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Abstract 
 

This paper presents some preliminary results of an original study to model the emergence of bilingual 

acoustic clusters of both New Zealand English and New Zealand Maori speech. This is performed using true 

on-line learning in a connectionist architecture. The study represents a joint collaborative analysis, which 

applies the bilingual data as training examples to a connectionist-based evolving clustering method algorithm. 

The algorithm returns a structure containing acoustic clusters plotted using visualization techniques that could 

be used as the foundations for future speech classification systems. The following experiments are based on the 

notion that approximately 75% of the phonological units in New Zealand English and New Zealand Maori 

occupy similar acoustic space, they sound the same, and therefore they can be used to classify new unknown 

speech units or words. 
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1. Introduction 
 

The core principles of speech recognition, namely pattern recognition and classification are both generic 

knowledge engineering problem-solving tasks. These tasks are related to recognizing and/or classifying an 

unknown property or fact with a set of existing known properties or facts [1]. This study looks at the 

classification problem to model both New Zealand English (NZE) and New Zealand Maori (NZM) speech into 

known theoretical acoustic clusters. The first section presents data analysis constructed into two working 
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models that can be used as the foundations for future speech recognition or classification systems. The analysis 

focused on the word segments extracted from speech examples from the NZE and NZM languages; this 

determined a baseline model. The second section discusses a novel approach to collectively label both 

languages with an arbitrary notation called ‘minimal acoustic segments’ (MAS). This approach will be 

presented as an alternative to the traditional linguistic nomenclature. The next section will briefly describe a 

hybrid connectionist-based approach, and the ‘evolving clustering method’ algorithm (ECM). The final 

section reports on the initial results of the experimental connectionist-based ‘bilingual speech clustering’ 

(BLSC) model. 

 

1.1. Word Segment Analysis 
 

We have substantial information about NZE and NZM phonology, the lexicon and the current status in 

terms of their bilingual relationships. Therefore we have implicit knowledge about the similarities and 

dissimilarities between the two languages. Thus one can make some general and informed assumptions about 

both. To lay down the benchmark for this BLSC problem, we first analyzed both lexicons for phoneme 

matching pairs to extract empirical knowledge about the data before we presented it to the connectionist 

architecture. Understanding the relationships between the phonemes in either language was not so important as 

actually knowing how the many occurrences of each appeared in their respected pairs. This will become more 

apparent when the results of the BLSC analysis is reviewed in Section3.2. 

A training data set from NZM and NZE were assembled. The data sets contained 100 words each (see 

Tables 1 and 2). A testing data set was also assembled, containing additional word entries not included in the 

training set. All speech and word examples were extracted from a single male speaker with utterances in both 

languages from the MOOSE database [2].  

To construct the training data sets, random samples of the NZE and NZM words were taken. Once 

pre-processed, these sets showed too many imbalances with the phoneme and syllable sizes between the 

languages. That is, there was substantially more NZM data for the same number of NZE words. Tables 1 and 2 

clearly show that the NZM data set has about twice as many syllables and a third more phonemes. Syllable 

boundaries and the number of phonemes for each data set were determined because this was considered an 

important factor to note prior to the BLSC analysis [3]. 

The NZE 100 words contained sixty-five single syllable words and seventy double syllables, a total of 135 



syllables and 311 phonemes. In NZM, there were only three single syllable words, one hundred and twenty 

double syllables, sixty-six with three syllables, forty-four with four and twenty with five syllables, a total of 

253 syllables. There were also a total of 435 NZM phonemes. The large differences between the two languages 

clearly shows that the phonemic and morphemic structures are vastly different [2]. Therefore we were very 

interested in knowing how the under-represented individual number of NZM phoneme units (19) with its 

over-populated phoneme and syllable count, would compare to NZE (45 phonemes). In this respect, NZE is the 

opposite of NZM, with the exception of the total phoneme count. 

We looked at the speech data from an acoustic perspective, and disregarded the phonological order. That is, 

the acoustic representation for each phoneme is separate in each language, but identical across the languages, 

where matches occurred. For example, ‘go’ [gou] and ‘ahau’ [ahou] (my) use the same NZE diphthong. With 

one exception, the voiced post-alveolar approximant represented as /r/ in NZE is transcribed as an alveolar 

trill [{] for NZM [2]. Therefore, the rolling of /r/ in NZM is very distinct compared to NZE, thus it was 

considered important to identify these two phonemes separately. The NZM samples also has twice as much 

silence before and after each word. Note the IPA transcriptions were used to identify all phonemes [4]. 

Phoneme frequency analysis was then performed on both lexicons to determine the number of occurring 

phonemes in each. In Table 3, the consonants which have high frequency counts are the shared phonemes 

between NZE and NZM, this includes the vowel phonemes /e/ /i/ /u/ /ç/ and /a/ which again are the five 

vowels in NZM. Figs. 1 and 2 give a better indication of the influence that NZM has on the overall frequency. 

In summary, this data analysis was an important step before we submitted the speech data set examples to 

the BLSC networks. We now have data sets that represent a random sample for training and testing, but more 

importantly, these sets represent acoustic variations between the two languages. Because we are only 

interested in language variations in this preliminary study, we achieved this by using a single native speaker of 

both languages, thus ensuring any speaker variances were controlled. 

 

1.2. Minimal Acoustic Segment Annotations 
 

Linguistic annotations cover the descriptive and analytical transcriptions of a wide range of text and speech 

notations. Speech and language databases are one example of the linguistic annotations that have been 

developed to specifically describe all the elements and their relationships within this technological tool [5]. 

Standardization is one area of linguistic annotation that has been difficult to maintain, granted the wide fields 



that this format methodology must cover. As various attempts have already been made to standardize computer 

file formats, there have also been just as many efforts placed on the logical structures of linguistic formats [6]. 

In addition, a specialized view closely associated with this analysis, also uses a logical linguistic notation to 

describe rule node activations from a neural network classifier [7]. 

Therefore, the novel approach to collectively label NZE and NZM with an arbitrary annotation is based on 

the assumption that approximately 75% of the phonological units in both languages occupy similar linguistic 

and acoustic space. We have called this annotation, ‘minimal acoustic segments’ (MAS) because they 

represent sub-units of sound that can have no limit on length or quantity. A succession of MAS would 

represent higher orders of sound, and will appear at all levels of the classification task. The successive 

similarities between MAS at those higher levels could be equated to say, phonemes, syllables or even whole 

words. Because, initially, no assumptions were made about the BLSC analysis results would present, we could 

only initially say that the MAS would at the least, represent varying units of sound as output values.  

To identify these units, we have decided to move away from the standard linguistic annotations and rely on 

this arbitrary concept during the initial labeling process. This hypothesis will be tested in Section2.2 and 

Section3.2 with further comments and discussions that should justify the use of a new form of annotation. 

 

1.3. Connectionist-Based Approach 
 

A paradigm shift from the statistical modeling approach to a symbolic rule-based approach has occurred 

over the past twenty years. In 1989 there was an article about connectionist systems breaking through the 

problem barriers with more advances than the traditional statistical modeling techniques [8]. Over this time, 

continued research has developed a wealth of proven scientific and engineering approaches to solve the 

endless problems associated with the ‘artificial intelligence’ (AI) and connectionist archetype. Nevertheless, 

both old and new approaches still have their theoretical and practical applications in this expanding field. This 

is also pertinent when hybrid connectionist and classical approaches are both combined to extract the best 

features from each method, thus adding to an even greater selection of AI connectionist problem-solving 

applications.  

Artificial neural networks (or ANN) are dedicated parallel processing structures that can represent 

symbolic knowledge [9]. Many different types and models of the ANN have been applied to numerous 

problem-solving tasks, from classical to novel approaches [10]. Collectively, all these ANN’s are known as 



machine-learning architectures which are generally called ‘connectionist systems’ [1]. The connectionist 

approach represents knowledge-based structures that can be trained with data. They can therefore learn from 

past experiences, they can adapt, they are able to generalize, they are robust and they utilize massive parallel 

connections to best apply their problem-solving capabilities [7]. 

 

1.3.1. Evolving Connectionist Systems. The Evolving Connectionist System (ECOS) toolbox is a hybrid 

connectionist-based system that utilizes fuzzy logic inference and evolutionary programming. ECOS was 

developed under the research program ‘Connectionist-based Intelligent Information Systems (CBIIS) [7].  

The ECOS principles are based on connectionist structures which can be quickly modified on-line through 

interactions with the environment they are exposed to. ECOS will enhance the general ANN model by 

improving training and learning, by increasing memory and storage, and by reducing local minima problems 

during training [7, 11, 12, 13]. 

The ECOS framework is an emerging research theme which will ultimately consist of the following 

characteristics [14];  

• Fast learning through ‘one-pass’ training;  

• Adaptable to new data, features and classes;  

• Open-ended structure that can accommodate for new inputs, nodes, outputs, and connections;  

• Memory stored in new connections to reduce ‘catastrophic forgetting’; 

• Continuously interacting with its data environment;  

• Ability to explain its behavioral learning;  

• Represents spatial-temporal concepts.  

 

1.3.2. Evolving Clustering Method (ECM). An evolving clustering method (ECM) can be employed in both 

on-line and off-line evolving connectionist models. ECM can effectively learn complex temporal sequences in 

an adaptive way. The ECM and its extension, an ‘Evolving Clustering method with Constrained Minimization’ 

(EC-CM), both of which are used in the ECOS model for partitioning the input space [15, 16]. 

The evolving clustering with constrained minimizing algorithm uses the Evolving Clustering (EC) 

procedure in a fast, distance-based, one-pass clustering process. Optimizing of the on-line estimation for 

clusters and cluster centers is required, as the Constrained Minimizing (CM) optimizer processes the results 

from the EC to allow more suitable off-line tasks. This is in order to partition the input space with training data 



for creating fuzzy rules if and when required.  

EC is specially designed for on-line modes employed by the ECOS framework [15]. The ECM algorithm 

comprises of two functions. The first function is for clustering the data set in either an on-line or off-line 

training mode. This function takes two parameters. The first parameter is the data to be clustered and the 

second (which is optional) is a list of parameters. This function returns a structure containing a field of 

clustered centers. This represents the network weights, and is the basis of the visualization techniques 

described in Section 2.1. The second ECM function is used for plotting the results of the network weights [3, 

16]. 

ECM has been compared with other clustering methods, such as fuzzy C-means [17], and subtractive 

clustering method [18]. The results can outperform these well known methods [16]. The ECM algorithm is 

implemented in the ‘Matlab’ numeric computing environment [19]. 

 

2. Nonlinear Acoustic Modeling 
 

The nonlinear acoustic modeling is the principle feature of this analysis, it uses the ECM method as the 

basis of the following experiments. Here we will present results based on the NZE and NZM speech data sets. 

All the speech examples were extracted from a single male speaker containing word utterances in both 

languages. The justification for using a single speaker in these initial experiments was because we were 

primarily interested in the language variations, as opposed to speaker variations. Three experiments are of 

interest, and will be compared with each other; 

i)   Experiment-1 involved presenting all the NZE speech data to the ECM, followed by all the 

NZM speech data; 

ii)  Experiment-2 was similar, except that the NZM speech was presented first;  

iii) Experiment-3 saw both NZE and NZM data randomly shuffled together before being 

presented. 

 

This analysis attempts to train three ECM models to respond differently to three controlled speech stimuli. 

This process was framed around the hypothesis of how learners of different languages cluster similar sounds in 

perceptual space. If a foreign-language sound is similar, but not the same, to a native-language sound, then the 

learner will categorize the sound in their native-language. When they are exposed to two languages in various 



orders, their ability to discriminate is very high, especially in infants [20].  

In effect, we are attempting to model two types of bilinguals; the first is the adult ‘second language learner’ 

(NZE + NZM or NZM + NZE), and the second is the infant bilingual native-language learner (NZE- NZM 

mixed). Although both language models can cluster the two languages, the main learning effects are different. 

The first could be using the perceptual magnet effect where sounds are clustered around a winning prototype, 

and the second uses perceptual space to discriminate between similar sounds [21]. Ultimately, both models 

cluster the sounds in a similar fashion. 

  

2.1. Speech Data Processing, Training and Visualization 
 

The speech data is processed using a Matlab ‘GetData’ function which can take up to four parameters, only 

the first is mandatory. The parameters are; the ‘wave file name’; the amount of ‘overlap’ between frames; the 

desired ‘length’ of the sample; and the number of samples to ‘skip’. The overlap defaults to 256 samples (50%). 

The length defaults to the length of the entire speech file. The number of samples to skip defaults to zero. In 

normal usage, the last two parameters can be left as the default. The GetData function also requires the 

‘readwav’ and ‘melcepst’ functions from the ‘Matlab VoiceBox’ [19].  

The following function will return 512 FFT frames transformed into 26 ‘mel-scale cepstrum coefficients’ 

(MSCC) resulting in twelve frequency components. In addition, the log power MSCC was also calculated, thus 

each frame consists of twenty-seven vectors with consecutive frames overlapping by half [3]. If required, the 

raw wave data may also be returned. 
 

function [msccdata, wavedata] = GetData(wavefilename,overlap,length,skip); 
  if nargin<3,length = -1;end; 
  if nargin<4,skip=0;end; 
  [wavedata,FS] = readwav(wavefilename,'s',length,skip); 
  if nargin<2, overlap=256;end; 
  p=floor(3*log(FS)); 
  n=pow2(floor(log2(0.03*FS))); 
  msccdata = melcepst(wavedata,FS,'Na0ye',27,p,n,overlap); 
return; 

 

This speech data transformation processing format has been found to be the best suited process for this type 

of network and classification problem [6]. Therefore the MSCC’s were presented to the ECM as a consecutive 

stream of unsupervised training speech examples. The first ECM function required a distance threshold (Dthr) 

of ‘0.155’ which was used for all the experiments. This threshold was determined to yield the correct amount 

of cluster nodes that can be represented as the arbitrary annotation of the MAS. 



The transformation results for 100 NZE words produced 5,725 MSCC samples in a 27 dimensional 

configuration. The small distance threshold parameter keeps the number of clusters down to 61, which is a 

comparable total. The training data is only presented once  (Epochs  = 0) and the time taken for training was 

less than 10 minutes (see Fig. 3).  

The results for 100 NZM words produced 6,832 samples (1000 more than NZE). There were 71 clusters 

which was similar to NZE and the training time was also slightly less (see Fig. 4). 

After training the cluster plots of both languages did not seem to indicate any relative representation of 

actual words being presented to the network. Otherwise, the important feature here was the cluster learning 

rates, or evolving clusters. As the amount of MSCC samples increases, this implies that more clusters are being 

created to accommodate for the new unknown data examples. The learning gradient starts off steep and then 

begins to plateau after about 1000 samples, the learning curve then becomes more linear. This is 

understandable, given that new rule nodes will be created early to represent all the new presentations of the 

acoustic units of the language. Then as more and more units are identified as being similar to previous 

examples, they are aggregated and clustered to the winning neuron. Thus less and less nodes are created later 

on in training. There will come a point where the saturation phase of training is reached and no more new 

neurons are created, unless, new unknown units are presented to the network. 

These initial experiments were used to test the structure of the data sets with the ECM. The results were 

ideal for visualization of the clusters and the evolving learning, but large areas of the cluster space was empty. 

This is because we were only seeing the first two dimensions of the 27-dimensional array (e.g. X1-X2). Which 

may not have enough relevant information to assist us in our evaluation of the ECM performance. 

Therefore, an alternative statistical method was used. We decided to use the ‘principle component analysis’ 

(PCA) feature extraction and reduction process. This method transforms the high dimensionality of a pattern 

by extracting the most informative data features [22]. For example, projecting the network output weight 

variables (e.g. data clusters and centers) onto an alternative co-ordinate system where most of the sound unit 

variables will be correlated with each other, while others will not be correlated. This means the preservation of 

information is still maintained even when the reduction in dimensional size is performed [23]. PCA effectively 

finds the best features from the ‘p-dimensional’ variables and transforms them into the smaller ‘q-dimensional’ 

model (q = p) [24].  

The first two dimensions of this co-ordinate transformation reflect the two most important extracted 

components. For clustered speech data, these PCA components account for approximately 20% of the variance. 



Whereas the X1-X2, accounted for less than 6% of the variance. The PCA analysis on all the experiments were 

carried out individually. The amount of variance accounted for by the first six PCA dimensions are shown in 

Table 4. 

Two functions allow the PCA to be used for plotting purposes [15]. The first function plots the extracted 

centers and data samples in PCA space. However, the dimensions of the PCA plot are now abstract, that is, 

they are non-linear generative models [21]. They now give us little or no clue about the new properties of the 

cluster centers, because they have been forced into another dimensional feature pattern. Nevertheless, we are 

confident that similar cluster centers will stay together, and the data points will appear closer to their 

appropriate cluster centers compared with the X1-X2 plots.  

Two parameters are required for the ‘PlotPCA’ function. The first is the normalized data, the second is the 

structure returned from the first ECM function. Note that the returned structure contains the normalized data 

used in the creation of the cluster centers. However, the syntax of the PlotPCA function is intended to allow 

data other than that used to create the cluster centers, to be used in visualization. For example, the cluster 

centers found using NZE speech data may be plotted with the data extracted from the NZM speech examples. 

In Fig. 5 the resulting plot shows the data is well distributed. 

 

2.2. Mono-lingual Acoustic Clustering 
 

The second and most important function was implemented to plot a single NZE test word onto the PCA plot 

[2].  

In Fig. 6, the start point of the word is marked with an ‘x’ character, and the feature points are connected 

with lines. The word ‘nine’ was plotted onto the same PCA space as in Fig. 5. Because we do not know exactly 

what each cluster center represents, we can only speculate about the words plot trajectory. On the middle-left 

of the figure, the starting point is obscured by the large area of what is assumed to be ‘silence’ at the beginning 

of the word. The first phoneme /n/ appears to be in the bottom-right hand corner and the diphthong /ai/ is at 

the top-right, followed by the second /n/ sound in the bottom-middle, and again returning back to the 

middle-left as silence in the word ending. 

The final part of this speech data visualization, was to label the clusters on the PCA plots with a notation 

that would reflect the MAS. The only logical way in which we implemented this process was to consecutively 

number the clusters as they were being created. Therefore, this numeric notation gave a clear indication about 



the relationships between the sequences and where word plot trajectories start and end around correlating 

values. See Section 3.2 and Figs. 9 to 11 for an illustrated account of the MAS labeling system. 

 

3. Modeling the Emergence of Both Languages 

 

3.1. Bilingual Acoustic Clustering 
 

The NZE data set (with 100 words) had created a total of 5,725 frames and NZM data created 6,832 frames. 

On account of the NZM data set having a greater number of syllables, this would explain the increased number 

of frames (see Tables 1 and 2). In Experiment-1, the NZE data alone created fifty-four clusters and an 

additional fourteen were created once the NZM data was presented. Experiment-2, the NZM data created 

forty-nine clusters and in addition, the NZE data produced fifteen more clusters. For Experiment-3, both 

languages produced more clusters than either of the languages did when presented separately (see Table 5). 

The lower number of first language clusters for NZM then NZE is understandable, given the phoneme 

inventory for NZM is much smaller. Although the NZM syllable count was much higher, this has managed to 

balance out the cluster numbers slightly.  

Fig. 7 shows the overall evolving cluster learning rates for each ECM experiment. These three gradients 

were tracked over the period of their total MSCC frame samples and the number of clusters created for each. 

Experiment-1 (NZE + NZM) shows a predictable learning curve (e.g. close to linear) for the first language, as 

the majority of the clusters have been created (e.g 54). Then as the NZM data was introduced to the network 

(e.g. at E-M), far less clusters were created for about the same amount of data samples presented. The second 

language learning curve overall was still linear, but not as steep. This is the ECM aggregation of learning, 

where ‘sounds-like’ units from the second language are mapped onto the same winning clusters (neurons) of 

the first language.  

Experiment-2 (NZM + NZE) initially shows a similar learning curve to the first, but after about 3,000 NZM 

samples the aggregated learning starts much earlier. This seems to be the result of all the possible acoustic units 

in NZM having already been presented to the network. From this point on, there are less clusters created by 

comparison to the first experiment. Thus, the angle is not as steep, but the curve remains relatively linear right 

up until the second language was introduced (e.g. at M-E). Here we can see that once the NZE samples are 

presented, the curve seems to run parallel with the first experiment, with a convergence only happening near 



the end. One would have expected an early convergence of the two curves, with an initial creation of more 

clusters to allow for the new ‘unknown acoustic units’ from NZE. Nevertheless, we can assume the longer 

periods of aggregation are probably due to the initial slow response of the ECM to self-organize the clusters 

on-line. Furthermore, the time taken for the nodes in the multidimensional space to be re-organized, may have 

also had an effect on the number of clusters being created around these nodes. 

Experiment-3 has provided the most interesting results from Fig. 7, as the random mixed set of words from 

both languages has revealed some contradictory results. From the onset, the learning did not follow the 

expected steep curve we were looking for. Granted, that having a total of seventy clusters would indicate a 

higher rate of learning compared to the first two experiments. As this was not the case, we speculated on the 

results in the following way. The random sort function may not have distributed the samples in the linear 

manner we would have expected across the entire sample period. The first case scenario is that one language is 

over represented at the beginning, but there is enough of the other language present to alter the learning pattern 

compared to the first two experiments. There is the possibility that many words with similar phonemes were 

shuffled to the beginning of the data set. There is also the possibility that many words with contrasting or 

opposing phonemes could have caused this poor learning initially. Furthermore, words with more silence than 

others may have influenced this outcome (e.g. it was noted that the NZM speech examples have much more 

silence than the NZE examples). This is especially evident after the twentieth neuron was created, when there 

were no new neurons created for well over 1,000 samples. Probably the most likely case is the larger array of 

complexity that both languages would create when the two divergent samples were mixed (see Fig. 1 and 2). 

This maybe especially true when we consider that NZE has a higher number of consonants over vowels, but 

with the overall greater distribution. Whereas, NZM have the same amount of consonants and vowels, at a 

higher frequency, but with less distribution overall.  

A final reason for Experiment-3 yielding contradictory results, could be a combination of all the above. 

Therefore, we analyzed each of the nodes at the time they were created, and counted the number of samples 

that were associated with each node from the two languages. Fig. 8 clearly shows the proportions of language 

samples appearing at each node over the entire training period. 

If we compare Fig. 7 with 8, the first obvious point is that NZM samples have swamped the initial training 

data right up to about the twenty-sixth node. Note that there are very few samples clustered at the twentieth 

node, given that the 1,000 odd samples over this period were all being aggregated. Then after the twenty-sixth 

node, NZE starts to become more predominant, which in turn influences the increase in learning rate on a much 



steeper gradient, which starts to become linear right to the end. In Fig. 7, the mixed data indicates that at this 

point the learning surpasses the other two experiments, and would seem to continue to evolve further. The 

large amount of samples appearing at nodes ‘1’, ‘28’ and ‘64’ can be assumed to be silence. 

 

3.2. Bilingual Test Results 

 

The next series of results shows a test word trajectory for each of the three experiments. The output 

bilingual plots were created using the PlotWord PCA function [2]. Here, the following series of plots are 

compared with each other, as the same NZE word was projected for each experiment. 

In Fig. 9, the word ‘zoo’ is projected onto the NZE + NZM PCA plot. The start is marked with an ‘x’ at the 

upper-left, with the words trajectory points marked as connected lines. Using the MAS notation, we can say 

that labels ‘1 to 54’ represent shared NZE and NZM space, with labels ’55 to 68’ being the difference when 

NZM was presented. Note, NZM may also have had a slight effect on where the NZE labels were finally 

plotted. The upper-left of the plot is the starting point for silence. The phoneme /z/ appears to be in the 

upper-middle part and the /u/ is at the upper-right, and then the trajectory returns back through the middle to 

silence again. 

In Fig. 10, the same word is projected onto the NZM + NZE PCA plot. The MAS ‘1 to 54’ are the shared 

labels for NZM and NZE with labels ’55 to 64’ being the difference when NZE was presented. The mid-left 

starts with silence and phoneme /z/ is in the middle with /u/ at the lower-right, then the trajectory returns back 

through the middle to silence again. Although the MAS labels are plotted in different PCA space compared to 

Fig. 9, the word trajectory here appears to be a mirror image of the word in Fig. 9. The distance is maintained 

but the plots are different. 

In Fig. 11, the mixed language PCA plot shows a similar resemblance to Fig. 9 for the MAS labels. Again, 

the mid-left starts with silence and /z/ is in the middle with /u/ at the upper-right, then as usual the trajectory 

returns back through the middle to silence again. The word trajectory also appears similar to Fig. 9 with the 

distance and plots being maintained. 

To summarize this section, the test results for one word projected onto three different bilingual PCA plots 

clearly shows that the words acoustic frames (including silence) hold their relative position of distance and 

clusters. Furthermore, the MAS labels can represent the sub-unit acoustic space of the speech data, which 

when grouped together can form phonemes of similar ‘distinctive features’ (DF), and when highly distributed, 



they can represent phonemes with opposing DF [2, 4]. 

Future experiments should include increasing the number of word examples. This should test the general 

rule that once all the clusters have been created for a particular language, any number of extra speech examples 

will be aggregated, thus the initial nodes will remain stable. Furthermore, on account that NZM has heavily 

influenced most of the phonemes that it has clustered with NZE, a more selective process in the number of 

phonemes and syllable boundary words in NZM should be undertaken. This may also account for the initial 

slow learning rate of Experiment-3 where NZM samples saturated the ECM. 

 

4. Conclusion 

 

Reporting on the connectionist-based bilingual speech clustering system was not about the acoustic 

classification of each language, but more about modeling the emergence of the acoustic spaces within the 

bilingual speech framework. As a conclusion, the evolving cluster analysis enables one language to be easily 

added to an existing system, along with its accents and modifications. The clustering of nodes that can 

represent all the acoustic units in n-dimensional perceptual space are the ideal basis for constructing future 

speech classification systems.  

Clearly, the results point toward a future connectionist-based architecture as an effective means of 

classifying speech. But this comes with a cautionary note that these experiments are still in their infancy, and 

would require much further research and analysis (e.g. more speech examples, more speakers and other 

languages) to fully justify the claim that these AI architectures are effective at classifying and visualizing 

speech. 

This paper has attempted to tackle the most difficult task of speech classification using a bilingual speech 

data approach. Furthermore, we had also taken a risk by using a newly developed connectionist-based method 

that has just recently been exposed to the public domain, and is now receiving peer reviews. Therefore, this 

paper in general could be viewed as using a novel approach with a novel method to solve a long-standing 

problem. Nevertheless, the goal to integrate a minority language, such as Maori, from the language and 

linguistic paradigms with an emerging information technology has now been undertaken. Although, further 

comparative research and development is definitely required. 
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Appendix. 
 
Table 1 
The 100 selected NZE words, showing the phonetic transcriptions and the syllable count for each word. 
Note the number of syllables in total is 135 

100 
NZE Words: 

IPA 
Transcriptions: 

Number  
Syllables: 

100 
NZE Words: 

IPA 
Transcriptions: 

Number  
Syllables: 

ago ´ g ou 2 nod n Å d 1 
ahead ´ h e d 2 one w v n 1 
air E´ 1 ooze u z 1 
any e n i 2 other v D ´ 2 
are a r 1 over ou v ´ 2 
auto ç t ou 2 palm p a m 1 
away ´ w ei 2 paper p ei p ´ r 2 
baby b ei b i 2 pat p Q t 1 
bat b Q t 1 pea p i 1 
bird b Œ d 1 peace p i s 1 
boo b u 1 pure p j u´ 2 
book b U k 1 push p r U S 1 
boot b u t 1 rather r a D ´ r 2 
buzz b v z 1 recent r i s I n t 2 
card k a d 1 reef r I f 1 
carrot k Q r Å t 2 riches r I tS I s 2 
choke tS ou k 1 river r I v ´ r 2 
coffee k Å f i 2 rod r Å d 1 
dart d a t 1 rouge r ou Z 1 
day d ei 1 rude r ou d 1 
dead d e d 1 school s k u l 1 
die d ai 1 seven s e v I n 2 
dog d Å g 1 shoe S u 1 
dove d v v 1 shop S Å p 1 
each i tS 1 sing s I N 1 
ear i´ 1 singer s I N Œ 2 
eight ei t 1 six s I k s 1 
ether i D ´ 2 sue s ou 1 
fashion f Q S n 2 summer s v m ´ r 2 
fat f Q t 1 tan t Q n 1 
five f ai v 1 tart t a t 1 
four f ç r 1 teeth t i T 1 
fur f Œ 1 teethe t i D 1 
go g ou 1 that D Q t 1 
guard g a d 1 thaw T ç 1 
gut g v t 1 there D E´ 2 
hat h Q t 1 three T r i 2 
hear h i´ 2 tour t u´ 2 
how h aw 1 tragic t r Q dZ k  2 
jacket dZ Q k I t 2 tub t v b 1 
joke dZ ou k 1 two t u 1 
joy dZ çi 1 utter v t ´ r 2 
judge dZ v dZ 1 vat v Q t 1 
lad l Q d 1 visit v I z I t 2 
ladder l Q d ´ 2 wad w Å d 1 
leisure l e Z 2 yard j a d 1 
letter l e t Œ 2 yellow j e l ou 2 
loyal l çi l 2 zero z i r ou 2 
mad m Q d 1 zoo z u 1 
nine n ai n 1 zoo z u 1 



Table 2 
The 100 selected Mäori words, showing the phonetic transcriptions and the syllable count for each word. 
Note the number of syllables in total is 253, nearly twice as many as NZE 

100 
Mäori Words: 

IPA 
Transcriptions: 

Number  
Syllables: 

100 
Mäori Words: 

IPA 
Transcriptions: 

Number  
Syllables: 

ahakoa a h a k ç a 5 nama n a m a  2 
ahau a h ou  2 nei n ei  1 
ahiahi a h i a h i 4 ngahere N a h e { e  3 
ake a k e  2 ngaro N a { ç  2 
ako a k ç  2 ngäkau N a k ou  2 
aku a k u  2 ngäwari N a w a { i  3 
anake a n a k e  3 ngeru N e { u  2 
anei a n ei  2 noa n ç a  2 
anö a n ç  2 nöu n ç u  1 
aroha a { ç h a  3 nui n u i  2 
atu a t u  2 oma ç m a  2 
atua a t u a  3 one ç n e  2 
aua ou a  2 oneone ç n e ç n e  4 
auë ou e  2 ono ç n ç  2 
ähei a h ei  2 ora ç { a  2 
ähua a h u a  3 oti ç t i  2 
ähuatanga a h u a t a 

N a  
5 otirä ç t i { a  3 

äkuanei a k u a n ei 4 öku ç k u  2 
äpöpö a p ç p ç  3 öna ç n a  2 
ätähua a t a h u a 4 pakaru p a k a { u  3 
äwhina a f i n a  3 pekepeke p e k e p e k 

e  
4 

engari e N a { i  3 pikitia p i k i t i a 4 
ëhara e h a { a  3 poti p ç t i  2 
ënä e n a  2 putiputi p u t i p u t 

i  
4 

ënei e n ei  2 rangatira { a N a t i { a 4 
ërä e { a  2 reri { e { i  2 
ëtahi e t a h i  3 ringaringa { i N a { i N 

a  
4 

hanga h a N a  2 rongonui { ç N ç n u i 4 
heke h e k e  2 rüma { u m a  2 
hine h i n e  2 tahuri t a h u { i  3 
hoki h ç k i  2 tënä t e n a  2 
huri h u { i  2 tikanga t i k a N a  3 
iho i h ç  2 tokorua t ç k ç { u a 4 
ihu i h u  2 tuna t u n a  2 
ika i k a  2 unu u n u  2 
inäianei i n a i a n 

ei 
5 upoko u p ç k ç  3 

ingoa i N ç a  3 uri u { i  2 
inu i n u  2 uta u t a  2 
iwa i w a  2 utu u t u  2 
kaha k a h a  2 waha w a h a  2 
kaiako k ai a k ç  3 waiata w ai a t a  3 
kete k e t e  2 wero w e { ç  2 
kino k i n ç  2 whä f a  1 
koti k ç t i  2 whakahaere f a k a h a e 

{ e 
5 

kura k u { a  2 whakapai f a k a p ai 3 
mahi m a h i  2 whanaunga f a n ou N a 3 
mea m e a  2 whero f e { ç  2 
miraka m i { a k a 3 whiri f i { i  2 
motu m ç t u  2 wiki w i k i  2 
muri m u { i  2 würu w u { u 2 



 
 
 
 
 
 
 
 

Table 3 
The 46 phonemes for NZE and Mäori, showing the frequency count for each phoneme 
 
Corpu
sCode

: 

 
Phoneme

: 

NZE 
Count: 

Mäori 
Count: 

Total 
Count: 

Corpu
sCode

: 

 
Phoneme

: 

NZE 
Count: 

Mäori 
Count: 

Total 
Count: 

1 p 9 11 20 23 w 3 7 10 
2 b 9 - 9 24 j 3 - 3 
3 t 26 23 49 25 I 12 - 12 
4 d 19 - 19 26 e 7 31 38 
5 k 10 29 39 27 Q 14 - 14 
6 g 5 - 5 28 v 9 - 9 
7 f 7 7 14 29 A 7 - 7 
8 v 7 - 7 30 V 2 - 2 
9 T 3 - 3 31 i 12 43 55 

10 D 6 - 6 32 a 8 95 103 
11 s 11 - 11 33 ç 3 36 39 
12 z 6 - 6 34 Œ 4 - 4 
13 S 4 - 4 35 u 8 34 42 
14 Z 2 - 2 36 ei 5 6 11 
15 h 4 24 28 37 ai 3 3 6 
16 tS 3 - 3 38 çi 2 - 2 
17 dZ 6 - 6 39 ou 11 5 16 
18 m 3 8 11 40 au 1 - 1 
19 n 9 27 36 41 i´ 2 - 2 
20 N 2 15 17 42 u´ 2 - 2 
21 l 8 - 8 43 Œ´ 2 - 2 
22 r 20 - 20 45 ´ 12 - 12 
50 { - 31 31      

 



 
 
 
 
 
 
 

Table 4 
Variance accounted for by various numbers of PCA dimensions 
 

# PCA Variance for each language 
Dimensions: NZE: Mäori: Both: 

1 0.1216 0.1299 0.1084 
2 0.1821 0.1956 0.1643 
3 0.2229 0.2315 0.2024 
4 0.2587 0.2639 0.2315 
5 0.2852 0.2940 0.2552 
6 0.3081 0.3172 0.2755 

 
 
 
 
 
 
 
 
 
 
Table 5 
The number of clusters created for each experiment 
 
 
Experiments: 

Number of first language 
clusters: 

Total number of 
clusters: 

 
Difference: 

NZE then Mäori: 54 68 14 
Mäori then NZE: 49 64 15 
Both Languages Mixed: - 70 - 

 
 



 
 
 
 
 
 

Fig. 1. NZE and Mäori consonant phoneme counts from100 words each. 
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Fig. 2. NZE and Mäori vowel phoneme counts from 100 words each. Note that although /w/ and 
/j/ function phonotactically as consonants, they are acoustically equivalent to vowels and are 
therefore included in the vowel counts. 
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Fig. 3. Plotting the custering results for 100 NZE words. Showing 5,725 MSCC samples in a 27 
dimensional configuration, of which only the first two are plotted (X1-X2). The small distance 
threshold parameter keeps the number of clusters to a comparable  total. Also note that the 
training data is only presented  once  (Epochs  = 0) and the time taken for training is less than 10 
minutes. 

 



 
Fig. 4. Plotting the custering results for 100 Mäori words. Note even though there are more 
samples for Mäori (1000+), the clusters are similar to the NZE and the training time is slighly 
less. 

 



 
Fig. 5. PCA plot results for 100 NZE words. The grey mass are all the data samples and the 
black circles represent the cluster centres. 

 



 

 
Fig. 6. The NZE word ‘nine’ plotted in PCA space. Note if we discount silence, there are three 
main trajectory points indicating the start of the word, the middle  and the ending. 
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Fig. 7. Plots the evolving clusters over the entire sample periods for all three experiments. Note 
the ‘E-M’ and ‘M-E’ positions which indicate where one language ends and the other starts. 
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Fig. 8. Mixed proportion of language over the number of samples at each node. 

 



 
Fig. 9. NZE + Mäori MAS labelled plots on the PCA space, with the word ‘zoo’ projected. 



 

 
Fig. 10. Mäori + NZE MAS labelled plots on the PCA space, with the word ‘zoo’ projected. 

 



 
Fig. 11. Mixed language MAS labelled plots, with the word ‘zoo’ projected.  

 
 


