
Adaptive Training of Radial Basis Function Networks Based on Cooperative
Evolution and Evolutionary Programming

Alexander P. Topchy, Oleg A. Lebedko, Victor V. Miagkikh and Nikola K. Kasabov1

Research Institute for Multiprocessor Computer Systems,

 2 Chekhova Str., GSP-284, Taganrog, 347928, Russia, apt@tsure.ru
1 Department of Information Science, University of Otago,

Dunedin, P.O. Box 56, New Zealand, nkasabov@otago.ac.nz

Abstract

Neuro-fuzzy systems based on Radial Basis Function
Networks (RBFN) and other hybrid artificial
intelligence techniques are currently under intensive
investigation. This paper presents a RBFN training
algorithm based on evolutionary programming and
cooperative evolution. The algorithm alternatively
applies basis function adaptation and backpropagation
training until a satisfactory error is achieved. The basis
functions are adjusted through an error goal function
obtained through training and testing of the second part
of the network. The algorithm is tested on bench-mark
data sets. It is applicable to on-line adaptation of
RBFN and building adaptive intelligent systems

1. Introduction

Radial Basis Function Networks became very popular
due to several important advantages over traditional
multilayer perceptrons [1,2,14]:

• Locality of radial basis function and feature
extraction in hidden neurons, that allows usage of
clustering algorithms and independent tuning of
RBFN parameters.

• Sufficiency of one layer of non-linear elements for
establishing arbitrary input-output mapping.

• Solution of clustering problem can be performed
independently from the weights in output layers.

• RBFN output in scarcely trained areas of input
space is not random, but depends on the density of
the pairs in training data set [3].

These properties lead to potentially quicker learning in
comparison to multilayer perceptrons trained by back
propagation. In some extent, RBFNs allow us to
actualise a classical idea about training layer by layer.
The standard approach to RBFN training includes k-
means clustering for calculation of radial functions
centres, P-nearest neighbour heuristic for definition of

cluster widths, and subsequent training of output layer
weights by least squares techniques [4, 14]. The last
step is conventionally implemented by means of direct
methods like singular value decomposition (SVD) or
iterative gradient descent. It has been shown [5] that
such a training procedure converges to a local
minimum of the evaluation function. Thus, the problem
of RBFN learning remains rather complex for large
practical applications, and finding global search
training algorithms is the subject of interest.

Evolutionary simulation is a promising approach to
solving many AI problems. The use of evolutionary
algorithms for neural network parametric and structural
learning has been shown to be efficient in a number of
applications, see e.g. [6]. However, the standard
approach, when the instances in the population are the
networks, has a number of drawbacks. The worst of
them is much larger computational complexity in
comparison to iterative search procedures processing a
single network. Moreover, functional equivalence of
the hidden layer elements leads to redundant genetic
description of the network in traditional genetic
algorithms for parametric optimisation [7].

The alternative approach presented here uses a
population of hidden layer neurons, but not a
population of RBF networks. Similar ideas appear in a
number of recent papers for various types of
architectures and evolutionary paradigms including
multilayer perceptrons trained by means of genetic [8]
and evolutionary programming [9] techniques, RBFN
cooperative competitive genetic training algorithm
[10]. All of these consider neurons in a single network
as a population.

The presented algorithm itself is also based on the
principle of cooperative evolution. The result of such
an algorithm will be not the best instance, but the best
population as a whole. Under the principle of
cooperative evolution, each instance being evolved
solves a part of the problem; and we are interested in

obtaining not the best possible instance, but a
population solving the whole problem to obtain an
optimal overall result. Thus, instances have to adapt in
such a way, that their synergy solves the problem. Such
an approach is very natural for neural networks, where
we have many small sub-components achieving the
goal together.

The solution of the RBFN learning problem can be
decomposed into a number of sub-problems:

1. The search for optimal location and size of clusters
in input features space.

2. Definition of parameters (weights and thresholds) of
the output layer by means of gradient procedure or
other methods, like singular values decomposition.

The first sub-problem is approached here by using
cooperative evolution. The RBFN learning (problem
2) is based on the evolutionary programming
paradigm, which employs a cooperative search strategy
for optimal network parameters oriented to pattern
classification tasks.

Evolutionary Programming (EP) [11] is an
evolutionary computational technique. In contrast to
Genetic Algorithms (GA), EP is based on the
assumption that evolution optimizes the behavior of an
instance, but not the underlying genetic code. Thus,
EP is focused on the phenotypic level of evolution.
Mutations in EP are the single source of the
modifications in feasible solutions. Crossover and
similar genetic operators are not used. The offspring in
EP is created from parental solutions by means of
cloning with subsequent mutations. Mutations are
implemented as addition of normally distributed
random values with zero mean and dynamically
adjustable variances to components of solutions.
Standard deviation in mutations is inversely
proportional to the quality of parental solutions. The
selection procedure is also different in EP and can be
viewed as a form of stochastic tournament among
parents and progeny.

The paper is organised as follows. Section 2 is devoted
to the formal statement of RBFN training problem.
Fitness function and radial basis functions crowding
elimination are described in the sections 3 and 4
respectively followed by a description of the algorithm
(section 5), experimental results (section 6) and
conclusion in section 7.

2. The Statement of the RBFN Training
Problem

The activity Fj of each, jth output neuron of RBFN,
depends on the input vector x as follows:

� � � �� � � ����
��	� �	�

= +
=
∑ω φ� �

, (1)

where ωj0 is the value of the threshold on jth output; vij
is the weight between the ith hidden neuron and the jth
output; φi – non-linear transformation, performed by
hidden neuron i.

L radial symmetrical basis functions perform non-
linear transformation φi(x)=φ(||x – ci|| /d i), where
ci∈ℜn is the centre of the basis function φi, di is
deviation or scaling factor for radius ||x – ci||, and ||·||
is Euclidean norm in ℜn. The Gaussian function φ(r)=
exp(-r2/2) is frequently used as non-linear
transformation φ .

RBFN training can be considered as an optimisation
problem, where error function E is an evaluation
function being minimised. E is usually defined as the
average squared deviation of network outputs from
desired output values on given training data set:

() ��� � ��
� � � � ��
�

= −
= =
∑ ∑

�� � �� � (2)

where: K is the number of input-output pairs, t j
i is the

target value for the output neuron j in reaction to ith

input pattern; o j
i = Fj (xi) is the actual value generated

by output neuron j after feeding ith input pattern; M is
dimensionality of output space. For convenience, the
target values were limited to {0,1} in our experiments.

3. Fitness Estimation

The main purpose of hidden elements in a network
with conventional architecture solving a classification
problem is to provide separating hyper-surfaces
separating the patterns (the points in input space) of
different classes in such a way that the patterns
belonging to the same class appeared in the same side
only. In networks with radial basis units such a surface
can be thought of as a union of hyper-spheres or
ellipses. The patterns of the class must be grouped by
basis units in such a way that they do no overlap with
patterns of other classes. One of the mentioned
properties of radial basis Gaussian functions is locality
of activity, which means that the influence of the
function φi on some distance from the centre ci can be
neglected. It does not hold for common multilayer
perceptron networks, where the effect of all hidden

neurons should be taken into account in each point of
the input space. Locality in RBFN creates an
opportunity to estimate the efficiency of each element
separately from others. As a function for estimation of
the quality of the element φj, the following function
can be used:

�
�
��
� �!#"
� $$%

&
= ∈

=

∑

∑

φ

φ

')(
'*(
+
+,

- , (3)

where ej is the value of jth element efficiency
(quality); φj(x) is the value on the output of the jth
element in response to presentation of the input
pattern x; xk is the pattern belonging to the class r,
which has maximal sum of activities for jth neuron,
and xl are the patterns of all classes. In other words, in
the course of pattern presentation the partial sums of
activities of a given unit for each class is calculated: Sk
= sum of φ (x) over all x belonging to the class k,
k=1,..,C, where C is the number of classes. Only the
class r with maximal Sr contributes to the nominator
of (3). During fitness calculation its possible to find the
values, which each neuron gets on each of the classes.
Than we find the maximal among them. In other
words, this function defines how much element φj
distinguishes class r from the other classes. The goal
of the learning procedure is to maximize the values of
ej for all hidden neurons. However, the location of
basis units in input space should be different in order
to achieve optimal ‘ niching’, i.e. to have no units
performing the same function. ‘Niching’ of neurons
should distribute them over the patterns, which is not
enforced in expression (3). This problem can be solved
by taking into account boundaries between the classes
as discussed in detail below.

Generally, ej is used for guiding the search through the
space of RBF centres and widths, and estimation of the
amount of effort to be spent for improvement of
current clustering. This mechanism of credit
assignment provides the appropriate direction for
search by means of evolutionary programming.

Another advantage of the fitness function is that it does
not require the values of output layer weights to be
calculated. Thus, the search for the best values for the
centres can be performed before training of the
parameters of the output layer, that significantly
reduces the complexity. The output layer training is
only required for determination of the total error of the
network (2), which is used in the termination condition
of the algorithm.

4. RBF Crowding Avoidance

In the cooperative approach to NN learning the
problem of “division of the work” among the neurons
should be solved. There should not exist elements,
which performs identical functions in pattern
classification. If such competing neurons exist, some
of them should be changed in a way that they perform
more useful functions, which comprises the process of
‘niching’.

It is obvious that function (3) does not satisfy this
requirement. There exist local maximums, which many
elements tend to occupy. These maximums have basins
of attraction of different sizes, which invoke crowding
of several Gaussians in the same area. However, some
other areas could remain uncovered. The simplest way
of solving this problem is to calculate the distance || ci
– cj || between the centres of the Gaussians and
compare it with threshold distance. If the distance
between the Gaussians φi and φj is less than this
threshold then RBFs are considered to be competitive.
However, this way is not invariant in respect to the
distance between the patterns of different classes.

More adequate measure of the overlapping between
two elements φi and φj can be expressed by the
following function:

. / /
/ /

0 1 0*231 224
0 224 1 554= =

= =

∑
∑ ∑

φ φ

φ φ

6)78697
697 6*7
: :
: :; <

;
<
; (4)

which measures orthogonality of normalised neuron
activities. It approaches zero for totally non-
overlapping neurons and equals to 1 for neurons
performing identical functions. However, such a
crowding function is computationally expensive to be
applied on large number of training patterns. A trade-
off heuristic for determining overlapping units is used
here instead. It compares only the patterns for which a
neuron’s output is maximal (and next to maximal in
our implementation). Thus it requires only one (or two
in our case) additional comparisons for each pattern. In
the general case in (4), only n (n<<K) points can be
taken into account, for which the neuron’s output has
maximal value. If the obtained value is greater than 0,
then the two elements are considered to be
overlapping. This is an efficient and inexpensive way
to find approximate values for Rij .

In the presented below the elements φi and φj are

considered to be competing, if they are the most close

to the same pattern xk (or n patterns as mentioned

above). If competing elements are found, the one

having maximal value of the fitness e has to be kept

unchanged and the rest of them can be modified. Since

we can easily find the patterns, having the maximum

impact into the error during output layer training, this

information can be used for placement of the centres of

the elements to be changed in the points,

corresponding to such patterns.

5. The Description of the Algorithm

The pseudo-code of the algorithm can be outlined as
follows:

I. FOR each number of basis unit (centres) from a
given set DO the following steps:

1. Generation of initial values for centres and
deviations of all elements φj.

2. Calculate the efficiency ej of each basis unit.

3. Train output layer by I iterations of gradient
procedure.

4. Find total error E of the network.

5. If E is less than desired threshold, then go to II.

6. Find elements performing almost identical
functions. If there are no such units go to II.

7. Reallocate crowded Gaussians to the areas the
worst classified patterns.

8. Generate a new offspring of basis function neurons.

9. Calculate the fitness of the new offspring of
neurons ej.

10.Choose the better population between the offspring
and the parent.

11.Go to step 3.

II. Select the optimum RBFN’s structure having
number of centres with a minimum total error E.

The training of the output layer is by a small number of
gradient descent iterations (I steps of delta-rule, the
value of I being incremented in the example below
every 20 generations starting from 5.

Mutation of the parent neuron and creation of the
offspring is performed in step 8. Definition of the
centres and deviations of offspring Gaussians are
calculated in accordance with the following
expressions:

= = > ?@ A A > ?@B C B C B B B B= +

 = +

D DE E Eα β (4)

where cij is the jth component of the ith neuron; N(a,b)
is normal distribution with mean a and variance b; α, β

are the scaling factors; E is the error of the network. In
experiments these parameters were set to α=0,16 and
β=0,05.

Since, in contrast to the corresponding learning
algorithms with logistic functions [9], it is possible to
perform evaluation and selection of the Gaussians of
the same parent independently from the others, several
offspring can be processed during one generation. This
is attributed to the local character of the basis functions
and on the premises function (3) is derived. The
selection procedure performed in step 10 can be
performed either probabilistically or deterministically.
If several offspring are created, different tournament-
like strategies can be used. However, it is possible to
perform deterministic selection too.

6. Experimental results

We are presenting the results for two well-known
classification problems. The iris data classification
problem, used by Fisher in 1936, remains the standard
benchmark for testing pattern classification methods.
The data set contains 150 patterns of three classes (50
for each class). Four continuous features correspond to
sepal width and length, petal width and length. Three
classes of plant are versicolour, setosa and virginica.
One of them is linearly separable from two others.

RBFNs with 5, 10, 15, 20 and 25 radial Gaussian
elements, four inputs and three outputs were used for
classification. Results were averaged over 10 trials.
Obtained measurements were compared with the
traditional k-means clustering with SVD training and
with a cooperative, competitive genetic training as in
[10]. Fig.1 shows the number of miss-classified
patterns in the training data set after approximately
equal amount of CPU time corresponding to 100
generations of our algorithm. In each generation we
evaluate two offspring networks, therefore the average
number of objective function evaluations is two times
bigger than the number of generations. It is clear that
for larger network the relative performance of the
algorithm increases. Total classification has been
achieved for all runs with 25 elements in contrast to
other methods.

Locations and relative widths of basis units for RBFN
with 5 elements are shown in a 2D projection in the
feature 3 and feature 4 plane, at the end of training in
Fig. 2.

Figure 3 shows the dependence of the total network
error on the number of iteration for different number of
radial basis functions L. One iteration corresponds on
average to 2 presentations of the training data set.
MSE decreases quickly and reaches required for this

problem level 0.1 after 10-40 iterations. In general, the
time for getting the error threshold MSE = 0.1 was
comparable with the time of k-means algorithm.

5 10 15 20 25
0

2

4

6

8

10

 k-means
 C-C GA
 Cooperative EP

A
ve

. N
o.

 o
f M

is
cl

as
si

fie
d

P
at

te
rn

s

Number of RBF-units

Figure 1: Iris problem: Comparing different
algorithms after 100 generations of cooperative EP

1 2 3 4 5 6 7
0,0

0,5

1,0

1,5

2,0

2,5

 iris-setosa
 iris-versicolor
 iris-virginica

F
ea

tu
re

 4
:

pe
ta

l w
id

th
, c

m

Feature 3: petal length, cm

Figure2: Distribution of basis elements being evolved.

After reaching certain value of the error, the learning
rate significantly decreases. This is attributed to the
property of EP as a global search algorithm, to find
quickly the value in the vicinity of optimum, but then
spend a rather long time for final tuning. Several
iterations of the gradient search procedure can be used
to speed up the convergence to final values.

Other experiments were performed on the Glass Test
problem. This problem has nine features for each of
214 patterns, divided in training and testing set, to be
separated into 6 classes. The results of training after
200 generations were equal to results obtained on MLP

with architecture 9-16-8-6 (see e.g. [12]) with 572
weights and sigmoidal non-linearities.

0 20 40 60 80 100 120

0,00

0,05

0,10

0,15

0,20

0,25

 20 neurons
 10 neurons
 5 neurons

N
or

m
al

iz
ed

 M
S

E

Generations

Figure 3: Iris problem. Convergence plot for various
number of basis units

The authors have chosen an RBFN with 36 Gaussian
elements having almost the same number of adjustable
parameters. The values of MSE on training and testing
data sets show approximately equal generalisation
properties for MLP and RBFN for the given test
problem. However, the RBFN error for the training
data set is less after the same training time than the one
for the MLP from [12].

7. Conclusion

The paper presents a novel algorithm for evolutionary
training of RBFN. Evolution of a single network as a
population of neurons, but not a collection of
networks, seems to be an approach allowing avoidance
of large computational complexity in traditional
evolutionary algorithms for NN training. Moreover,
many difficulties associated with standard procedures
of genetic encoding can be successfully solved.
However, this approach requires more precise analysis
of the network decomposition and introduction of
relative fitness functions for the elements. In this
paper, RBFN adaptation is performed by means of
evolutionary programming. The described algorithm
for classification problems is competitive with the
traditional RBFN training techniques, and shows better
results for problems with large dimensionality.

A strong advantage of the new algorithm is its ability
to gradually change and adapt basis functions within
the learning procedure which includes alternative
refinement of the basis functions and a gradient
descent training. This advantage makes it applicable to
on-line adaptive systems.

The presented learning algorithm can be easily
extended and applied for the solution of a large class

of approximation problems by changing the fitness
function. In this way, the described evolutionary
learning approach can be used in almost every
application of RBFN from control to image processing.
In particular, this algorithm was used in neuro-fuzzy
system for production sales analysis. The algorithm
can be applied to other neuro-fuzzy architectures such
as the fuzzy neural network FuNN [13,14,15]. A
significant difference between the RBFN and the
FuNN architectures is that the former is based on basis
units which define cluster centres in the whole input
space, while the latter one uses fuzzy membership
functions for quontisation of the space of each
individual input variable. FuNN has the advantage of
adjusting the membership functions and the fuzzy rules
embedded in its structure during the operation of the
system (on-line) [15,16]. In addition to expanding the
number of the basis units and finding their optimum
number for a particular training data set, an on-line
adaptive RBFNs and FuNNs structures are being
developed at present which allow for ‘shrinking’, so
the number of the basis units (membership functions in
the FuNN case) can be reduced if necessary according
to new data coming on-line.

Acknowledgements

This research is supported by Research Institute for
Multiprocessor Computer Systems, Taganrog, Russia,
and partially supported by a research grant PGSF
UOO-606 from the New Zealand Foundation for
Research Science and Technology.

References

[1] M. J. D. Powell, The Theory of Radial Basis
Functions Approximation, in Advances of
Numerical Analysis , pp. 105–210 , Oxford:
Clarendon Press, 1992.

[2] F. Girosi, Some Extensions of Radial Basis
Functions and their Applications in Artificial
Intelligence, Computers Math. Applic., vol. 24,
no. 12, pp. 61-80, 1992.

[3] J.A. Leonard, M.A. Kramer and L.H. Ungar,
Using Radial Basis Functions to Approximate a
Function and Its Error Bounds, IEEE Trans. on
Neural Netwirks, vol.3, no. 4, pp.624-627, 1992.

[4] J. Moody and C. J. Darken, Fast Learning in
Networks of Locally Tuned Processing Units,
Neural Computation, vol. 1, pp. 281–294, 1989.

[5] Y. Linde, A. Buzo and R. Gray, An Algorithm for
Vector Quantizer Design, Proc. Of IEEE, Com-
28 (1), pp. 84-95, 1980.

[6] Schaffer, D. Whitley and L.J. Eshelman,
Combinations of genetic algorithms and neural
networks: A survey of the state of the art, in
Combinations of Genetic Algorithms and Neural
Networks, pp. 1-37, IEEE Computer Society
Press, 1992.

[7] J. Angeline, G.M. Saunders, and J.B. Pollak, An
evolutionary algorithm that constructs recurrent
neural networks, IEEE Transactions on Neural
Networks, vol.5, no. 1, pp.54-65, 1994.

[8] D.Prados, A fast supervised learning algorithm
for large multilayered neural networks, in
Proceedings of 1993 IEEE International
Conference on Neural Networks, San Francisco,
v.2, pp.778-782, 1993

[9] A.Topchy, O.Lebedko, V. Miagkikh, Fast
Learning in Multilayered Neural Networks by
Means of Hybrid Evolutionary and Gradient
Algorithm, in Proc. of the First Int. Conf. on
Evolutionary Computations and Its Applications,
ed. E. D. Goodman et al., (RAN, Moscow),
pp.390–399, 1996.

[10] B. A. Whitehead and T.D. Choate, Cooperative -
Competitive Genetic Evolution of Radial Basis
Function Centres and Widths for Time Series
Prediction", IEEE Transactions on Neural
Networks, vol. 7, no. 8, pp.869-880, 1996.

[11] Fogel L.J., Owens A.J. and Walsh M.J.
“Artificial Intelligence through Simulated
Evolution”, John Wiley & Sons, 1966.

[12] L. Prechelt, Proben1-A set of neural network
benchmark problems and rules, University
Karlsruhe, Technical Report 21/94, 1994

[13 N. Kasabov, Kozma, R., Watts, M. Optimisation
and adaptation of fuzzy neural networks through
genetic algorithms and learning- with- forgetting
methods and applications for phoneme-based
speech recognition. Information Sciences (1997)
accepted

[14] N. Kasabov, Foundations of Neural networks,
Fuzzy Systems and Knowledge Engineering, MIT
Press, 1996

[15] N. Kasabov, Kim, JS, Watts, M. and Gray, A.
FuNN/2 - A fuzzy neural network architecture for
adaptive learning and knowledge acquisition.
Information Sciences: Applications ,1997, in print

