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Abstract. The paper presents a novel clustering method for dynamic
Spatio-Temporal Brain Data (STBD) on the case study of functional
Magnetic Resonance Image (fMRI). The method is based on NeuCube
spiking neural network (SNN) architecture, where the spatio-temporal
relationships between STBD streams are learned and simultaneously the
clusters are created. The clusters are represented as groups of spiking
neurons inside the NeuCube’s spiking neural network cube (SNNc). The
centroids of the clusters are predefined by spatial location of the brain
data sources used as input variables. We illustrate the proposed cluster-
ing method on an fMRI case study STBD recorded during a cognitive
task. A comparative analysis of the clusters across different mental activ-
ities can reveal new findings about the brain processes under study.

1 Introduction

The human brain is acting as a complex information processing machine [1,2]
that processes data through communications between billions of neurons. In
order to analyze STBD, suitable models are needed to trace such complex pat-
terns and to understand processes that generate data. In this paper we use
the NeuCube framework [3] as a rich model for modelling and understanding of
STBD. We propose a new method for dynamic clustering of STBD in a NeuCube
model and illustrate it on fMRI data.

2 The Proposed NeuCube-Based Spiking Neural
Network Methodology for Learning, Visualization
and Clustering of STBD

2.1 Spiking Neural Networks for Modelling STBD

Spiking neural networks model operation is based on neuron synaptic states that
incorporate spiking time. SNNs have become popular computational methods for
complex spatio/spectro temporal data analysis [3]. Their neuromorphic highly
parallel hardware implementations are advancing very fast [4].
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2.2 The NeuCube Architecture [3]

NeuCube is an evolving spiking neural network (eSNN) architecture for STBD
learning, modelling, knowledge extraction, and for the analysis of the brain
processes that generated the data [3]. The NeuCube architecture consists of
several modules:

An Input encoding module for transforming spatio-temporal data into spike
trains; A 3D SNN cube (SNNc) module for unsupervised learning of STBD; An
output classification/regression module for supervised learning of data; Opti-
mization module; Visualization and knowledge extraction module. Based on the
NeuCube architecture we propose here a new clustering method schematically
represented in Fig. 1.
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Analysis of STBD and brain processes by referring back the clusters to the brain

Fig. 1. The steps performed as part of the STBD clustering procedure

2.3 3D Dynamic Neuronal Clustering in a NeuCube SNN Model

The proposed STBD clustering method includes the following steps:

Step 1: STBD recording, i.e. for a given problem, relevant STBD is recorded.

Step 2: STBD encoding and mapping into a 3D SNNc as part of a NeuCube
model.

Step 3: Unsupervised learning in the 3D SNNc and cluster evolution based on
the spiking activity and connectivity in SNNec.

Step 4: Analysis of the connectivity of the trained 3D SNNc as dynamic spatio-
temporal clusters of the STBD.

Step 5: Mapping SNNc clusters into brain regions.

Step 6: Functional analysis of the dynamic interaction between SNNc clusters
to understand brain functional dynamics.
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At Step 2, STBD is encoded into spike trains using an appropriate encoding
algorithm such as Threshold-Based Representation method (TBR). The spike
trains are then entered into a 3D SNNc¢ which is created with a suitable size to
map the brain template relevant to the data, such as Talairach [5], MNI [6], or
voxel coordinates of individual brain data. Input neurons are allocated in the
SNNc to enter input variable spike trains. The SNNc is initialized using a small
world connectivity rule [7].

At Step 3, spike trains are learned in a SNNc¢ using Spike-Timing Dependent
Plasticity (STDP) learning rule [8]. During the learning procedure, spatio-
temporal relationships within data are captured in the form of evolving connec-
tion weights and simultaneously neurons are clustered into homogeneous groups
with respect to the neurons’ activation similarity. Formation of the clusters is
based on the intensity of spike communication within the SNNc as a similarity
measure. The similarity measure is not only based on the spatial information
of the data, but also on the temporal similarity as spike-time relationships. The
results are dynamic 3D clusters containing the most evoked neurons by the corre-
sponding cluster’s centroid. The clusters represent spiking neurons with similar
spiking activity at each time, reflecting dynamic spatio-temporal brain processes.
The proposed clustering method differs significantly from the existing methods
for clustering, such as evolving clustering (e.g. DENFIS [9] which method deals
with static data and no temporal relationships between input vectors are learned)
or self-organizing maps [10].

3 Application of the Proposed Method on a Benchmark
fMRI STBD

To demonstrate our clustering method, the known STAR/PLUS fMRI data [11]
is used to study how neurons in the SNNc are clustered based on the spatio-
temporal similarity measure of the neurons’ activation against different sentence
polarities.

3.1 FMRI Data Acquisition Description

In STAR/PLUS fMRI data, the whole brain volume is recorded every 500 ms,
while a cognitive task (pictures/sentences stimuli matching) performed by a
subject. When the subject reads a sentence, the brain activity patterns are per-
formed differently depending on the sentence polarity (affirmative vs. negative).
In this experiment, fMRI STBD is divided into two time series corresponding
to the two classes: Class 1, reading affirmative sentences; Class 2, reading nega-
tive sentences. In this study, the most activated voxels against sentence stimuli
are selected using Signal-to-Noise Ratio (SNR) feature selection as reported in
Table 1.
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Table 1. The 20 more activated ROIs are presented in decreasing order of SNR values.
In bracket is the number of voxels located in every brain region

Activated brain region (number of selected voxels)

1 ‘LT’ (3) 4| ‘LDLPFC’ (6) |7 ‘RDLPFC’(1)
2 |‘LOPER’ (3) | 5| ‘RT’(2) 8| ‘RSGA’ (1)

3| ‘LIPL’(1) 6| ‘LSGA’(1) 9| ‘RIT’(1)

3.2 FMRI Data Mapping, Learning and Visualization in a SNNc¢

The whole fMRI set of voxels is spatially mapped into the SNNc. The spatio-
temporal patterns of the 20 pre-selected voxels are encoded to sequences of
spikes using TBR and later transferred to the SNNc via 20 spatially allocated
input neurons. During the NeuCube training, the post synaptic potential of
each neuron at time t, PSPi(t), increases by every input spike received from
all pre-synaptic neurons [8,12]. Once the PSPi (t) exceeds a firing threshold,
neuron emits a spike. Based on the STDP learning rule, if neuron spikes first
and then spikes, the connection weight between these neurons increases, other-
wise it decreases. After the NeuCube unsupervised learning is completed, the
spatio-temporal relationships between fMRI input streams are reflected on the
created neuronal connections (Fig.2). These connections are generated differ-
ently for each of the two stimuli revealing the fact that the subject is performing
differently when processing affirmative versus negative sentences. Figure 2 shows
that more and stronger neural connections are created in the left hemisphere
(LDLPFC and LT) than in the right hemisphere (RDLPFC and RT) while read-

ing negative sentences.

3.3 Dynamic Cluster Evolution in a NeuCube Model on the fMRI
Case Study STBD

During the learning procedure, 3D neuronal clusters are evolved when new input
fMRI vectors are entered and learned in the SNNc. Step-wise visualizations of the
clusters evolution reveals differences of spike-time relationships between fMRI
voxel activity patterns against sentence polarities. Figure3 shows the process
of cluster creation over time for 16 selected time points during unsupervised
learning of fMRI data.

During the NeuCube learning, there are step-wise changes in the evolution of
the clusters. When a SNNc¢ was training with fMRI data of affirmative sentences,
the first produced clusters corresponded to the RDLPFC brain region after the
3rd fMRI time frame was learned. In the case of negative sentences, the first
created neuronal clusters related to RDLPFC and LOPER regions and were
created after the 3rd fMRI data frame was learned. Figure 4 illustrates how the
size of the cluster is changing in terms of the number of neurons belong to each
cluster.
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Neuron connectivity evoked by reading an affirmative sentence Neuron connectivity evoked by reading a negative sentence

Fig. 2. Mapping of 5062 fMRI voxels to the SNNc and the spatio-temporal connections
which evolved around 20 input voxels against affirmative /negative sentence presenta-
tion. Blue lines represent positive connection weights while red lines represent negative
weights. The brighter the color of a neuron, the stronger its activity is with neighboring
neurons. Thickness of the lines also identifies the neuron’s enhanced connectivity. (a)
3D visualization of the initial connections before the NeuCube training process; (b)
Connections after the NeuCube training process; (c) 2D visualization of the spatio-
temporal connections after the NeuCube training (Color figure online)
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Fig. 3. Clusters’ centroids are predefined and labeled by different colors. Before training
the SNNc by fMRI data streams, the clusters had no members. They evolved with
respect to the neurons spiking activities generated during the training process (a)
Step-wise visualization of the dynamic neuronal cluster evolution corresponding to 20
voxels (clusters’ centroids), while the subject was reading affirmative sentences. The
first neuronal cluster is created at the 3rd time frame of the fMRI data during the unsu-
pervised learning in a SNNc and is associated with the RDLPFC brain region; (b)
Dynamic neuronal cluster evolution while the subject was reading negative sentences.
The first neuronal clusters are created at the 3rd time frame of the learning procedure
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associated with the RDLPFC and LOPER brain regions (Color figure online)
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neuronal cluster size during their creation in the NeuCube

SNNc while training on fMRI STBD against (a) affirmative versus (b) negative

sentences

4 Conclusion

In this study, a generic

SNN methodology was proposed as a novel method for

3D dynamic neuronal clustering of STBD. The method is based on the following
scheme: Brain processes STBD 3D NeuCube model creation 3D NeuCube model
clustering Analysis of STBD Analysis of spatio-temporal brain processes.

The method is illustrated on a benchmark fMRI STBD. The clustering pro-
cedure uses STDP learning rule as part of unsupervised learning in a 3D SNN

NeuCube -based model.

The proposed method for dynamic clustering of STBD

is illustrated on fMRI data, but can be applied on EEG and other STBD to
study dynamic functional processes in the brain during cognitive tasks.
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