) who completed EEG
recording at 6 pm, due to their availability. All EEG recordingswere
conducted on a one-to-one basis in a sound and light attenuated
laboratory. A QuickCap (Neuroscan 4.3) 40 sensor shielded cap
was used to acquire EEG data from the cephalic sites. The 26
cephalic sites included Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, Cpz, C3,
C4, CP3, CP4, FC3, FCz, FC4, T3, T4, T5, T6, Pz, P3, P4, O1, O2,
and Oz electrode sites (10–20 International System). A further 14
channels recorded other data, e.g. VPVA and VPVB vertical electro-
oculogram (EOG), HPHL andHNHR horizontal EOG, heart rate (HR),
muscle movements and events, etc. HR is considered as one of the
most sensitive measures of withdrawal, which has been shown to
be positively correlated with severity of opiate withdrawal (Zilm
& Sellers, 1978). EEG was recorded relative to the average of A1
and A2 (mastoid) electrode sites. Horizontal eye movements were
recordedwith electrodes placed 1.5 cm lateral to the outer canthus
of each eye. Vertical eyemovementswere recordedwith electrodes
placed 3 mm above the middle of the left eyebrow and 1.5 cm
below the middle of the left bottom eye-lid. Skin resistance was
kept at <5 k�. Scalp and EOG potentials were amplified and
digitised continuously by a system (NuAmps, SCAN 4.3) having a
frequency response from DC to 100 Hz (above which attenuating
by 40 dB per decade), and a sampling rate of 500 Hz. Electrical
impedance was always <5 k�.

Resting EEG data was collected with patients undertakingMMT
(M group), people currently using illicit opiates (O group) and
healthy volunteers (Hgroup) in two states: eyes open (EO) and eyes
closed (EC). In the EO condition, participants were asked to fixate
on a red dot in the centre of the computer screen for two minutes.
In the EC condition, participants were asked to sit still with their
eyes closed for two minutes.

TheM group consisted of 18males and 14 females, with amean
age of 39.36 (SD = 5.14) years. Their mean duration of education
was 12.06 (SD = 2.00) years; mean duration of opiate use was
10.03 (SD = 6.08) years; mean duration of MMT 7.29 (SD = 6.39)
years; and current methadone dose 70.86 (SD = 40.61; range
8–180) mg/day.

All the participants recruited were between 18 and 45 years of
age, had basic English literacy skills and were able to provide writ-
ten informed consent. Inclusion criteria for the M group was un-
dertaking methadone for a minimum of six months and stabilised
on their current dose for at least 2 weeks. Participants in the opiate
user groupwere required tomeet theDSM-IV criteria for opiate de-
pendence and were not allowed to be currently undertaking MMT.
The inclusion criteria for healthy control subjects was no current
or lifetime history of drug or alcohol abuse other than nicotine de-
pendence.

4.3. A NeuCube model to analyse EEG data from H, O and M groups

For our study,we resized the rawEEGdata to 26 ordered vectors
of real value data, as 26 were the EEG channels used during the
EEG recording. Data from 20 healthy subjects, 15 subjects addicted
to opiates and 22 subjects under MMT was available for the EC
state. On the other hand, data from 20 healthy subjects, 17 subjects
addicted to opiates and 25 subjects under MMT was available
for the EO state. Every EEG STBD sample fed into the NeuCube
was labelled to represent one of the subjects. We averaged every
subjects neural activity per channel every 2048 data points, which
means every 4 s of recordings. We considered this information
enough for our analysis. We obtained a total of 37 and 33 data
points per channel and per sample for the two resting state EC and
EO respectively (as this was the lowest number of data points after
averaging the signal).

For the experiments, we generated a SNNc of 1471 brain
mapped spiking neurons. We used the 3D Talairach Atlas (Koessler
et al., 2009; Lancaster et al., 2000; Talairach & Tournoux, 1988) to
map 1471 brain areas of 1 cm3 each into single spiking neurons of
the SNNc and then entered the data from the EEG channels into the
corresponding input neurons of the SNNc (see Kasabov, 2014).

Results can be affected by subjects’ poly-drug use, a common
complication in a population with drug dependence and it is
unlikely that patients or opiate users have no history of use of
other types of drugs. The question is, while this is true, what more
can we learn from the SNNc about the brain functional differences
(changes) between these groups?

For a better understanding of the data and to address the
research questions raised in the previous section, different analysis
of the connectivity of the SNNc have been performed and reported
below.
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Table 1
Parameters settings of the SNNc models used for training the data of all groups
during EC and EO state.

SNNc parameters settings

EC

Threshold of firing: 0.5 Potential leak rate: 0.02
STDP: 0.1 TBR: 7.94
Long Dist. possibility: 0.01 Weight threshold 0.15

EO

Threshold of firing: 0.4 Potential leak rate: 0.02
STDP: 0.1 TBR: 52.62
Long Dist. possibility: 0.01 Weight threshold 0.07

Table 2
Parameters settings of the NeuCube models used for connectivity and spiking
activity analysis for class M versus class H and class O subjects (EO states only).

Network analysis parameters settings

Threshold of firing: 0.4 Potential leak rate: 0.02
STDP rate: 0.1 Long Dist. possibility: 0.01
Connection distance: 0.15 Times to train: 1
TBR threshold: 52.62 Weight threshold 0.07
Max. spike gradient Spreading level
10 inputs 2

4.4. Analysis of spiking neuronal activity and connectivity generated
in EC versus EO resting state across the studied subject groups

To analyse and visualise the SNNc activity generated by the
resting EEG data recorded when subjects are with EC or EO, Fig. 4a
shows the initial connections and the connectivity evolved after
STDP learning rule was applied to either H, O or M group. The
cube connectivity can be analysed and interpreted for a better
understanding of the EEG data to identify differences between
brain states during the execution of either the EC or the EO
state. Table 1 reports the parameters settings used to obtain
these results. According to Fig. 4a, the neural activity generated
during the two scenarios was different. Both states manifested
high activity around the input neurons – which were allocated
so that they spatially mapped the brain-location of the 26 EEG
electrodes – and along the central area (Fz, Cz, Pz, etc.). The neural
activity generated during the EO was significantly different from
the EC, having a greater connectivity on the left frontal, central
and occipital–parietal regions. Thiswas also confirmed by the step-
wise analysis of the SNNc (shown in Fig. 3a). We can observe that
the initial connections in the cube are firstly generated around the
input neurons represented by the 26 EEG channels. Then, as the
unsupervised learning precede, more connections evolved in the
frontal lobe of the left hemisphere (T3, C3, FC3, F2 and F3), the
central areas (FCz, Cz) and the occipital–parietal regions (O1, O2,
Oz, Pz, P3, P4). As a result of the activity observed during the EO
state, we decided to focus our subsequent analysis on the data
collected during this state only.

4.5. Analysis of NeuCube connectivity with the aim of discovering
functional changes of brain activities in subjects under treatment (M)
compared with control subjects (H)

Fig. 4b illustrates the neural activity obtained after the SNNc
was trainedwith EEG data corresponding to theM and the H group
separately (EO only). The parameters settings used to obtain this
results were set in accordance with the ones reported in Table 1.

Analysing the figure, we can observe that there are differences
in the SNNc connectivity between the M and H groups, indicating
alternations of neural activity induced by history of opiate
exposure.
Table 3
Classification accuracy percentage obtained using a NeuCube classification model
versus traditional machine learning methods (MLR, SVM, MLP, and ECM).

Samples/classes-EC MLR SVM MLP ECM NC

15 samples Opiate (% accuracy) 53 40 60 40 67
22 samples Methadone (% accuracy) 50 64 59 73 100
Overall accuracy (%) 51 54 59 59 86

Samples/classes-EO MLR SVM MLP ECM NC

17 samples Opiate (% accuracy) 59 29 53 53 75
25 samples Methadone (% accuracy) 48 68 56 68 82
Overall accuracy 52 52 55 62 79

The NeuCube network analysis per class is illustrated in Fig. 4c.
Table 2 reports the parameters settings used for the network
analysis. The networks connectivity identifies higher spiking
activity in the 10 EEG channels allocated in the visual cortex. Both
spike spreading level and maximum spike gradient are reported.
As shown in Fig. 4c, the pathway of spiking activity of the M group
is similar to the H group, despite their greater level of intensity.

4.6. Analysis of NeuCube connectivity with the aim of discovering
functional changes of brain activities in subjects under treatment (M)
compared with subjects without treatment (O)

Fig. 4d shows the neural activity obtained after the SNNc was
trained with the data corresponding to the M and the O group
separately (EO only). The parameters were set in accordance with
the ones reported in Table 1.

As shown in Fig. 4d the neural activity of the M group was
different from the O group, in particular, greater excitation in
the parietal and occipital regions was observed in the M group.
According to these results, we focused on these regions analysing
the maximum spike gradient of the input channels and their
information spreading level (Fig. 4e). The parameter settings used
are reported in Table 2. Consistentwith the previous studies (Wang
et al., 2014, 2012, 2015), our findings implicate that there are
different cognitive-related effects between methadone and illicit
opiates. To further test this hypothesis, we have classified the O
group versus M group (Table 3) for both resting states (EC and
EO). The high classification accuracy obtained via the NeuCube
methodology proved the model ability to manifest this difference
and also that the two classes were in fact two distinguishable
groups. We compared the results obtained using the proposed
NeuCube model with traditional machine learning methods, such
asmultiple linear regression (MLR), support vectormachine (SVM),
multilayer perceptron (MLP) and evolving clustering method for
classification (ECM). We used the NeuCom software environment
for the experiments (http://www.theneucom.com). Tables B.1 and
B.2 in Appendix B report the parameters settings used to obtain
these results for either EC and EO state.

When training a NeuCube model on the EEG data, we used 26
input features/variables (the EEG channels) and entered the times
series of each input variable to train the SNNc. In contrast, the other
methods could not take time series data without transforming it
into a static and fixed length data vectors, used to train amodel one
after another. The results in Table 3 were obtained using LOOCV
method when the best top 20 features were selected for every
traditionalmachine learningmethod tested (MLR, SVM,MLP, ECM)
and for every sample in the LOOCV procedure. Selecting features
in time series processing is not recommended though as once a
model is trained these features will be fixed and any change in
the dynamics of the EEG data in future experiments would not
be tolerated for incremental learning and model adaptation. In
this respect NeuCube offers a certain advantages from the point
of view of adaptive and incremental learning of STBD. But the
most important difference between a NeuCube model and the

http://www.theneucom.com
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Fig. 4a. NeuCube connectivity before (left) and after training (right) the SNNc with the EEG data recorded from all subjects who belonged to all three groups – H, O and M –
during either the EC (top) or the EO state (bottom). For both resting states, the top figures show the (x, y) projection only of the 3D SNNc, while the bottom figures show the
3D SNNc together with the corresponding 8 brain functional areas (grey, frontal lobe; pink, temporal lobe; light-blue, parietal lobe; red, occipital lobe; light-yellow, posterior
lobe; orange, sub-lobar region; light-green, limbic lobe; blue, anterior lobe). In yellow are the input neurons with their labels corresponding to the 26 EEG channels. Blue
lines are positive connections (excitatory synapse), while red lines are negative connections (inhibitory synapse). The brighter the colour of a neuron, the stronger its activity
with a neighbour neuron. Thickness of the lines also identifies the neurons enhanced connectivity.
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Fig. 4b. NeuCube connectivity obtained after training the SNNc with the EEG data recorded during the EO state from all subjects who belonged to either the M group or
the control H group. The top figures show the (x, y) projection only of the 3D SNNc, while the bottom figures show the 3D SNNc together with the corresponding 8 brain
functional areas (grey, frontal lobe; pink, temporal lobe; light-blue, parietal lobe; red, occipital lobe; light-yellow, posterior lobe; orange, sub-lobar region; light-green, limbic
lobe; blue, anterior lobe). Blue lines are positive connections (excitatory synapses), while red lines are negative connections (inhibitory synapses). The brighter the colour
of a neuron, the stronger its activity with a neighbouring neurons. Thickness of the lines also identifies the neurons enhanced connectivity. In yellow are the input neurons
with their labels corresponding to the 26 EEG channels. The composite image (top right-hand side figure) identify differences between connectivity of two groups of subjects
overlaid in different colour bands. Grey regions in the composite image show where the two models have the same intensities. Magenta (for M group) and green regions
(for H group) show where the intensities are different.
traditional machine learningmethods is that a NeuCubemodel has
a brainlike structure and uses brain-like learning methods to learn
STBD, so that the model can be interpreted for new discoveries
related to the source of the EEG data the brain. In contrast,
the traditional machine learning methods, being successfully
applied on many problems so far, cannot be of much use for
STBD modelling, analysis, model interpretation and knowledge
discovery.

4.7. Connectivity analysis of theNeuCubemodel aiming at discovering
functional changes in brain activities related to different doses of the
drug administered

Since every EEG sample was an identifiably-labelled subject
and there are potential dose-related effects suggested by the
literature, we further analysed the methadone dose-related effect
on spiking activity in our M group through the analysis of
the connectivity of the NeuCube trained model with these EEG
data. Data corresponding to the M group were divided into two
subgroups, low dose (LD) and high dose (HD) of methadone,
according to their daily dose of drug administered (high − dose ≤

60 mg < low − dose). For the EO task, we obtained 14 samples
for the low dose class and 11 samples for the high dose class. We
also compared these two groups with 13 subjects of the healthy
Table 4
Parameters settings of the SNNc models used for training the data who belonged
to one of three groups – H, LD, HD – during EO state. The parameter optimised was
TBR while the other parameters were set as default value.

SNNc analysis parameters settings

Methadone dose EO

Thr. of firing: 0.5 Pot. leak rate: 0.002
STDP: 0.5 TBR: 32.44
Long Dist. possibility: 0.01 Weight Thr.: 0.07

control groups. Thirteen subjects were randomly chosen from the
healthy control group tominimise the possible confounding effects
associated with sample size.

In order to study these effects, we analysed the SNNc activity
and connectivity obtained after training the SNNc with the EEG
data corresponding to the H, LD and HD group separately. Fig. 4f
reports the SNNc activity generated per class after setting the
parameters according to Table 4.

As shown in Fig. 4f, there are similarities and differences
between groups (H versus HD or H versus LD). It appears that
there is a greater reduction of connectivity in the HD group when
compared to either the H or the LD group. Our findings suggest that
the dose administered may play a role in treatment response and
it needs to be addressed in treatment planning.
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Fig. 4c. NeuCube connectivity and spiking activity analysis per class – M group (a1) and H group (a2) – obtained for the EO state. The figures show the 3D SNNc together
with the corresponding 8 brain functional areas (grey, frontal lobe; pink, temporal lobe; light-blue, parietal lobe; red, occipital lobe; light-yellow, posterior lobe; orange,
sub-lobar region; light-green, limbic lobe; blue, anterior lobe), the spike spreading level (left) and the maximum spike gradient (right) of the 10 EEG channels allocated in
the visual cortex (CP3, CPz, CP4, T5, T6, P3, Pz, P4, O1, Oz, O2) highlighted by different colours. Thickness of the lines identify a stronger activity between neurons.
To further study the network connectivity, we focused on
the occipital–parietal regions to extract new knowledge from
the trained SNNc (for visualisation and analysis, as opposed to
training purposes). Fig. 4g illustrates the network’s connectivity
by means of its spike spreading level and its maximum spike
gradient emitted by class over the 10 EEG channels allocated in the
particular brain area of interest.

The parameters settings used to plot these figures are the same
as per Table 2. The results consistently support our argument
showing a greater difference between the HD and the H groups
compared to the difference between LD and the H groups.

5. Discussions, conclusion and further directions

The NeuCube constitutes a brain-inspired three-dimensional
structure of SNN for on-line learning and recognition of spatio-
temporal brain data (STBD) (Kasabov, 2014). It takes into account
the spatial coordinates of the sources of the STDB using a standard
brain-template, offering a better understanding of the information
and the phenomena of study. The goal of the proposed study was
to develop a method for the analysis of the connectivity and the
dynamic activity of a NeuCube model trained on EEG STBD in
order to understand changes in brain activities across subjects
and groups. Traditional data mining/machine learning algorithms
are not able to properly deal with this kind of data. Our results
demonstrated that a NeuCube model not only achieves a better
sensitivity and specificity in classifying EEG data compared to
traditional AI methods, but it is also interpretable for a better
understanding of the EEG data and the processes that generated
it. This makes the NeuCube modelling approach widely applicable
for neuroscience research across data and problems. In particular,
the paper demonstrated:
1. TheNeuCube ability to classify EEGdata collected fromdifferent

groups of patients and healthy subjects.
2. Connectivity analysis of a SNNc after training with EEG STBD

from different groups of subjects (different classes) to extract
new knowledge and to study the brain regions involved.

3. Connectivity analysis aiming at the understanding the correla-
tion between a dose of treatment and results of treatment.

4. Connectivity analysis aiming at the understanding the impact of
different dose of treatment on brain activities and at predicting
response to treatment.

A further development and research are planned including:
• Further development of the methods of the NeuCube frame-

work, including: analysis of the ability of a NeuCube model
in terms of how ‘‘deep in time’’ spatio-temporal patterns,
‘‘buried’’ in STBD, can be efficiently learned; howdifferent ‘‘time
lags’’ can be represented in the NeuCube; spatio-temporal rule
extraction from a trained NeuCube model; analysis and in-
terpretation of the output connectivity along with the SNNc
connectivity in relation to a better understanding of brain dif-
ferences across groups of subjects.
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Fig. 4d. NeuCube connectivity obtained after training the SNNc with the EEG data recorded during the EO state from all subjects who belonged to either the M group or
the O group. The top figures show the (x, y) projection only of the 3D SNNc, while the bottom figures show the 3D SNNc together with the corresponding 8 brain functional
areas (grey, frontal lobe; pink, temporal lobe; light-blue, parietal lobe; red, occipital lobe; light-yellow, posterior lobe; orange, sub-lobar region; light-green, limbic lobe;
blue, anterior lobe). Blue lines are positive connections (excitatory synapses), while red lines are negative connections (inhibitory synapses). The brighter the colour of a
neuron, the stronger its activity with a neighbouring neurons. Thickness of the lines also identifies the neurons enhanced connectivity. In yellow are the input neurons with
their labels corresponding to the 26 EEG channels. The composite image (top right-hand side figure) identify differences between connectivity of two groups of subjects
overlaid in different colour bands. Grey regions in the composite image show where the two models have the same intensities. Magenta (for M group) and green regions
(for O group) show where the intensities are different.
• Further application for the study of EEG STBD in relation to
understanding brain functionality, e.g. longitudinal study on
patients undertakingmethadone treatment in terms of defining
any cognitive fluctuation across time; development of a gene
regulatory network (GRN) optimisation module as part of the
SNNc to improve the results and to studyhowcertain genesmay
influence treatment; analysis of EEG data collected from people
taking a single oral dose of ‘‘party pill’’ using NeuCube; analysis
of EEG data collected from people with depression; analysis of
brain data collected from people with schizophrenia.
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Appendix A. Some equations detailing the functionality of
NeuCube (Kasabov, 2014)

The following equations describe the implementation of the
main algorithms of the NeuCube-based model used in this study.
The spike encoding method used in this study is the TBR encoding
algorithm. A self-adaptive bi-directional threshold (TBRthr ), which
is applied to the EEG signal x(t) as follows:

TBRthr = µ + s σ (A.1)

where µ is the mean of the differential signal with respect to time,
x(t) = {xt2 − xt1 , xt3 − xt2 , . . . , xtn − xtn−1}, calculated by using all
samples; σ is its standard deviation; s is a scale parameter of σ .

The TBRthr is used to generate two types of spike sequences, a
positive spike train corresponding to the signal increment, which
is mapped to a specific input neuron in the SNNc; a negative
spike train, corresponding to the signal decline, which is mapped
into another input neuron of the SNNc that is placed in the same
position as the positive one. Both kinds of input neurons are further
connected with other neurons through connectivity initialisation
and STDP learning.

The small world (SW) connectivity rule is applied to the
NeuCube initialisation. In the SNNc, let i and j be a pre-
synaptic and post-synaptic neuron respectively. Then, the distance

http://www.kedri.info
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Fig. 4e. NeuCube network connectivity and spiking activity analysis per class – M group (a1) and O group (a2) – obtained for the EO state. The figures show the 3D SNNc
together with the corresponding 8 brain functional areas (grey, frontal lobe; pink, temporal lobe; light-blue, parietal lobe; red, occipital lobe; light-yellow, posterior lobe;
orange, sub-lobar region; light-green, limbic lobe; blue, anterior lobe), the spike spreading level (left) and themaximumspike gradient (right) of the 10 EEG channels allocated
in the visual cortex (CP3, CPz, CP4, T5, T6, P3, Pz, P4, O1, Oz, O2) highlighted by different colours. Thickness of the lines identify a stronger activity between neurons.
between these two neurons is calculated as the Euclidean distance
d(i, j), based on their (x, y, z) coordinates. Initial connections
are randomly generated, however, each neuron of the cube
can connect only to its neighbouring neurons within a distance
threshold Dthr , which is a proportion of the maximum Euclidean
distance between two neurons. This is compute in Eq. (A.2):

Dthr = max(d(i, j)) p (A.2)

where p is the SW connectivity parameter. The initial connections
weights are calculated as the product of a random number [−1, 1]
and the multiplicative inverse of d(i, j). 20% of these weights are
randomly selected to be negative, which represents the inhibitory
connections weights, while 80% of them are positive, which
represents the excitatory connections weights. To emphasise the
significance of the input neurons in the SNNc, their connection
weights are doubled with respect to the other neurons.

The neurons of the cube aremodelled as LIF neurons. The action
potential vj of a neuron j increases with every input spike Si from
neuron i according to its connection (ci,j) and depending on the
frequency/time of the incoming spikes. When the vj reaches the
firing threshold Θ , then an output spike Sj is emitted and the
neuron potential is reset to zero.

Si =


1 vj ≥ Θ

0 otherwise. (A.3)

The membrane potential will keep to zero for the length of its
refractory time (r). Between spikes, the membrane potential leaks
according to the potential leak rate (l).

vj(t) =


vj(t − 1) + wj r = 0
vj(t − 1) − l otherwise. (A.4)

The STDP learning rule is applied in an unsupervised mode of
learning for the SNNc to capture spatio-temporal relationships
from the encoded data. The STDP follows the Hebbian learning
rule, which describes the connection established between two
neurons as stronger as their activation persists and repeats. In
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Fig. 4f. The SNNc connectivity after training it with EEG data corresponding to the EO task for the three classes—H, LD and HD of methadone. The top figures show the (x, y)
projection only of the 3D SNNc, while the middle figures show the 3D SNNc together with the corresponding 8 brain functional areas (grey, frontal lobe; pink, temporal
lobe; light-blue, parietal lobe; red, occipital lobe; light-yellow, posterior lobe; orange, sub-lobar region; light-green, limbic lobe; blue, anterior lobe). Blue lines are positive
connections (excitatory synapses), while red lines are negative connections (inhibitory synapses). The brighter the colour of a neuron, the stronger its activity with a
neighbouring neurons. Thickness of the lines also identifies the neurons enhanced connectivity. In yellow are the input neurons with their labels corresponding to the
26 EEG channels. The composite images (lowest figures) identify differences between connectivity of two groups of subjects overlaid in different colour bands. Grey regions
in the composite image show where the two models have the same intensities. Magenta (for H group) and green regions (for either LD or HD group) show where the
intensities are different.
this study, this algorithm has not been implemented as a standard
exponential model, but described as follows:

wj(t) =


wj(t − 1) ± α/1t tj ≠ ti
wj(t − 1) tj = ti.

(A.5)

Depending on the order of the first incoming spike, if a neuron
i fires before a neuron j then, its weight wj increase otherwise
it decreases, with respect to the STDP learning rate (α). This
parameter linearly decays with respect to time variation: 1t =
tj − ti + 1, the time elapsed between a spike was received from
neuron i and a spike was emitted by the neuron j.

The deSNN classification algorithm (Kasabov et al., 2013) is
applied here in a supervised mode of learning. According to this
classifier, every training sample is associated to an output neuron,
which is connected to each and every other neuron of the SNNc.
The connection weights of these output neurons are all set to
zero initially. Then, according to the rank-order (RO) learning
rule, a connection weight between neuron i to neuron j, (wi,j), is
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Fig. 4g. NeuCube model connectivity and spiking activity analysis per class – H, LD and HD groups – obtained for the EO task. The figures show the 3D SNNc together with
the corresponding 8 brain functional areas (grey, frontal lobe; pink, temporal lobe; light-blue, parietal lobe; red, occipital lobe; light-yellow, posterior lobe; orange, sub-lobar
region; light-green, limbic lobe; blue, anterior lobe), the spike spreading level (left) and the maximum spike gradient (right) of the 10 EEG channels allocated in the visual
cortex (CP3, CPz, CP4, T5, T6, P3, Pz, P4, O1, Oz, O2) highlighted by different colours. Thickness of the lines identify a stronger activity between neurons.
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Table B.1
Parameters settings used to classify O group versusMgroup (EC state) in a NeuCube
classifier using RSSV method and in traditional machine learning classification
methods (MLR, SVM, MLP and ECM). The parameters that influence traditional
machine learning models are: class performance variance (CPV); the use of signal
noise ratio (SNR) for feature selection method; normalised minimum radius of
influence field cluster (MIF); normalised maximum radius of a cluster (MxIF); SVM
kernel (Kernel); MLP training cycles (Tr. Cycles), hidden units (HU) output value
precision (OVP), output function precision (OFP) and output activation function
(OAF).

EC

MLR SVM

CPV 0.05 Method Inductive
CPV 0.32
Kernel Polynomial
Degree γ 1

MLP ECM

CPV 0.01 CPV 0.41
HU 5 MxIF 1
Tr. Cycles 500 MIF 0.01
OVP 0.0001 M of N 3
OFP 0.0001
OAF Linear

NeuCube

TBR 145.3 Con. Dist. 0.15
Refr. time 6 P. leak rate 0.002
STDP 0.01 Thr. of firing 0.5
Mod 0.4 Drift 0.25

Table B.2
Parameters settings used to classify O group versusMgroup (EO state) in a NeuCube
classifier using RSSV method and in traditional machine learning classification
methods (MLR, SVM, MLP and ECM). The parameters that influence traditional
machine learning models are: class performance variance (CPV); the use of signal
noise ratio (SNR) for feature selection method; normalised minimum radius of
influence field cluster (MIF); normalised maximum radius of a cluster (MxIF); SVM
kernel (Kernel); MLP training cycles (Tr. Cycles), hidden units (HU) output value
precision (OVP), output function precision (OFP) and output activation function
(OAF).

EO

MLR SVM

CPV 0.14 Method Inductive
CPV 0.56
Kernel Polynomial
Degree γ 1

MLP ECM

CPV 0.04 CPV 0.18
HU 5 MIF 1
Tr. Cycles 500 MIF 0.01
OVP 0.0001 M of N 3
OFP 0.0001
OAF Linear

NeuCube

TBR 33.16 Con. Dist. 0.15
Refr. time 6 P. leak rate 0.002
STDP 0.01 Thr. of firing 0.5
Mod 0.4 Drift 0.25

computed depending on a modulation factor mod and the order of
the first incoming spike, order(i, j), as follows:

wi,j = modorder(i,j). (A.6)

Then, the new connection weights will change according to the
spike driven synaptic plasticity (SDSP) learning rule using a drift
parameter, which is used tomodify the connectionweights to take
into account the occurrence of following spikes with respect to
time Si(t); i.e. if there is a spike arriving from neuron i at time t
after the first one was emitted the weight increases otherwise it
decreases.

wi,j(t) =


wi,j(t − 1) + drift Sj(t) = 1
wi,j(t − 1) − drift Sj(t) = 0. (A.7)

Appendix B

See Tables B.1 and B.2.

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.neunet.2015.03.009.
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