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Abstract—A new paradigm of the evolving computational 
intelligence systems (ECIS) is introduced in a generic 
framework of the knowledge and data integration (KDI). This 
generalization of the recent advances in the development of 
evolving fuzzy and neuro-fuzzy models and the more 
analytical angle of consideration through the prism of 
knowledge evolution as opposed to the usually used data-
centred approach marks the novelty of the present paper. 
ECIS constitutes a suitable paradigm for adaptive modeling of 
continuous dynamic processes and tracing the evolution of 
knowledge. The elements of evolution, such as inheritance and 
structure development are related to the knowledge and data 
pattern dynamics and are considered in the context of an 
individual system/model. Another novelty of this paper 
consists of the comparison at a conceptual level between the 
concept of models and knowledge captured by these models 
evolution and the well known paradigm of evolutionary 
computation. Although ECIS differs from the concept of 
evolutionary (genetic) computing, both paradigms heavily 
borrow from the same source – nature and human evolution. 
As the origin of knowledge, humans are the best model of an 
evolving intelligent system. Instead of considering the 
evolution of population of spices or genes as the evolutionary 
computation algorithms does the ECIS concentrate on the 
evolution of a single intelligent system. The aim is to develop 
the intelligence/knowledge of this system through an evolution 
using inheritance and modification, upgrade and reduction. 
This approach is also suitable for the integration of new data 
and existing models into new models that can be incrementally 
adapted to future incoming data. This powerful new concept 
has been recently introduced by the authors in a series of 
parallel works and is still under intensive development. It 
forms the conceptual basis for the development of the truly 
intelligent systems. Another specific of this paper includes 
bringing together the two working examples of ECIS, 
namely ECOS and EFS. The ideas are supported by 
illustrative examples (a synthetic non-linear function for 
the ECOS case and a benchmark problem of house price 
modelling from UCI repository for the case of EFS). 

I. INTRODUCTION.  
The scientists represent their knowledge of processes and 

interrelations as mathematical models - differential equations, 
regression formulas [12], or as information models - expert 
rules, neural networks, evolutionary computation, or hybrid 
models [16]. As new data is continuously collected, often this 

data neither fits into existing models, nor is sufficient to derive 
a new model. This fact was previously ignored with the 
assumption that one can train a model using all possible 
variety of available data concerning all possible situations. 
This is very often not the case and this was one of the reasons 
systems that were designed in laboratory conditions failed to 
perform satisfactory under new conditions. It was recognized 
that the ability to reason and make decisions does not ensure a 
true intelligence on its own [2,18]. Because the environment, 
in which real systems operate, is constantly and often 
unpredictably changing a stationary system (being represented 
by a fixed-structure conventional, rule-based or neural-
network-based model) cannot be adequate [2,15]. This applies 
to technological processes, transport vehicles, communication, 
bio-medical, robotic systems etc. The research challenge is to 
address the problems of life-long learning and adaptation of 
intelligent systems. Similar challenges have been already 
addressed successfully in the domain of linear systems 
modelling, identification and control as well as design and real 
life implementation several decades ago, which lead to so 
called conventional adaptive systems [6]. These results, 
however, are valid for linear systems and few extensions only 
(Hammerstein models, bi-linear models etc.) while intelligent 
systems are complex and highly non-linear by their nature. 
During the recent few years this challenge brought to live the 
concept of evolving systems [2,18]. An evolving system is able 
to change its structure, to grow, update and shrink when 
necessary [2,3,17,24,25].  

In this paper we treat evolving computational intelligence 
systems (ECIS) through the prism of the knowledge and data 
integration (KDI) approach, which constitutes a novelty 
comparing to the usually used data-centred approach and to the 
interpretability/transparency studies. KDI paradigm brings 
together the adaptation (which is relatively well covered by 
parameter adaptation techniques known from the 
‘conventional’ adaptive systems theory [6]) with the problem 
of generalisation and knowledge capture. The latter concept is 
addressed in ‘conventional’ modelling disciplines (including 
both fuzzy and linear systems) by different cross-validation 
techniques. ‘Conventional techniques, however, assume all of 
the data to be known a priori or to continue to support an 
assumed model structure (in the case of ‘conventional’ 
adaptive system theory [6]). The problem of acquiring new 
data that does not support the a priori assumed model 
structure has not been addressed before the introduction of the 



evolving modelling concept. An ECIS, by differ from a 
conventional model, continuously learn new data to integrate 
this data with existing models. The incoming data may contain 
new variables and missing values. ECIS develop their structure 
and functionality continuously, always adapting and modifying 
its knowledge representation. The ECIS approach is 
demonstrated here through two modelling constructs that the 
authors have introduced recently and are continuing to 
develop, namely the evolving connectionist systems [14,17,18] 
(ECOS) and evolving fuzzy systems [2-5] (EFS).  

The introduction of the ECIS paradigm is done through the 
analysis of the integrating existing knowledge (e.g. formulas, 
rules) with new data. Despite of the advances in mathematical 
and information sciences, there is a lack of efficient methods to 
extend an existing model M to accommodate new (reliable) 
data set D for the same problem. Examples of existing models 
that need to be further modified and extended to new data are 
numerous: differential equation models of cells and neurons 
[23], a regression formula to predict outcome of cancer [22], 
an analytical formula to evaluate renal functions [26], a 
logistic regression formula for evaluating the risk of cardiac 
events [1], a set of rules for the prediction of outcome of 
trauma [7], gene expression classification and prognostic 
models [27,29], models of gene regulatory networks [11], and 
many more, e.g. [6].  
     One can consider several different approaches to solving 
the problem of integrating an existing model M and new data 
D. If a model M was derived from data DM, DM and D can be 
integrated to form a data set Dall a change (evolution) in the 
model structure leading to Mnew may be needed. This change 
will be necessary only if the new data are informative enough. 
Otherwise, a parameter adaptation of the previous model, M 
may be satisfactory (then the evolution reduces to a 
‘conventional’ adaptation). This change is incremental and 
recursive (Mnew=M+∆). Another problem that is difficult to 
treat and is still open is the case when new data, D contains 
new variables [1,9,22,26]. The model M evolution leads to a 
global validity in the general case (if global criterion for 
identification of the model is used [4]). For understanding the 
dynamics of the problem and for better interpretability of the 
model [30] a local criterion of identification can be used [4]). 
     This concept is illustrated by a synthetic evolving modeling 
of a non-linear function using EfuNN as a form of ECOS and 
by evolving modeling of housing prices in Boston suburbs – a 
well known benchmark problem from UCI repository [36]. 

II. THE ECOS APPROACH TO THE KDI PROBLEM 

A. Evolving Connectionist Systems (ECOS) 
ECOS are connectionist (artificial neural network) systems 

that evolve their nodes (neurons) and connections between 
them through supervised incremental learning from data 
samples represented as input-output data vectors. One of the 
ECOS models, the evolving fuzzy neural network EFuNN 
[15], is shown in a simplified version in Fig.1.   

It consists of five layers. Input nodes represent input 
variables. Fuzzy input nodes represent the degree to which 

input values belong to fuzzy membership functions that are 
used to define concepts such as Low value, or High value for a 
variable [31]. Rule nodes represent cluster centres of samples 
in the problem space and their associated local output 
functions. Fuzzy output nodes represent membership degrees 
of the output values to predefined output membership 
functions. Output nodes represent output variables. 

 

 

 

 

 

 

 

 

 
Fig. 1. A simplified version of an EFuNN 

ECOS incrementally evolve rule nodes to represent cluster 
centres of the input data, where the first layer W1 of connection 
weights of these nodes represent their co-ordinates in the input 
space and the second layer W2 represents the local models 
(functions) allocated to each of the cluster (a group of similar 
data samples). 

Data samples are allocated to rule nodes based on the 
similarity between the samples and the nodes calculated either 
in the input space (this is the case in some of the ECOS 
models, e.g. the dynamic neuro-fuzzy inference system 
DENFIS [18], and the zero instruction set computers ZISC 
[32]), or in both the input space and the output space (this is 
the case in the evolving fuzzy neural networks EfuNN [15] – 
Fig.1). Samples that have a distance to an existing cluster 
centre (rule node) N of less than a threshold Rmax (for the 
EfuNN models the output vectors of these samples have to be 
also different from the output value associated with this cluster 
centre in not more than an error tolerance E) are allocated to 
the same cluster Nc. Samples that do not fit into existing 
clusters form new clusters. Cluster centres are continuously 
adapted to new data samples, or new cluster centres are 
created. 

Both parameters of the ECOS (Rmax and E) influence the 
convergence and stability of the new (evolved) model. They 
can be used for a pay-off between the model flexibility and 
robustness. In general, ECOS are more flexible in comparison 
with the EFS, which are more robust. 

The distance between samples and rule nodes can be 
measured in different ways. The most popular measurement is 
the normalized Euclidean distance. In a case of missing values 
for some of the input variables, a partial normalized Euclidean 
distance can be used which means that only the existing values 
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for the variables in a current sample S(x,y) are used for the 
distance measure between this sample and an existing rule 
node N (W1N,W2N):   

        d(S,N)=[Σ(i=1,..,n)(xi–W1N(i))2]/n                                   (1) 
for all n input variables xi that have a defined value in the 

sample S and an already established connection W1N(i) to N. 
At any time of an ECOS continuous, incremental learning 

from data, rules can be derived from the ECOS structure. Each 
rule associates a cluster area from the input variable space to a 
local output function applied to the data in this cluster, e.g.: 

   IF [data is in cluster Ncj defined by a cluster centre Nj, a 
cluster radius Rj and a number of examples Njex in this cluster] 
THEN [the output function is fc]                                      

     In the case of DENFIS [17] first order local fuzzy rule 
models are derived incrementally from data, for example: 

    IF  [the value of x1 is in the area defined by a triangular 
membership function with a centre at 0.05, left point of -0.05 
and right point at 0.14) AND (the value of x2 is in the area 
defined by a triangular function (0.15,0.25,0.35) respectively] 
THEN [the output y is calculated by: y=0.01+ 0.7x1 + 0.12x2].   

In the case of EFuNNs [15] local simple fuzzy rule models 
are derived, for example:     

IF x1 is (Low 0.8) and x2 is (Low 0.8) THEN y is (Low 0.8), 
radius R1=0.24; N1ex= 6 (see first rule from Table I), where 
Low, Medium and High are fuzzy membership functions 
defined for the range of each of the variables x1, x2, and y. The 
number and the type of the membership functions can either be 
deduced from the data through learning algorithms, or it can be 
predefined based on human knowledge [16,18,28]. 

B. Addressing KDI by ECOS  
The ECOS approach is illustrated (Fig. 2a) with a simple 

model M that represents a non-linear function y of two 
variables x1 and x2 and a new data set D0 generated from M: 
y=5.1x1+0.345x1

2–0.83x1log10x2+0.45x2+0.57exp(x2 
0.2) in 

the sub-space defined by x1∈[0;0.7]; x2∈[0;0.7], and new 
data D defined by x1∈[0.7;1]; x2∈[0.7;1].   

 
Fig. 2a. A 3D plot of data D0 (circles ) and new data D (asterisks) 

Data D0tr extracted from D0  (randomly selected 56 
samples from D0) is first used to evolve a DENFIS model 
M0 (parameter Rmax=0.15) and 7 rules are extracted, so the 
model M is transformed into an equivalent set of 7 local 
models. The model M0 is further evolved on Dtr (randomly 
selected 25 samples from D) into a new model Mnew, 

consisting of 9 rules allocated to 9 clusters, the first 7 
representing data D0tr and the last 2 - data Dtr (Fig.2b). 
While on the test data D0tst both models performed equally 
well, Mnew generalizes better on Dtst (Fig.2c). The new 
model Mnew performs well on both the old and the new test 
data, while the old model M fails on the new test data. 

 
Fig. 2b. The 7 data clusters of D0 on the left (defined by the centre 

denoted as “+” and a cluster area) and of the data D (the 2 upper right 
clusters) in the 2D input space of x1 and x2 input variables from Fig.2a  

 
Fig. 2c. The test results of the initial model M (the dashed line) vs the 

new model Mnew (the dotted line) on the test data D0tst  (the first 42 
samples) and on the new test data Dtst (the last 30 samples) (the solid line).  

TABLE I 
LOCAL PROTOTYPE RULES EXTRACTED FROM DENFIS NEW MODEL MNEW. 

Rule 1: IF x1 is (-0.05, 0.05, 0.14) and x2 is (0.15,0.25,0.35) 
 THEN  y=0.01 + 0.7x1 + 0.12x2 

Rule 2: IF x1 is (0.02, 0.11, 0.21) and  x2 is (0.45,0.55, 0.65) 
 THEN  y=0.03+ 0.67x1+ 0.09 x2  

Rule 3: IF x1 is (0.07, 0.17, 0.27) and  x2 is (0.08,0.18,0.28) 
 THEN  y=0.01 +0.71x1 + 0.11x2 

Rule 4: IF x1is (0.26, 0.36, 0.46) and  x2 is (0.44,0.53,0.63) 
 THEN  y=0.03+ 0.68x1+ 0.07x2 

Rule 5: IF x1is (0.35, 0.45, 0.55) and  x2 is (0.08,0.18,0.28) 
 THEN  y=0.02 +  0.73x1+ 0.06x2 

Rule 6: IF x1is (0.52, 0.62, 0.72) and x2  is (0.45,0.55,0.65) 
 THEN  y=-0.21 + 0.95x1 + 0.28x2 

Rule 7: IF x1is (0.60, 0.69,0.79)  and x2  is (0.10,0.20,0.30) 
 THEN  y=0.01+ 0.75x1+ 0.03x2 

Rule 8: IF x1is (0.65,0.75,0.85)  and  x2 is  (0.70,0.80,0.90) 
 THEN  y= -0.22+ 0.75x1+0.51x2 

Rule 9: IF x1is (0.86,0.95,1.05)  and  x2 is (0.71,0.81,0.91)  
 THEN  y=0.03 + 0.59x1+0.37x2 



An experiment was conducted with an EFuNN (error 
threshold E=0.15, and maximum radius Rmax=0.25). The 
derived 9 local models (rules) that represent Mnew are shown 
for comparison in Table II (the first 6 rules are equivalent to 
the model M and data D0tr, and the last 3 – cover data Dtr).  

TABLE II 
LOCAL PROTOTYPE RULES EXTRACTED FROM EFUNN NEW MODEL MNEW. 

Rule 1: IF x1 is (Low 0.8) and x2 is (Low 0.8)  
  THEN  y is (Low 0.8), radius R1=0.24; N1ex= 6 

Rule 2: IF x1 is (Low 0.8) and x2 is (Medium 0.7)  
 THEN y is (Small 0.7), R2=0.26, N2ex= 9 

Rule 3: IF x1 is  (Medium 0.7) and x2 is (Medium 0.6)  
 THEN  y is (Medium 0.6), R3 = 0.17,N3ex=17 

Rule 4: IF x1 is (Medium 0.9) and x2 is (Medium 0.7) 
  THEN  y is (Medium 0.9), R4 = 0.08, N4ex=10 

Rule 5: IF x1 is (Medium 0.8) and x2 is (Low 0.6)  
 THEN  y is (Medium 0.9), R5= 0.1, N5ex = 11 

Rule 6: IF x1 is (Medium 0.5) and x2 is (Medium 0.7)  
 THEN  y is (Medium 0.7), R6= 0.07,N6ex= 5 

Rule 7: IF x1 is (High 0.6) and x2 is (High 0.7) 
  THEN  y is (High 0.6), R7 = 0.2, N7ex = 12 (new) 

Rule 8: IF x1 is (High 0.8) and x2 is (Medium 0.6)  
 THEN  y is (High 0.6), R8=0.1,N8ex= 5 (new) 

Rule 9: IF x1 is (High 0.8) and x2 is (High 0.8)  
 THEN  y is (High3 0.8), R9= 0.1, N9ex = 6 (new) 

The models Mnew derived from DENFIS and EFuNN are 
functionally equivalent, but they integrate M and D in a 
different way. Building alternative models of a same problem 
could help to better understand the problem and to choose the 
most appropriate model for the task.  

C. Adding New Variables to ECOS  
The ECOS approach above is applicable to a large-scale 

multidimensional data where new variables may be added at a 
later stage. This is possible as partial Euclidean distance 
between samples and cluster centres can be measured based on 
a different number of variables (1). If a current sample Sj 
contains a new variable xnew, having a value xnewj and the 
sample falls into an existing cluster Nc based on the common 
variables, this cluster centre N is updated so that it takes a 
coordinate value xnewj for the new variable xnew, or the new 
value may be calculated as weighted k-nearest values derived 
from k new samples allocated to the same cluster. Dealing with 
new variables in a new model Mnew may help distinguish 
samples that have very similar input vectors but different 
output values and therefore are difficult to deal with in an 
existing model M. For example, samples S1=[x1=0.75, 
x2=0.824, y =0.2] and S2=[x1=0.75, x2=0.823, y=0.8] are easy to 
be learned in an new ECOS model Mnew when a new variable 
x3 is added that has, for example, values of 0.75 and 0.3 
respectively for the samples S1 and S2.  

     The partial Euclidean distance (1) can be used not only to 
deal with missing values, but also to fill in these values in the 
input vectors. As every new input vector xi is mapped into the 
input cluster (rule node) of the model Mnew based on the partial 

Euclidean distance of the existing variable values, the missing 
value in xi, for an input variable, can be substituted with the 
weighted average value for this variable across all data 
samples that fall in this cluster.     

III. EVOLVING FUZZY SYSTEMS (EFS) 
In section II the ECIS approach was illustrated through the 

ECOS paradigm, where the rules/clusters/neurons formation is 
more relaxed/flexible and regulated by one or two thresholds 
(Rmax and E). In this section a more robust and conservative 
approach that avoids outliers (and thus part of the noise) in a 
natural way will be presented. It has only one algorithm-
dependent parameter (cluster radii, r) and the decision to form 
a new rule/cluster/neuron relates to all previously seen data 
instead of just existing centres. In this sense it makes use of 
accumulated proximity measure concentrated in the so-called 
sample potential. For more details, please see [4] and [5]. 

A. EFS approach to KDI 
EFS approach [2] is a “direct evolution” approach, which 

differs from the other approaches for modelling dynamic 
systems with flexible structure [14-20,23,24] by the 
mechanism of model structure evolution. In EFS the new data, 
D are collected incrementally on-line [2-5,25,30,33] sample by 
sample. The changes to the existing model, M are according to 
the following principles: 

a) inherit the previous model structure (Mnew =M) iff the 
new data, D do not bring valuable new information;  

b) gradually upgrade the previous model structure (Mnew 
=M+∆), iff the new data, D bring valuable new 
information; 

c) gradually modify the previous model structure (Mnew 
=M-∆), iff the new information the data D brings, 
combined with the information the previous data, DM  
leads to information redundancy; the model structure 
modification take place as rule/cluster/neuron 
removal or replacement by a new one formed around 
the new data sample [2-5]; 

The information value of the new data, D is measured by the 
informative potential, P [2-4,34], which is inversely 
proportional to the accumulated spatial distance. It can also be 
measured by the average accumulated Euclidean distance 
called scatter [5]. The EFS approach has following features: 

• it is evolutionary in the sense that it inherits previous 
model structure, M, the changes are gradual, and the 
model, M develops it structure from data, DM and D; 

• it extracts the accumulated information from the 
data, Dall due to its fully recursive nature and the use 
of accumulated spatial proximity instead of just the 
rules/neurons focal points/cluster centres; 

• it is very restrictive, robust and naturally excludes 
outliers, because only data samples with high enough 
potential form new rules/neurons/clusters; 

B. Evolving Fuzzy Systems  



The EFS approach can be interpreted as a neural network with 
five layers as shown in [3]. It is more effective with zero and 
first orders Takagi-Sugeno fuzzy models [27], although it is 
applicable to other type of models, e.g. Mamdani is also 
possible [2]. The main difference between the EFS and a 
conventional fuzzy system described by Takagi-Sugeno model 

Rulei: IF(x1is iLT1 )AND…AND(xnis i
nLT ) THEN(yi= iT

ex π ) 

is that in EFS neither the number of rules (i=1,2,…,R), neither 
the linguistic terms (model antecedents), i

jLT ; j=1,2,…,n, 

neither the model consequent parameters, πi are known or 
fixed. The data (x1 , x2, xn, y) is collected incrementally. T

ex   
here denotes an extended vector of inputs, which makes 
possible to consider affine systems [2,4]. The overall model 
output, y is formed by a weighted sum of local sub-models, 
which have produced local predictions, yi.[2-5, 28]. The 
general pseudo-code of the EFS can be given as: 

Begin EFS 

Initialize the rule-base; 
Read first data sample; 
Establish it as the first rule centre;  
  DO for each new data sample 
 Read next input; 
 Estimate the next output; 

At next time step read the output 
Calculate recursively Pnew 
Update the P of the centres, P* 
Compare the Pnew and P* 
IF (Pnew>P*) AND (the new data is 
close to an existing centre) 
THEN (add new rule) 
ELSEIF (Pnew>P*) 
THEN (replace the nearest rule) 

  END DO 
Estimate consequent parameters by RLS; 

End (EFS) 

The details of the evolution process are considered elsewhere 
[2-5], http://www.etsfm.info. In the previous sub-section we 
gave the basic principles in the context of KDI. This will be 
followed by a case study, which illustrates the use of EFS. 

C. A benchmark test problem- housing data 

EFS has been applied to the benchmark problem of Boston 
housing data. This dataset concerns housing values in suburbs 
of Boston. It contains 458 data instances for training and 50 
instances used for model validation/testing. The output that is 
modelled is the median value of the owner-occupied homes (in 
$1000). It is influenced by a number of factors. In the full 
dataset 12 real-valued and 1 binary features are given. It was 
found that several features are not very relevant (for example 
so called ‘Charles River dummy variable’ [36], which has 
value 1 if tract bounds river and 0 otherwise). The 5 most 
relevant features were found to be:  

• TAX – full value property-tax rate per $10,000; 
• PTRATIO – pupil-teacher ratio by town; 

• RM – average number of rooms per dwelling; 
• NOX – nitric oxides concentration (parts per 

million) – an indicator of the pollution; 
• LSTAT – lower status of the population 

The only parameter that EFS requires is the vector value of the 
cluster radii which was considered to be r=0.1. The other 
parameter that needs to be specified is the initialization 
parameter for the RLS algorithm, which was set up to 

100=Ω [4]. A fuzzy model started with the first data sample 
from the data set established as the centre/focal point of the 
first rule/first neuron/cluster. Then the price for the second 
case was modelled and predicted based on this rule alone. The 
error was recorded and the true price for the second case was 
read and so on until the 458th case. The data vectors at samples 
3, 6, 7, 8, 9, 25, 27, 29, 35, 36, 91, 136, 137, 139, 193, 215, 
339, 340, 375, 447, 448 were established as new rules/neurons, 
(Figure 3) because their potential was higher than that of the 
rules that existed at the moment of their appearance (Figure 4). 
The rule 17 that was formed around 215th sample was replaced 
by a rule formed around 220th sample. In this way 22 fuzzy 
rules were eventually in the rule base, while their number was 
different throughout the training phase. During the validation 
phase the samples from 459th till 508th were used with a model 
that has 22 fuzzy rules and parameters learned on-line using a 
modification of RLS during the training phase. Both the model 
structure and parameters were fixed in this phase.  

Fig.3a. Model training (first 458 samples) Housing price data in 
normalised values (dots); evolving model (EFS) (solid line); data samples 
that originate new rule (‘o’); data samples that replace existing centres 
(‘>’); final position of the focal point (‘*’). 

It should be noted that such validation test is needed to 
compare the results with the off-line training approaches 
only. The predictions were made at each sample based on the 
available information (rules and parameters) so far. So, in this 
sense this is not the typical off-line training. In a normal on-
line learning one does not need to stop and fix the model. Even 
with the model structure and parameters fixed the EFS 
approach shows a superior approximation quality, which is 
measured in this work using the standard correlation 

 



coefficient subroutine of MATLAB to calculate the correlation 
between the actual and the predicted output (median value of 
the owner-occupied homes). The results for the test of the 
conventional off-line approaches (ANFIS, genfis2, 
FMCLUST) and one new on-line learning (in fact a ECIS type 
of approach) called FLEXFIS were kindly provided by Dr. 
Edwin Lughofer [37]. 

 
Fig.3b. Model validation (first 458 samples) Housing price data in 

normalised values (dots); evolving model (EFS) (solid line); data samples 
that originate new rule (‘o’); data samples that replace existing centres 
(‘>’); final position of the focal point (‘*’) 

 
Fig.4 Potential evolution with samples 

The results of the use of several well known methods for 
fuzzy models design (ANFIS [38], genfis2 [34],[39], 
FMCLUST [40], and FLEXFIS [37]) are tabulated in Table III. 

TABLE IIII 
RESULTS OF MODELLING HOUSE PRICE DATA 

Method Mode Correl. 
ANFIS [38] Off-line 0.805 
FMCLUST [40] Off-line 0.890 
Genfis2 [34],[39] Off-line 0.922 
FLEXFIS [37] On-line 0.903 
EFS (this paper) On-line 0.963 

The following figures illustrate the consequents (local sub-
models) parameter evolution (Fig. 5) which is driven by a 
modification of the recursive least squares method, which is 
given in more details in [4]-[5]. 

 
Fig.5 Local sub-model parameters evolution for rule 1 

IV. DISCUSSION 
This paper introduces a unified concept for evolving 

computational intelligent systems (ECIS) that develop their 
structure and functionality through Knowledge and Data 
Integration. This new concept is compared at a conceptual 
level with the well known evolutionary computation paradigm 
and case studies are considered that illustrates the application 
of two specific cases of ECIS: ECOS and EFS. Both ECOS 
and EFS were also compared on a conceptual level with EFS 
being more robust and stable (less sensitive to noise and 
outliers and more conservatively producing new 
clusters/rules/neurons) and having only one algorithmic 
parameter and ECOS being more flexible and using two 
algorithmic parameters for rules/neurons evolution.  

ECIS is a useful paradigm for integrating new data and 
existing models related to the same problem into incrementally 
adaptive models. This is an important issue across scientific 
areas where new multidimensional data is being recorded 
continuously and new variables are being added incrementally 
(e.g., new genes related to a cardio-vascular disease). The 
approach includes ECOS [18], EFS [2-5] and their relation to 
KDI and to the evolution of the model structure. Further 
development of ECIS which are in their infancy will address 
the demands for more intelligent products in areas such as 
metabolomic and proteomic [10,12,19,35], gene regulatory 
network reengineering, clinical decision support systems 
[1,9,26] embedded systems with evolving intelligence, 
autonomous vehicles, high-tech industries, multi-media etc. 
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