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Abstract.  This paper introduces a novel RBF model – Transductive Radial 
Basis Function Neural Network with Weighted Data Normalization (TWRBF). 
In transductive systems a local model is developed for every new input vector, 
based on some closest to this vector data from the training data set. The 
Weighted Data Normalization method (WDN) optimizes the data normaliza-
tion range individually for each input variable of the system. A gradient de-
scent algorithm is used for training the TWRBF model. The TWRBF is illus-
trated on two case study prediction/identification problems. The first one is a 
prediction problem of the Mackey-Glass time series and the second one is a 
real medical decision support problem of estimating the level of renal func-
tions in patients. The proposed TWRBF method not only gives a good accu-
racy for an individual, “personalized”  model, but depicts the most significant 
variables for this model. 

1   Introduction: Transductive Modeling and Weighted Data 
Normalization 

Most of learning models and systems in artificial intelligence, developed and imple-
mented so far, are based on inductive methods, where a model (a function) is derived 
from data representing the problem space and this model is further applied on new 
data. The model is usually created without taking into account any information about 
a particular new data vector (test data). An error is measured to estimate how well 
the new data fits into the model. The inductive learning and inference approach is 
useful when a global model of the problem is needed even in its very approximate 
form. In contrast to the inductive learning and inference methods, transductive 
methods estimate the value of a potential model (function) only in a single point of 
the space (the new data vector) utilizing additional information related to this point. 
This approach seems to be more appropriate for clinical and medical applications of 
learning systems, where the focus is not on the model, but on the individual patient. 
Each individual data vector may need an individual, local model that best fits the 



new data, rather then a global model, in which the new data is matched without 
taking into account any specific information about this data.       

A transductive method is concerned with the estimation of a function in single 
point of the space only [13]. For every new input vector xi that needs to be processed 
for a prognostic/classification task, the Ni nearest neighbours, which form a data sub-
set Di, are derived from an existing data set D or/and generated from an existing 
model M. A new model Mi is dynamically created from these samples to approximate 
the function in the point xi – Fig. 1 and Fig. 2. The system is then used to calculate 
the output value yi for this input vector xi .  

 

 
 

Fig. 1. A block diagram of a transductive model. An individual model Mi is trained for every 
new input vector xi with data use of samples Di selected from a data set D, and data samples 
D0,i generated from an existing model (formula) M (if such a model is existing).  Data sam-
ples in both Di  and D0,i  are similar to the new vector xi according to defined similarity crite-
ria. 

 
In many neural network models and applications, raw (not normalized) data is 

used. This is appropriate when all the input variables are measured in the same 
units. Normalization, or standardization, is reasonable when the variables are in 
different units, or when the variance between them is substantial. However, a general 
normalization means that every variable is normalized in the same range, e.g. [0, 1] 
with the assumption that they all have the same importance for the output of the 
system.   

For many practical problems, variables have different importance and make dif-
ferent contribution to the output. Therefore, it is necessary to find an optimal nor-
malization and assign proper importance factors to the variables. Such a method can 
also be used for feature selection, or for reducing the size of the input vectors 
through keeping the most important ones [12]. This is especially applicable to a 



special class of models – the clustering based neural networks or fuzzy systems (or 
also: distance-based; prototype-based) such as RBF [6, 10] and ECOS [3, 4]. In such 
systems, distance between neurons or fuzzy rule nodes and input vectors are usually 
measured in Euclidean distance, so that variables with a higher upper bound of the 
range will have more influence on the learning process and on the output value, and 
vice versa. 

 

 
 
       �  –  a new data vector;    �  – a sample from D;     

�
 – a sample from M 

 
Fig. 2. The new data vector is in the centre of a transductive model (here illustrated with two 
of them – x1 and x2),  and is surrounded by a fixed number of nearest data samples selected 
from the training data D and possibly generated from an existing model M.  

 
The paper is organized as follows: Sect. 2 presents the structure and algorithm of 

the TWRBF model. Sect. 3 and 4 illustrate the approach on two case study problems. 
Conclusions are drawn in Sect. 5. 

2  Transductive RBF Neural Networks with Weighted Data 
Normalization: Structure and Learning Algorithm  

The origin of the radial basis function (RBF) models is in the approximation theory 
and in the regularization theory [10]. They deal with the general approximation 
problem common to supervised learning neural networks. Standard RBF networks 
have three layers of neurons: input layer - that represents input variables; hidden 
layer – representing centers of clusters of data in the input space; and output layer – 
that represents the output variables. Although RBF networks usually need more 
neurons in their hidden layer than standard feed-forward back-propagation networks, 
such as MLP, they train much faster than MLP networks and can be used to extract 
meaningful rules based on clusters of data. RBF models work very well when there is 
enough training data.  

A TWRBF network has an additional layer – the WDN layer for weighted data 
normalization. Gaussian kernel functions are used as activation functions for each 
neuron in the hidden layer. The TWRBF structure is shown in Fig. 3. 

 



 
 

Fig. 3. The Structure of the proposed TWRBF Network 
 

 
For each new data vector xq, the TWRBF learning algorithm performs the follow-

ing steps: 
1. Normalize the training data set (the values are between 0 and 1) with the initial 

input variable weights. 
2. Search in the training data set in the input space with weighted normalized 

Euclidean distance, defined as Eq.1, to find Nq training examples that are closest 
to xq. The value for Nq can be pre-defined based on experience, or - optimized 
through the application of an optimization procedure. Here we assume the former 
approach. 
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where:  x, y �  RP and wj are weights. 

3. Calculate the distances di, i = 1, 2, …, Nq,  between each of these data samples 
and xq. Calculate the vector weights vi = 1 – (di – min(d)), i = 1, 2, …, Nq,  
min(d) is the minimum value in the distance vector d = [d1, d2, … , dNq].  

4. Use the ECM clustering algorithm [5, 11] (or some other clustering methods) to 
cluster and partition the input sub-space that consists of Nq selected training sam-
ples.  

5. Create Gaussian kernel functions and set their initial parameter values according 
to the ECM clustering procedure results; for each cluster, the cluster centre is 
taken as the centre of a Gaussian function and the cluster radius is taken as the 
width.  

6. Apply the gradient descent method to optimize the parameters of the system in 
the local model Mq that include the individual variable normalization weights (the 
upper bound of the normalization intervals, the lower bound being 0) (see Eq. 2-9 
below). 



7. Search in the training data set to find Nq samples (the same to Step 2), if the same 
samples are found as the last search the algorithm turns to Step 8, otherwise, Step 
3.  

8. Calculate the output value yq for the input vector xq applying the trained model. 
9. End of the procedure. 

 
The parameter optimisation procedure is described below: 
Consider the system having P inputs, one output, and M neurons in the hidden 

layer, the output value of the system can be calculated on input vector xi = [x1, x2, …, 
xP] as  follows: 

y = f(xi) = b0 + b1 R1(xi)  +  b2 R2(xi), … , +  bM RM(xi)        (2) 
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mlj and � lj are parameters of Gaussian functions, wj are weights of input variables. 
In the TWRBF learning algorithm, the following indexes are used:  

• Training Data pairs:  i = 1, 2, …, N; 
• Input Variables:  j = 1, 2, …, P; 
• Neurons in the hidden layer: l = 1, 2, …, M; 
• Learning Iterations:  k = 1, 2, … 

The TWRBF learning algorithm minimizes the following objective function (an 
error function): 
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The gradient descent algorithm (back-propagation algorithm) is used on the 
training data pairs, [xi, ti], to obtain the recursions for updating the parameters b, m, 

�  and w such that E of Eq. 4 is minimized: 
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here, �
b, 

�
m, ���  and �

w are learning rates for updating the parameters b, m, �  and 
w respectively. 

3   Case Study Example of Applying the TWRBF for A Time-Series 
Prediction 

In this paper, the TWRBF network is applied to a time series prediction. The 
TWRBF learning is demonstrated on the Mackey-Glass (MG) time series prediction 
task [8]. The MG time series is generated with a time-delay differential equation as 
follows: 
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To obtain this time series values at integer points, the fourth-order Runge-Kutta 
method was used to find the numerical solution to the above MG equation. Here we 
used the following parameter values: a time step of 0.1, x(0) = 1.2, τ = 17 and x(t) = 
0 for t < 0. From the input vector [x(t – 18)  x(t – 12)  x(t – 6)  x(t)], the task is to 
predict the value x(t +85). In the experiments, 3000 data points, from t = 201 to 
3200, were extracted as training data; 500 data points, from t = 5001 to 5500 were 
taken as testing data. For each of these testing data sample a local transductive 
model is created and tested on this data. 

 
Table 1. Experimental results on MG data 

Model 
Neurons 
or rules 

Training 
iterations 

Testing 
NDEI 

WDN - Input variable  
 w1       w2       w3           
w4 

MLP 60 500 0.022 1 1 1 1 

ANFIS 81 500 0.025 1 1 1 1 

DENFIS 58 100 0.017 1 1 1 1 

RBF 128 200 0.031 1 1 1 1 

TWRBF 
6.2 

(average) 200 0.012 0.95 1 0.74 0.89 

 

To compare the performance of the TWRBF method we conducted the following 
experiments. We applied some well-known inductive models, such as MLP [9], RBF 
[9], ANFIS [1, 2] and DENFIS [5], on the same data. The experimental results are 
listed in Table 1 that includes the number of neurons in the hidden layer (for MLP  



and RBF) or fuzzy rules (for ANFIS and DENFIS), training iterations and testing 
NDEI – non-dimensional error index which is defined as the root mean square error 
(RMSE) divided by the standard deviation of the target series, the WDN upper bound 
for each input variable. It is seen that variable x2 is at average the most significant 
when this method is applied.   

The proposed method, TWRBF, evolves individual, “personalized”  models and 
performs better at average than the other inductive, global models. This is a result of 
the fine tuning of each local, individual model in TWRBF for each simulated exam-
ple. The finely tuned local models achieve a better local generalization.       

4. Case Study Example of Applying the TWRBF for A Medical 
Decision Support Problem 

A real data set from a medical institution is used here for experimental analysis. The 
data set has 447 samples, collected at hospitals in New Zealand and Australia. Each 
of the records includes six variables (inputs): age, gender, serum creatinine, serum 
albumin, race and blood urea nitrogen concentrations, and one output - the Glomeru-
lar Filtration Rate (GFR) value. All experimental results reported here are based on 
10-cross validation experiments with the same model and parameters and the results 
are averaged. In each experiment 70% of the whole data set is randomly selected as 
training data and another 30% as testing data.  

For comparison, several well-known methods are applied on the same problem, 
such as the MDRD function [7], MLP and RBF neural network [9], adaptive neural 
fuzzy inference system (ANFIS) [1] and dynamic evolving neural fuzzy inference 
system (DENFIS) [5] along with the proposed TWRBF and results are given in Table 
2. The results include the number of fuzzy rules (for ANFIS and DENFIS), or neu-
rons in the hidden layer (for RBF and MLP), the testing RMSE (root mean square 
error), the testing MAE (mean absolute error) and the average weights of the input 
variables representing their average significance for the GFR prediction. It is seen 
that Sreatenine and Age are the most important variables at average. 

Table 2. Experimental results on GFR data 

Model Neurons 
or rules 

Testing 
RMSE 

Testing 
MAE 

Weights of input variables 
   Age       Sex      Scr        Surea    Race       Salb   
    w1        w2       w3          w4         w5         w6 

MDRD __ 7.74 5.88 1 1 1 1 1 1 

MLP 12 8.44 5.75 1 1 1 1 1 1 

ANFIS 36 7.49 5.48 1 1 1 1 1 1 

DENFIS 27 7.29 5.29 1 1 1 1 1 1 

RBF 32 7.22 5.41 1 1 1 1 1 1 

TWRBF 
5.1 

(average) 7.10 5.15 0.92 0.63 1 0.78 0.37 0.45 



The proposed TWRBF method not only gives a good accuracy at average, but provides 
a good accuracy for an individual, “personalized”  model, and also depicts the most 
significant variables for this model as it is illustrated on fig.3 on a single, randomly 
selected sample from the GFR data. The importance of variables for a particular pa-
tient may indicate potential specific problems and a personalized treatment.    

Table 3. A TWRBF personalised model of a single patient (one sample from the GFR 
data) 

Values for the 
Input variables of a 

selected patient 

Age 
58.9 

Sex 
Female 

Scr 
0.28 

Surea 
28.4 

Race 
White 

Salb 
38 

Weights of input 
variables (TWRBF) 

for this patient 0.84 0.62 1 0.83 0.21 0.41 

Results 
GFR (desired) 

18.0 
MDRD 

14.9 
TWRBF 

16.2 

 

5   Conclusions 

This paper presents a transductive RBF neural network with weighted data normali-
zation method – TWRBF. The TWRBF results in a better local generalization over 
new data as it develops an individual model for each data vector that takes into ac-
count the new input vector location in the space, and it is an adaptive model, in the 
sense that input-output pairs of data can be added to the data set continuously and 
immediately made available for creating transductive models.  This type of model-
ling can be called “personalised” , and it is promising for medical decision support 
systems. As the TWRBF creates a unique sub-model for each data sample, it usually 
needs more performing time than inductive models, especially in the case of training 
and simulating on large data sets.  

Further directions for research include: (1) TWRBF system parameter optimiza-
tion such as optimal number of nearest neighbors; and (2) applications of the 
TWRBF method for other decision support systems, such as: cardio-vascular risk 
prognosis; biological processes modeling and prediction based on gene expression 
micro-array data.   
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