
Chapter 6. Neuro-Genetic Information Processing for
Optimisation and Adaptation in Intelligent Systems

Michael Watts and Nikola Kasabov
Department of Information Science
University of Otago
P.O. Box 56, Dunedin, New Zealand
mjwatts@sol.otago.ac.nz, nkasabov@comerce.otago.ac.nz

Abstract. This chapter describes the intersection of two areas of artificial
intelligence research, genetic algorithms and neural networks. The chapter has six
main sections. The first describes the motivation for this research, which is
followed by a gentle introduction to the basic principles of genetic algorithms. The
third section deals with the application of genetic algorithms to conventional
neural networks, while the fourth continues this into neurofuzzy systems. The fifth
section describes some advanced neurogenetic systems and suggests a new model
for this. Finally, the conclusion reviews the preceding sections.

1. Introduction

Genetic algorithms (GAs) have long been known for their ability to find near
optimal solutions in large search spaces. Neural networks are also well established,
due to their ability to learn by example and generalise their behaviour to new data.
However, the performance of a neural network is often heavily influenced by
factors such as its architecture and training parameters, which are usually set by an
expert when the network is created. Much work in recent years has focussed on
combining the advantages of GAs and neural networks, to create a system where
the problems of neural networks can be addressed by the application of GAs. This
chapter presents some examples of this work, and suggests some methods to be
investigated now and in the future.

2. Genetic Algorithms - A Brief Introduction
Genetic algorithms (GAs) were first extensively described by John Holland in
(Holland, 1975). They were later developed by several people, including David
Goldberg (Goldberg, 1989), and have since been extensively investigated for a
variety of application areas, including engineering, art, and artificial intelligence.
GAs are biologically inspired search algorithms characterised by the following
qualities:
• They consist of Populations of Chromosomes, with each chromosome being

an encoded attempt at a problem solution.

98 Michael Watts and Nikola Kasabov

• Each chromosome consists of a string of Genes, with each gene representing a
parameter of the encoded problem solution.

• Promising chromosomes are used, through the use of genetic operators such as
crossover and mutation, to create new chromosomes, causing each successive
population to move closer to the optimal solution in a process similar to
biological evolution.

GAs possess the following advantages over conventional, iterative searches:
• They are efficient, possessing the ability to solve certain combinatorial

problems many orders of magnitude faster than iterative searches;
• They are problem independent, caring nothing of the problem being solved,

asking only that an attempt at a solution be rated according to how well it
solves the problem;

• They are implicitly parallel, investigating many alternative solutions
simultaneously.

An attempt at solving a problem by GA commonly proceeds along the following
seven steps (Goldberg, 1989):
1. Select an encoding schema
2. Randomly initialise a population of individuals
3. Evaluate each individual in the population
4. Select fit individuals to breed a new population
5. Create a new, child population from the parent breeding population
6. Replace some or all of the parent population with the child population
7. Repeat steps 3 - 6 until a terminating condition is reached

Each of these steps are described below.
Selection of an encoding schema for GAs has been, and still is, a matter of some

debate. The two competing schools of thought are known as the Principle of
Minimal Alphabets and the Principle of Meaningful Alphabets. Briefly, the
Principle of Minimal alphabets states that the representation used should use the
smallest possible number of characters. This is somewhat supported by nature,
which uses only a four character alphabet for DNA. The Principle of Meaningful
Alphabets states that the characters used should be directly relevant to the problem
being solved. This tends to lead to shorter chromosomes, but complicates
operations such as mutation.

Initialisation of a population of individuals is generally a simple operation. It
may sometimes be necessary to insert individuals whose gene values have been set
externally to the GA into the initial, random population, as a means of
incorporating problem specific knowledge into the GA and assisting it’s search.
While the initialisation of the population may not be a difficult problem, the
selection of the size of the population may be more problematic, and is often a
matter of compromise. Small population will be faster to process, due to the
smaller number of individuals to be evaluated and reproduced each generation.
However, small populations run the risk of stagnating genetically, i.e. the
population does not contain sufficient genetic diversity to properly explore the

 Neuro-Genetic Information Processing 99

search space. This problem is known as premature convergence and is similar to
the effects of inbreeding in biological populations.

Evaluating each individual within a population involves quantifying the fitness
of each individual. The method used to do this is highly dependent upon the
problem being explored, as the fitness of each individual depends upon how well it
solves the problem. The only requirements for the evaluation of each individual is
that the fitness value assigned accurately reflect the degree to which the individual
solves the problem, and that the values be calculated in a consistent manner across
the generations. No matter how the fitness is assigned, some form of normalisation
of fitness values is usually required, so that the genes of early ‘super fit’
individuals do not overwhelm those of their brethren.

Selection involves choosing individuals to form a breeding population. While
there are many methods of selection in use, they are all related in using the fitness
of the individual as the basis of their operation. With roulette wheel selection, for
example, each individual has a slice of a virtual roulette wheel assigned to it, with
the size of the slice determined by the individual’s relative fitness. Every time an
individual is required, the wheel is spun and the individual it lands on is selected.
With tournament selection, two individuals are selected by roulette wheel selection
and their fitness values compared, the one with the higher fitness being the one
selected.

Creating a new population from a breeding population involves two operators,
crossover and mutation. Crossover involves two chromosomes joining at one or
more points and exchanging genes. One method of crossover is one-point, where
the chromosomes join at one-point and exchange genes before and after the
crossover point. An example of crossover is shown in fig. 1. Here the crossover
occurs at the first locus. Another method is uniform crossover, where a ‘coin toss’
is performed at each locus, the result of the coin toss determining whether or not
an exchange of genes takes place at that locus. An example of uniform crossover is
shown in fig. 2. Here crossover is determined to occur at the second and third loci.

Figure 1: Example of One point crossover between two chromosomes

 A C B

 D F E

 A F E

crossover

 D C B

100 Michael Watts and Nikola Kasabov

Figure 2: Example of uniform crossover

The exact crossover technique used may have a significant effect upon the
performance of the GA. For some problems some alleles may only realise their full
effect when in the company of other alleles. Too high a number of crossover points
runs the risk of separating these alleles and hence degrading the performance of
future generations. Too few crossover points may be detrimental when the loci in
question are greatly separated on the chromosome. Mutation is given a high degree
of importance by biologists as “the original source of genetic variation”
(Campbell, 1996, pg. 424). While many GA researchers contend that it is not as
important as the biologists believe (Goldberg, 1989, pg. 14), the principle of
mutation remains unchanged: A gene is randomly selected with a certain
probability, and its value is altered. There are two methods used to make this
change. In the first the value of the gene is changed to an entirely new value. This
method is less effective with low order encoding schema, as there is a higher
chance of the new value being identical to the old. In the second method the
existing value is altered. This method is more effective for low order encoding
schema, as there is no chance of the mutation resulting in the same value. The rate
of mutation is also much debated. Too high a mutation rate may cause the GA to
degenerate to a random search. Too low a rate of mutation may not allow the GA
to escape from a premature convergence trap.

There are many strategies for the replacement of the parent population by the
child population. Some simply replace the entire parent population with the
children, while others replace parents only if the children are fit. The rationale
behind most replacement strategies is to purge the weaker genes while preserving
the stronger genes, although some strategies also maintain a small number of less
fit individuals in an attempt to preserve some genetic diversity and hence avoid
premature convergence.

 A C D B

 E G H F

 A G D F

 E C H B

 Neuro-Genetic Information Processing 101

One tactic that is often added to a selection strategy is elitism. In elitism, the
fittest individual passes unchanged from the parent population to the child. This is
to ensure that the fittest genes are not lost to the next generation, which is a
possibility with a stochastic system like a GA.

Selection of the initial parameters for a GA is a problem. One of the
disadvantages of GAs is their sensitivity to the initial parameters used to start the
search. As mentioned above, parameters such as population size, mutation rate and
the crossover technique used, all have a significant effect on the search ability of
the GA. Some attempts to find the optimal combination of parameters have used
combinatorial approaches, while others have used a GA to find the optimal
parameters for another GA (Freisleben and Härtfelder, 1993).

Random initialisation of a GA population may not always be suitable. If some
knowledge exists about the problem solution, then it may be more effective to
incorporate this information into the initial population. One way in which this can
be done is encoding some possible solutions into a chromosome structure and
inserting them into the initial population. This approach was used in solving the
Travelling Salesman Problem in (Grefenstette, 1987) and proved to be effective at
improving the initial search and increasing the efficiency of the search. Another
widely used method for incorporating heuristic knowledge into GAs is
constraining the range of values a particular gene may take. This is useful for
directing a particular parameter of the GA towards a specific area of the search
space.

3. Neurogenetic Systems

3.1. ANN Topology Determination by GA

The number of layers within a MLP and the number of nodes within each layer can
often have a significant effect upon the performance of the network. Too many
nodes in the hidden layers of the network may cause the network to overfit the
training data, while too few may reduce it’s ability to generalise. Selection of the
optimal number of layers and nodes is a difficult problem that is widely solved by
a ‘rule of thumb’ approach, the effectiveness of which is directly proportional to
the experience of the network designer. In recent years many researchers have
investigated using GAs for solving this problem.

In (Arena, 1993) each chromosome was treated as a two dimensional matrix,
with each cell row representing the presence or absence of one node of the
network. During evaluation, the number of nodes present in each layer was
counted and an appropriate MLP created. If no nodes were present in a row, then
that layer was not included in the phenotype. Crossover was implemented as the
exchange of a sub matrix from each parent. This method was tested on the
optimisation of a complex non-linear system and was shown to be effective at
determining a near optimal topology for the MLP.

102 Michael Watts and Nikola Kasabov

A different approach was taken in (Schiffman, Joost and Werner, 1993). Here
the length of the chromosome determined the number of nodes present, as well as
the connectivity of the nodes. This approach to ANN design was tested on a
medical classification problem, that of identifying thyroid disorders and provided
networks that were both smaller and more accurate than manually designed ANNs
were.

3.2. Selection of Control Parameters by GA

In addition to the selection of an ANN’s topology, it is also possible to select the
training parameters for the network. This has been investigated in e.g. (Choi and
Bluff, 1995).

In (Choi and Bluff, 1995) a GA was used to select the training parameters for the
backpropagation training of an MLP. In this work the chromosome encoded the
learning rate, momentum, sigmoid parameter and number of training epochs to be
used for the backpropagation training of the network. This technique was tested
with several different data sets, including bottle classification data, where a glass
bottle is classified as either being suitable for reuse or suitable for recycling and
breast cancer data, which classifies tissue samples as malignant or benign. For
each of the test data sets, the genetically derived network outperformed those
networks whose control parameters were manually set, often by a significant
margin.

3.3. Training of ANNs via GA

For some problems, it is actually more efficient to abandon the more conventional
training algorithms, such as backpropagation, and train the ANN via GA. For some
problems GA training may be the only way in which to guarantee convergence.

GA based training of ANNs has been extensively investigated by Hugo de Garis
(de Garis, 1990, de Garis, 1992). The networks used in these experiments were not
of the MLP variety, but were instead fully self connected, synchronous networks.
These “GenNets” were used to attempt tasks that were time dependent, such as
controlling the walking action of a pair of stick legs. With this problem the inputs
to the network were the current angle and angular velocity of the “hip’ and “knee”
joints of each leg. The outputs were the future angular acceleration of each of the
joints. Both the inputs and outputs for this problem were time dependent.
Conventional training methods proved to be incapable of solving this problem,
while GenNets solved it very easily. Other applications of GenNets involved
creating “production rule” GenNets, that duplicated the function of a production
rule system. These were then inserted into a simulated artificial insect and used to
process inputs from sensor GenNets. The outputs of the production rule GenNets
sent signals to other GenNets to execute various actions, i.e. eat, flee, mate etc.

A similarly structured recurrent network was used in (Fukuda, Komata and
Arakawa, 1997), to attempt a similar problem. The application area in this research

 Neuro-Genetic Information Processing 103

was using the genetically trained network to control a physical biped robot. The
results gained from this approach were quite impressive. Not only was the robot
able to walk along flat and sloped surfaces, it was able to generalise it’s behaviour
to deal with surfaces it had not encountered in training. Comparison of the results
gained from the genetically trained network to those trained by other methods
showed that not only did the genetically trained network train more efficiently than
the others, it was also able to perform much better than the others.

4. Neurofuzzy Genetic Systems

4.1. The FuNN Architecture

The FuNN fuzzy neural network is a very flexible model (Kasabov, 1997a). It is
essentially a fuzzy system that is trained and handled like a neural network, having
nodes and weights that represent input and output variables, fuzzy membership
functions, and fuzzy rules.

Tuning the membership functions in FuNNs is a technique intended to slightly
improve an already trained network. By slightly shifting the centres of the MF the
overall performance of the network can be improved. However, because of the
number of MFs in even a moderately sized network, and the degree of variation in
the magnitude of the changes each MF may require, a GA is the most efficient
means of achieving the optimisation.

Much of the flexibility of the FuNN model is due to the large number of design
parameters available in creating a FuNN. Each input and output may have an
arbitrary number of membership functions attached. The number of rule nodes may
vary considerably. Also, not all of the inputs used for the network may be
necessary. This is especially true for networks with a large number of inputs, for
example those used for speech recognition systems (Kasabov, 1997b). The number
of combinations these options yield is huge, making it quite impractical to search
for the optimal configuration of the FuNN combinatorially. Using a GA is one
method of solving this difficult problem and is the one that will be concentrated
upon here.

4.2. Optimisation Of FuNN Membership Functions By GA

Optimisation of FuNN MFs involves applying small deltas to each of the input and
output membership functions. Optimisation of conventional fuzzy systems by
encoding these deltas into a GA structure has been investigated in (Gan, Lan and
Zhang, 1995) and has been shown to be more effective than manual tuning.
Applying these same techniques to tuning FuNN MFs can be seen as a logical
extension of this previous work.

The initial GA population is randomly initialised, except for one chromosome,
which has all of the encoded delta values set to zero, to represent the initial
network. This, along with elitism, ensures that the network can only either improve

104 Michael Watts and Nikola Kasabov

in performance or stay the same, never degrade in performance. To evaluate each
individual, the encoded delta values are added to the centre of each membership
function and the recall error over the training data sets is calculated. In situations
where a small number of examples of one class could be overwhelmed by large
numbers of other classes, the average recall error is taken over several data sets,
with each data set containing examples from one class. Fitness of the individual is
calculated by the following formula:

f
er

= 1

 where f = the fitness of the individual, and er = the average overall recall

error of the test data sets.
The above methodology was used to optimise a FuNN that had been trained for

single phoneme recognition. The data was taken from the Otago Speech Corpus of
New Zealand English. (Sinclair and Watson, 1995). The data used was taken from
one male and one female speaker and consisted of seventy-eight melscale vectors,
representing three timesteps of twenty-six vectors. The target phoneme was /p/.
The bootstrapped backpropagation training algorithm was used for training the
network. Bootstrap training is useful in situations where there are large amounts of
data for some classes but relatively few examples of others. With Bootstrapped
training, each class is dipped into at regular intervals and a new training set built
with examples taken from each class in the specified proportions. The network is
then trained with ordinary backpropagation training on the generated training set.
In the case of this experiment, there were two classes of data, one positive, the
other negative and the training set was rebuilt every ten epochs. The network was
trained for a total of 1000 epochs, with the learning rate and momentum both set at
0.5. The FuNN was then submitted to the GA optimiser. The parameters for the
GA were a population size of one hundred, with one point crossover and
tournament selection being used and a mutation rate of one in one thousand. The
GA was run for one hundred generations, at the end of which the resulting FuNN
was tested and the results compared with those of the original network. These
results are tabulated below in table one.

Table 1: comparison of recall accuracy of a FuNN before and after optimisation of MF by
GA

Before Optimisation After Optimisation

Positive Examples Correct (%) 36.84211 85.96491
Negative Examples Correct (%) 99.83667 94.40588
Overall Examples Correct (%) 99.11201 94.30878

 Neuro-Genetic Information Processing 105

As can be seen from the table, the network’s ability to recognise the target
phoneme has increased dramatically, while it’s ability to reject the other
phonemes, and hence it’s overall performance, has only marginally decreased.

4.3. Design Of FuNNs By GA

Given a set of training and recall data, it is a relatively simple matter for a GA to
evolve an optimal topology for a FuNN, including those features selected as most
significant. Encoded within each chromosome is a sequence of values that indicate
whether or not a particular input feature is to be used by the network. Also
encoded in the chromosome is a sequence of values, one for each input, which
describes the number of membership functions to attach to each input. A similar
sequence of values describes the number of membership functions attached to the
outputs, and the number of rule nodes in the structure. To evaluate each individual,
the chromosome is decoded into a FuNN structure and the resulting FuNN trained
for a specific number of epochs with the training data set. When training is
complete, the recall error over the recall dataset is calculated and the fitness of the
individual determined according to the following formula

f w
i

w
e

w
e

i t

t

r

r

= × + × + ×tanh tanh tanh
1 1 1

where:

f = the fitness of the individual

wi = the weighting factor applied to the input component of the evaluation
function
i = the number of inputs in the network being evaluated
wt = the weighting factor applied to the training error component of the
evaluation function
et = the training error of the network
wr = the weighting factor applied to the recall error component of the evaluation
function
er = the recall error of the network

The tanh function is applied to each component of the evaluation function to
give each component the same significance in evaluation. The three weighting
factors are adjustable to allow the user to direct the GA towards a particular fitness
measure, e.g. to create a network with a minimal number of inputs, rather than
good training error, or a network with good generalisation capability and a larger
number of inputs.

In the example described here, the above methodology was used to design a
FuNN optimised for single phoneme recognition. For this experiment, New
Zealand English phoneme data was again used, and the target phoneme was /t/. An
initial population size of fifty individuals was used, with a mutation rate of one in
one thousand, one point crossover and tournament selection being used. The GA

106 Michael Watts and Nikola Kasabov

was run over fifty generations. Each individual chromosome was decoded into a
FuNN as described above and trained for five epochs on a subset of the total data
available, consisting of one hundred examples of the target phoneme and three
hundred examples selected from all other phonemes. Recall was over a similarly
structured dataset while the learning rate and momentum for the training phase was
set to 0.5 each. In this experiment, each of the weighting factors of the evaluation
function was set to one, giving each factor equal importance. At the termination of
the GA, the most fit individual of the final generation was trained for 1000 epochs
using the bootstrapped training algorithm across the entire data set, with the
learning rate and momentum again set to 0.5 each and the dataset being rebuilt
every ten epochs.

The structure of the network is presented below in table two.

Table 2: structure of the evolved FuNN

Input Nodes 27
Condition Nodes 193 (ranging from two to ten per input)
Rule Nodes 6
Action Nodes 3
Output Nodes 1

 In order to compare the performance of the GA designed FuNN against a
manually designed FuNN, a network with the architecture shown in table three was
created and trained with the same settings across the same dataset.

Table 3: structure of the manually designed FuNN

Input Nodes 78
Condition Nodes 234 (three per input)
Rule Nodes 10
Action Nodes 2
Output Nodes 1

The results of testing these two networks are compared in table four. It can be
seen that even though the genetically designed network has far fewer input nodes
than the manually designed FuNN, it’s ability to accurately classify both the
positive and negative examples of the test data set is superior to that of the
manually designed FuNN.

Table 4: comparison of recall accuracy for manually and genetically designed FuNNs

Manually
Designed

Genetically
Designed

Positive Examples Correct (%) 70 96
Negative Examples Correct (%) 91 93
Overall Examples Correct (%) 91 96

 Neuro-Genetic Information Processing 107

5. Evolutionary Neurogenetic Systems

5.1. The Brainbuilders at ATR

At the ATR laboratory in Kyoto, Japan, Hugo de Garis is leading an effort to
evolve an artificial brain. This research combines genetic algorithms and cellular
automata to “grow” simplified artificial neurons (Gers, de Garis and Korkin, 1997)
The ultimate goal of the CAM-Brain project is, by the year 2001, to create a
billion neuron artificial brain consisting of millions of neural network modules
controlling thousands of behaviours. CAM is an abbreviation of Cellular Automata
Machine, which refers to the specialised cellular automata hardware used in the
experiments. A cellular automaton (CA) (Tofoli and Margolus, 1987) is a
simplified simulation of a biological cell, with a finite number of states, whose
behaviour is governed by rules that determine it’s future state based upon it’s
current state and the current state of it’s neighbours. Cellular automata have been
used to model such phenomena as the flocking behaviour of birds and the
dynamics of gas molecules. The advantage of CA is their ability to produce
seemingly complex dynamic behaviours from a few simple rules.

In the CAM-Brain project, a GA is used to evolve a sequence of control signals,
which are used to control the growth of “trails” of cells within a three dimensional
space. When trails collide, a synapse is formed. Neural signals are sent down the
trails of cells and are processed by the neurons formed at the synapses. Each
module is evolved to perform one specific task, with the connectivity of the trails
providing the functionality of each module. The modules are then assembled into
complete systems.

This is an interesting approach, and early simulation results show that the
approach is capable of producing useful modules. However, each module must be
evolved to perform a specific task, as it is not possible to create a generic module
that is then trained to perform a specific task. Also, should a module’s
requirements change, an entirely new module must be created, as there is no
facility for adaptation. Finally, there is the question of the amount of time it would
take to define and assemble millions of modules into a functioning brain. With the
development of the CAM-Brain machine (CBM) it is now possible for the Brain
Builder group to evolve a module in less than a second. However, the goals, and
hence the GA fitness definition, of each module must be defined manually.
Clearly, the goals of a million modules would take a long time to define, not to
mention integrate into a working brain. These issues must still be addressed by the
Brain Builder group before the CAM-Brain system is widely accepted.

5.2. A General Framework of an Evolutionary Neuro-genetic System

The neo-computational models developed and used so far are mainly based on
using neurons and connections between them, the neurons being simple processing
elements. Interestingly enough, the research in neuro-physiology explores the
activation of the brain when performing different tasks and then creates models of

108 Michael Watts and Nikola Kasabov

it without necessarily accounting for the genetically defined information and
behaviour of these parts of the brain. More precise models of the brain and
therefore more adequate computational models will be created if the neurons do
have memory represented as genetically embodied information. This is the
motivation for and the rationale behind the development of the following
framework of a neuro-genetic system. The system has the following features:

• neurons are defined by: inputs; outputs; a chromosome of genes; an input
function; an activation function; an output function;

• connections between neurons are created dynamically as needed which is
based on the genetic information in the chromosomes attached to the
neurons;

• the genes may change through experience and self-analysis. The system
interacts with the environment, observes its behaviour and changes its genes,
if necessary, for a better performance. This is also a process of adaptation
of the system to the environment in which it operates

• each neuron contains the same chromosome but may only use some
particular genes for its operation, so the neurons may be specialised in
that way

• the chromosomes contain all the necessary information for the
functioning of the single neurons as well for the functioning of the system
as a whole

The approach taken here is based on the assumption that genetic information is
incorporated in each individual neuron. This genetic information has the function
of constraining and guiding the learning process. The learning process results in
knowledge accumulated as long-term memory in the system. Initially the system
starts with a set of neurons with few connections between them mainly defined
genetically. Gradually the neurons become connected to each other based on the
Hebbian learning or on the simultaneous activation of them when the same stimuli
are presented to the neural network system. The process of learning is continuous,
incremental and goes on as long as new stimuli are entered.

This approach has its biological motivation. As pointed out by Horace Barlow
(Barlow, 1994), "the neocortex gives an useful knowledge of the world in two
ways: not only does it discover the structure of its world by experience during its
lifetime, but it has mechanisms, adapted through the process of genetic selection,
the confer skills for doing this…the neocortex acquires knowledge of the world by
nature as well as by nurture…"

6. Conclusions And Future Work
The goal of this chapter has been to present some principles and examples of
combining the genetic algorithm and neural network paradigms. It has covered the
use of GAs to design, train and optimise neural networks, as well as outline an
entirely new, biologically motivated approach to neurogenetic computation.

This new approach is based on the following principles:

 Neuro-Genetic Information Processing 109

• two modes of learning
1. a genetically designed and slowly modified way, and
2. a fast stimulous-recation based learning

• redundancy of neurons in the neuronal space
• connections are created and removed dynamically as the system learns

The neuro-genetic approach to designing intelligent, adaptive systems would
make possible their applications for solving challenging problems that have not
been successfully solved so far. Such problems are: the predictive analysis of
genome information; creating a general AI learning theory which accommodates
both the natural evolution of species and brain development; building brain-like
computing systems.

Future research in these areas will likely include further integration of genetic
and neural systems, following the principles of artificial life and software agents to
create systems that can grow and evolve in an on-line, incremental mode. Such a
framework is the ECOS (Evolving Connectionist Systems) framework (Kasabov,
98, this volume). ECOS and its realisation EFuNN need to be optimised and the
evolutionary programming paradigm seems to be appropriate for this purpose.
Current and previous research into neurogenetic systems has so far only scratched
the surface of what is possible by marrying these two powerful techniques.

REFERENCES
1. Amari, S. and Kasabov, N. (1997) eds. Brain-like Computing and Intelligent

Information Systems, Singapore, Springer Verlag.
2. Arena, P., Caponetto, R., Fortuna, L., Xibilia, M.G.. M.L.P. (1993) Optimal

Topology via Genetic Algorithms. In Albrecht, R.F., Reeves, C. R., Steele, N.
C. (Eds.), Artificial Neural Nets and Genetic Algorithms , Spring-Verlag
Wien, New York.

3. Barlow, (1994) “What is the computational goal of the Neocortex?”. In Koch,
C., and Davis, J. Large Scale Neuronal Theories of the Brain, MIT Press.

4. Campbell N.A. (1996) Biology, Fourth Edition, Benjamin / Cummings.
5. Choi and Bluff (1995) Genetic Optimisation of Control Parameters of a

Neural Network. In Kasabov, N. and Coghill, G. (Eds.), Proceedings of
ANNES ’95, Los Alamitos, CA: IEEE Computer Society Press.

6. de Garis, H. (1990) Genetic Programming : Evolution of a Time Dependent
Neural Network Module Which Teaches a Pair of Stick Legs to Walk In
Proceedings of the 9th.European Conf. on Artificial Intelligence, Stockholm,
Sweden

7. de Garis, H. (1992) Artificial Nervous Systems: The Genetic Programming of
Production-Rule-GenNet Circuits. In Proceedings of the International Joint
Conference on Neural Networks, Beijing, China.

8. Freisleben, B. and Härtfelder, M. (1993) Optimisation of Genetic Algorithms
by Genetic Algorithms. In Albrecht, R.F., Reeves C. R., Steele, N. C. (Eds.),
Artificial Neural Nets and Genetic Algorithms, Spring-Verlag Wien, New
York.

110 Michael Watts and Nikola Kasabov

9. Fukuda, T., Komata, Y., and Arakawa, T. (1997) Recurrent Neural Networks
with Self-Adaptive GAs for Biped Locomotion Robot. In Proceedings of the
International Conference on Neural Networks ICNN'97 . IEEE Press,
Houston.

10. Gan, M., Lan, H. and Zhang, L. (1995) A Genetic-based Method of
Generating Fuzzy Rules and Membership Functions by Learning from
Examples. In Proceedings of International Conference on Neural
Information Processing (ICONIP ’95) , Publishing House of Electronics
Industry, Beijing, China.

11. Gers, F., de Garis, H., and Korkin, M. (1997) CoDi-1Bit: A Simplified
Cellular Automata Based Neuron Model . In AE97, Artificial Evolution
Conference, Nimes, France.

12. Goldberg, D.E., (1989) Genetic Algorithms in Search, Optimisation and
Machine Learning, Addison-Wesley.

13. Grefenstette, J. J. (1987) Incorporating Problem Specific Knowledge into
Genetic Algorithms. In Davis, L. (Ed.) Genetic Algorithms and Simulated
Annealing, Morgan Kaufmann Publishers, Inc., Los Altos, California.

14. Holland, J. H., (1975) Adaptation in Natural and Artificial Systems, MIT
Press, Cambridge, Massachusetts.

15. Kasabov, N., Kozma, R., Watts, M. (1997) Optimisation and adaptation of
fuzzy neural networks through genetic algorithms and learning- with-
forgetting. Information Sciences.

16. Kasabov, N., Kim, JS, Watts, M. and Gray, A. (1997a) FuNN/2 - A fuzzy
neural network architecture for adaptive learning and knowledge
acquisition. Information Sciences: Applications.

17. Kasabov, N., Kozma, R., Kilgour, R., Laws, M., Taylor, J., Watts, M. and
Gray, A. (1997b) A Methodology for Speech Data Analysis and a
Framework for Adaptive Speech Recognition Using Fuzzy Neural Networks.
In Kasabov, N., Kozma, R., Ko, K., O’Shea. R., Coghill, G. and Gedeon, T.
(Eds.) Progress in Connectionist-Based Information Systems, Springer,
Singapore.

18. Kasabov, N., Watts, M. (1997) Genetic algorithms for structural optimisation,
dynamic adaptation and automated design of fuzzy neural networks. In
Proceedings of the International Conference on Neural Networks ICNN'97.
IEEE Press, Houston.

19. Schiffman, W., Joost, M. and Werner. R. (1993) Application of Genetic
Algorithms to the Construction of Topologies for Multilayer Perceptrons. In
Albrecht, R.F., Reeves C. R., Steele, N. C. (Eds.), Artificial Neural Nets and
Genetic Algorithms, Spring-Verlag Wien, New York.

20. Sinclair, S., and Watson, C. (1995) The Development of the Otago Speech
Database. In Kasabov, N. and Coghill, G. (Eds.), Proceedings of ANNES ’95,
Los Alamitos, CA: IEEE Computer Society Press.

21. Tofoli, T. and Margolus, N. (1997) Cellular Automata Machines: a New
Environment for Modelling. The MIT Press, Cambridge, MA, 1997.

