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Abstract

The paper discussesthe concept of intelligent expert
systemsand suggeststools for building adaptable,in an
on-line or in an off-line mode,rule baseduring the system
operationin a changingenvironment. It appliesevolving
fuzzy neural networks EFuNNs as associative memories
for the purposeof dynamic storing and modifying a rule
base.Algorithms for rule extractionandrule insertionfrom
EFuNNsareexplainedandappliedto a casestudyusinggas
furnacedataandtheiris dataset.
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1.Introduction: On-line Adaptive Intelligent Expert Sys-
tems

The traditional expert systems,basedon a fixed set of
rules, have significantly contributed to the developmentof
AI andintelligentengineeringsystemsin thepasttwo years.
Despitetheir success,more flexible tools for dynamicrule
adaptation,rule extractionfrom data,andrule insertionin a
rule baseareparticularyneededwhenexpertsystemshaveto
operatein an adaptive, on-line mode,and in a dynamically
changingenvironment. The complexity and the dynamics
of many real-world problems,especiallyin engineeringand
manufacturing,requiresophisticatedmethodsand tools for
building adaptive intelligentexpertsystems(IES). Suchsys-
temsshouldbe ableto grow asthey work, to build-up their
knowledgeandrefinethemodelthroughinteractionwith the
environment. Seven major requirementsof the next genera-
tion intelligent systemsarediscussedin [8, 9, 12, 13]. Here
they arepresentedin thecontext of thenew generationof in-
telligentexpertsystems(IES).

Knowledge is the essenceof what an IES has learned.
Knoweldge-BasedNeuralNetworks(KBNN) areneuralnet-
works pre-structuredto allow for dataand knowledgema-
nipulation,including learningfrom data,rule insertion,rule
extraction,adaptationandreasoning.KBNN have beende-
velopedeitherasa combinationof symbolicAI systemsand
NN [2, 5], or asa combinationof fuzzy logic systemsand
NN [1, 3-7,14,16,18,19] Ruleinsertionandrule extraction
operationsareexamplesof how a KBNN canaccommodate

existing knowledgealongwith data,andhow it canexplain
what it haslearned.Therearedifferentmethodsfor rule ex-
tractionwell experimentedandbroadlyappliedso far [2-7].
Unfortunately, themethodsproposedsofar arenot appropri-
atewhenthesystemis working in anadaptive,on-linemode
in a changingenvironment.

Thepapersuggestsamethodologyof usingevolving fuzzy
neuralnetworksEFuNNsfor thepurposeof building IESand
illustratesit on two casestudybenchmarkdatasets.

2.Fuzzy Neural Networks FuNNs

2.1.The FuNN architecture and its functionality

Fuzzyneuralnetworks areneuralnetworks that realisea
set of fuzzy rules and a fuzzy inferencemachinein a con-
nectionistway [3-7, 16,18]. FuNN is a fuzzyneuralnetwork
introducedin [6, 7, 14] anddevelopedaspartof acomprehen-
sive environmentFuzzyCOPE/3for building intelligent sys-
tems(available free on the WWW http://kel.otago.ac.nz/).
It is a connectionistfeed-forwardarchitecturewith five lay-
ersof neuronsandfour layersof connections.Thefirst layer
of neuronsreceivesthe input information. Thesecondlayer
calculatesthe fuzzy membershipdegreesto which the input
valuesbelongto predefinedfuzzymembershipfunctions,e.g.
small,medium,large. The third layerof neuronsrepresents
associationsbetweentheinputandtheoutputvariables,fuzzy
rules.Thefourth layercalculatesthedegreesto whichoutput
membershipfunctionsarematchedby theinput data,andthe
fifth layercalculatesexactvaluesfor theoutputvariables’de-
fuzzification.A FuNN hasfeaturesof botha neuralnetwork
and a fuzzy inferencemachine. A simple FuNN structure
is shown in Fig.1. Throughgrowth or shrinkage,the num-
ber of neuronsin eachlayer can potentially changeduring
operation.Thenumberof connectionscanalsobe modified
throughlearningwith forgetting,zeroing,pruningandother
operations[6, 14].

The membershipfunctions(MF) usedin FuNN to repre-
sentfuzzy values,are of triangulartype, the centresof the
trianglesbeingattachedasweightsto thecorrespondingcon-
nections.TheMF canbemodifiedthroughlearning,altering
thecentresandthewidthsof thetriangles.

Several training algorithms have been developed for
FuNN [6, 14]. Several algorithmsfor rule extraction from
FuNNshavealsobeendevelopedandapplied[6, 17].
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Figure1: A FuNNstructureof 2 inputs(inputvariables),2 fuzzylinguistic
termsfor eachvariable(2 membershipfunctions). The numberof the rule
(case)nodescanvary. Two outputmembershipfunctionsareusedfor the
outputvariable.

Oneof themrepresentseachrule nodeof a trainedFuNN
asanIF-THEN fuzzy rule.

3.Evolving Fuzzy Neural Networks EFuNNs

3.1.A general description

EFuNNsareFuNNstructuresthatevolveaccordingto the
ECOSprinciples[8]. EFuNNsadoptsomeknown techniques
from [6, 15, 16] andfrom otherknown NN techniques,but
here all nodesin an EFuNN are createdduring (possibly
one-pass)learning. The nodesrepresentingMF (fuzzy la-
bel neurons)canbe modifiedduring learning. As in FuNN,
eachinput variable is representedhereby a group of spa-
tially arrangedneuronsto representa fuzzy quantisationof
thisvariable.For example,two neuronscanbeusedto repre-
sent“small” and“large” fuzzyvaluesof avariable.Different
membershipfunctions(MF) canbeattachedto theseneurons
(triangular, Gaussian,etc.). New neuronscanevolve in this
layer if, for a given input vector, the correspondingvariable
valuedoesnot belongto any of the existing MF to a degree
greaterthanamembershipthreshold.A new fuzzy inputneu-
ron,or aninput neuron,canbecreatedduringtheadaptation
phaseof anEFuNN.

The EFuNN algorithm, for evolving EFuNNs,hasbeen
first presentedin [9]. A new rule node rn is createdand
its input and output connectionweightsare set as follows:
W1(rn)=EX; W2(rn) = TE, where TE is the fuzzy output
vector for the currentfuzzy input vectorEX. In “one-of-n”
EFuNNs,the maximumactivation of a rule nodeis propa-
gatedto the next level. Saturatedlinear functionsare used
asactivation functionsof the fuzzy outputneurons.In case
of “many-of-n” mode,all theactivationvaluesof rule (case)
nodes,that are above an activation thresholdof Athr, are
propagatedfurtherin theconnectioniststructure.

3.2.The EFuNN learning algorithm

TheEFuNNevolving algorithmis givenasaprocedureof
consecutivesteps[8, 9, 10, 11, 13]:

1. Initialise an EFuNN structurewith a maximumnum-

berof neuronsandzero-valueconnections.Initial con-
nectionsmay be setthroughinsertingfuzzy rulesin a
FuNN structure. FuNNs allow for insertionof fuzzy
rulesasaninitializationprocedurethusallowing for ex-
isting informationto beusedprior to theevolving pro-
cess(therule insertionprocedurefor FuNNscanbeap-
plied [6, 14]). If initially thereareno rule (case)nodes
connectedto thefuzzy input andfuzzy outputneurons
with non-zeroconnections,thenconnectthefirst node
rn=1 to representthe first exampleEX=x1 andset its
inputW1(rn)andoutputW2(rn)connectionweightsas
follows: � Connecta new rule nodern to representan
exampleEX � : W1(rn)=EX;W2(rn)= TE, whereTE is
thefuzzyoutputvectorfor the(fuzzy)exampleit EX.

2. WHILE �
thereareexamples� DO

Enterthecurrentexample��� , EXbeingthefuzzyinput
vector(thevectorof thedegreesto which theinputval-
uesbelongto theinputmembershipfunctions).If there
arenew variablesthatappearin this exampleandhave
not beenusedin previous examples,createnew input
and/oroutputnodeswith their correspondingmember-
shipfunctionsasexplainedin [13]

3. Find thenormalizedfuzzy similarity betweenthenew
exampleEX (fuzzy inputvector)andthealreadystored
patternsin thecasenodesj=1,2..rn: Dj = sum(abs(EX
- W1(j) )/ 2) / sum(W1(j)).

4. Find the activation of the rule (case)nodesj, j=1..rn.
Hereradialbasisactivationfunction,or asaturatedlin-
earone,canbeusedon theDj input valuesi.e. A1(j) =
radbas(Dj), or A1(j) = satlin(1 - Dj). Previousactiva-
tion at thesamelayercanbetakeninto account[13]

5. Updatethelocalparametersdefinedfor therule nodes,
e.g. Short-TermMemory (STM), age,averageactiva-
tion aspre-defined.

6. Find all casenodesj with an activation value A1(j)
abovea sensitivity thresholdSthr.

7. If thereis nosuchcasenode,then � Connecta newrule
node� usingtheprocedurefrom step1.
ELSE
Find therule nodeinda1thathasthemaximumactiva-
tion value.(maxa1).

(a) in caseof “one-of-n” EFuNNs,propagatetheac-
tivationmaxa1of therulenodeinda1to thefuzzy
output neurons. Saturatedlinear functions are
usedas activation functionsof the fuzzy output
neurons:A2= satlin (A1(inda1)* W2).

(b) in caseof “many-of-n mode”,only theactivation
valuesof casenodesthatareabove anactivation
thresholdof ���	��
 arepropagatedto thenext neu-
ronallayer.



8. Findthewinning fuzzyoutputneuroninda2andits ac-
tivationmaxa2.

9. Findthedesiredwinningfuzzyoutputneuronindt2and
its valuemaxt2.

10. Calculatethefuzzyoutputerrorvector:Err = A2 - TE.

11. IF (inda2 is differentfrom indt2) or (abs(Err (inda2))
� Errthr) then � Connect/createa rule node�

12. Update:(a) theinput,and(b) theoutputconnectionsof
rulenodek=inda1asfollows:

(a) Dist = EX-W1(k); W1(k) = W1(k) + lr1*Dist ,
wherelr1 is thelearningratefor thefirst layer;

(b) W2(k)= W2 (k) + lr2*Err*maxa1, wherelr2 is
the learningratefor the secondlayer. If STM is
usedupdatethefeedbackconnectionsin the rule
layer.

13. Prunerule nodesj and their connectionsthat satisfy
thefollowing fuzzypruningrule to apre-definedlevel:
IF (node(j) is OLD) and (average activationA1av(j)
is LOW) and (the densityof the neighbouringarea of
neuronsis HIGH or MODERATE) and(thesumof the
incomingor outgoingconnectionweightsis LOW)and
(theneuron is NOT associatedwith thecorresponding
“yes” classoutputnodes(for classificationtasksonly)
THENtheprobabilityof pruningnode(j) is HIGH.

The above pruning rule is fuzzy and it requires
that all fuzzy conceptssuchasOLD, HIGH, etc., are
definedin advance.As a partialcase,a fixedvaluecan
be used,e.g. a nodeis old if it hasexistedduring the
evolving of a FuNNfrom morethan60 examples.

14. Aggregate rule nodesinto layer clusters(prototype)
nodes(see[15])

15. END of theWHILE loop andthealgorithm

16. Repeatsteps2-15for asecondpresentationof thesame
inputdataor for ECOtrainingif needed.

3.3.Learning strategies for ECOS

EFuNNsallow for different learningstrategies to be ap-
plied, dependingon thetypeof dataavailableandon there-
quirementsto thelearningsystem.Severalof themareintro-
ducedandillustratedin [8, 9, 12, 13]:

� Incremental,one-passlearning

� Usingpositiveexamplesonly

� Cascadeeco-learning.

� Sleepeco-training.

� Unsupervisedandreinforcementlearning

4.Fuzzy rule insertion, on-line rule adaptation, and rule
extraction from EFuNNs

EFuNNsstorefuzzy dataexemplarsin their connections.
Fuzzyexemplarscover patchesin theproblemspace.These
patchescanberepresentedasfuzzy rules.

4.1.Rule insertion and rule adaptation

A FuNN andan EFuNN in particularcanbe adequately
representedby a set of fuzzy rules throughrule extraction
techniques[6, 7, 10, 13]. Thefuzzy inferenceis embodiedin
theconnectioniststructure.In this respectanEFuNNcanbe
consideredasanevolving fuzzysystem.Therulesthatrepre-
senttherule nodesneedto beaggregatedin clustersof rules.
Thedegreeof aggregationcanvarydependingon thelevel of
granularityneeded.Sometimes,for explanationpurposes,the
numberof rulesneeded,couldbeeven lessthanthenumber
of thefuzzyoutputvalues.

At any time (phase)of the evolving (learning)process,
fuzzy, or exact rulescanbe insertedandextracted.Insertion
of fuzzy rulesis achievedthroughsettinganew rule nodefor
eachnew rule,suchastheconnectionweightsW1 andW2 of
therule noderepresentthefuzzy or theexactrule [13].

Example1:Thefuzzy rule IF x1 is Smallandx2 is Small
THEN y is Small, canbe insertedinto an EFuNN structure
by settingthe connectionweightsof a new rule nodeto the
fuzzy conditionnodesx1- Small andx2- Small to 0.5 each,
andtheconnectionweightsto theoutputfuzzy nodey-Small
to a valueof 1. Therestof theconnectionsaresetto zero.

Example2: TheexactruleIF x1 is 3.4andx2 is 6.7THEN
y is 9.5 can be insertedin the sameway as in example1,
but herethe membershipdegreesto which the input values
x1=3.4andx2=6.7belongto thecorrespondingfuzzy values
arecalculatedandattachedto theconnectionweightsinstead
of valuesof 1.0. Thesameprocedureis appliedfor thefuzzy
outputconnectionweights.

Changinga MF duringoperationmaybeneededfor a re-
fined performanceafter a certaintime of the systemopera-
tion. For example,insteadof threeMF thesystemcanchange
to fiveMF. In traditionalfuzzyneuralnetworksthischangeis
notpossible,but in EFuNNsit is possible,becauseanEFuNN
storesin its W1 andW2 connectionsfuzzyexemplars.These
exemplars,if necessary, canbe defuzzifyiedat any time of
theoperationof thewholesystem,thenusedto evolvea new
EFuNNstructure[12, 13].

4.2.Rule extraction

Thefollowing arethestepsthatcompriseanalgorithmfor
rule extractionfrom a trainedEFuNN,whereW1 represents
theweightmatrixof theconnectionsbetweenthefuzzyinputs
layerandtherule layer, andW2representstheweightmatrix
of theconnectionsbetweentherulelayerandthefuzzyoutput
layer[13]:



1. A EFuNNis evolvedon incomingdata.

2. ThevaluesW1(i,j) arethresholded:
if W1(i,j)) � Thr1 then W1t(i,j)=W1(i,j), otherwise:
W1t(i,j)=0.

3. The valuesW2(j,k) are thresholdedin a similar way
with theuseof a thresholdThr2.

4. A rule Rj that representsa node j (j=1,2... Nrn) is
formedasfollows:
Rj: IF x1 is I1 [W1t1 (i1,j)] AND x2 is I2 [W1t2( i2,j)]
AND...
ANDxn is In [W1t n (in,j)]
THENy1 is L1 [W2 1 (j, l1)] AND y2 is L2 [W2 2 (j,
l2)] AND...
AND ymis Lm [W2m(j,lm)] , whereI1,I2,...,In arethe
fuzzy values(labels)of theinput variablesx1,x2,...,xn,
correspondingly, with the highestconnectionweights
to therulenodej thatareabovethethresholdThr1. L1,
L2,...,Lmare the fuzzy valuesof the outputvariables
y1,y2,...,ymcorrespondingly, thataresupportedby the
rule nodej by connectionweightsabove thethreshold
Thr2. Thevalues[W1t (i,j)] areinterpretedasfuzzyco-
ordinatesat theclustersrepresentedin therulesRj and
thevalues[W2(j,l)] areinterpretedascertaintyfactors
thatthis clusterbelongsto thefuzzyoutputclass.

5. Therulesthathavethesameconditionandactionparts,
but differ in fuzzy co-ordinatevalueandcertaintyfac-
tors,areaggregatedby takingtheaveragevaluesacross
thefuzzy co-ordinatesandthemaximumvaluefor the
certainty degrees. Taking an averagevalue for the
fuzzy co-ordinatesis equivalentto finding thegeomet-
rical centreat the clusterthat aggregatesseveral rule
nodesinto one. The rule insertion and rule extrac-
tion methodsareillustratedin the next sectionon two
benchmarkcasestudies.The methodsareincludedin
thegeneralarchitectureof IES presentedin section6.

5.Case studies of adaptive learning, rule insertion and rule
extraction

The first casestudy is a benchmarkproblemof adaptive
time-seriesprediction(approximation)illustratedon thegas-
furnacedata. The secondcasestudy is of a classification
problemillustratedon thebenchmarkIris data.

5.1.Gas-Furnace data set

The gas-furnacedatahasbeenusedby many researchers
in the areaof neuro-fuzzyengineering[4, 15]. The dataset
consistsof 292consecutive valuesof methaneat a time mo-
ment(t-4),andthecarbondioxide ���� producedin afurnace
at a time moment(t-1) asinput variables,with theproduced
���� at themoment(t) asanoutputvariable.Thefollowing

stepsweretaken: (1)EvolveanEFuNNonhalf thedatasetfor
onepassandthenteston the whole dataset.(2) Retrainthe
EFuNNontheentiredatasetinitially for onepass,thenrepeat
anotherpassof training, andthenteston the entiredataset.
(3) Extractrulesfrom theEFuNNandtheninsertinto abrand
new EFuNNstructureandthenre-teston theentiredataset.

For the above task an EFuNN was set up with seven
membershipfunctionsandparametersof sensitivity threshold
Sthr=0.85;error thresholdErrthr=0.1; learningratefor both
the first andsecondlayer lr=0.5. In part (1) the numberof
rule nodesgeneratedwas112. Theresultin Fig.2shows that
the EFuNN hasaccuratelylearntthe first half of the dataset
andgeneralisedwell on theotherhalf of thedatasetjust after
onepassof learning.
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Figure 2: Initial testingof trainedEFuNN when first half of the gas-
furnacedatasetis used.

In part(2) 201rulenodesweregenerated.Fig.3showsthe
resultsof testingthe entiredataseton the retrainedEFuNN
after onepassandafter the secondpassof training. In this
casetheEFuNNhasretainedthememoryof thefirst half of
the datasetwhilst achieving a betterfunction approximation
of theentiredataset.TheEFuNNimprovedafter thesecond
passof training.

In the final part of the experimenta setof ruleswereex-
tractedfrom theEFuNNfrom Fig.3. Wheretherewasa case
in whichrulesthathadthesameconditionandactionpartex-
isted,the averageof the conditionvaluesandthe maximum
of theactionvaluesweretaken. This resultedin 35 rulesex-
tractedusingthealgorithmfor Thr1=0.1andThr2=0.8. The
new EFuNNwastestedon theentiregas-furnacedatasetand
theresultsshown in Fig.4.Theresultsshow thatonly 35clus-
ters(new rule nodes)werecreatedto aggregatetheprevious
201.
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Figure3: Testingof trainedEFuNN whenthe entiregas-furnacedataset
is usedafter onepassof trainingandaftera secondpassof trainingon the
entiredataset.
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Figure4: Testingof EFuNN with 35 rules insertedinto its structure(no
furthertraining).

5.2.Iris Dataset

Therealisationof ruleextractionandinsertionwasusedon
thebenchmarkIris dataset.(150instances;3 classes-setosa,
versicolourandvirginica; four attributes- X1-sepallength,
X2-sepalwidth, X3-petal length,X4-petalwidth). The fol-
lowing stepsweretaken: (1) Insertthreeinitial rulesinto an
EFuNNstructureandtestontheentiredataset.Therulesare:
If X3 is SmallandX4 is SmallthenSetosa.If X3 is Medium
andX4 is MediumthenVersicolour. If X3 is Large andX4 is
LargethenVirginica. (2) TraintheEFuNNonthedatasetand
testit. (3) Extractrulesfrom theEFuNNandtheninsertinto
a brandnew EFuNN structureandthenre-teston the entire
dataset.

For theabove taska EFuNNwassetup with threemem-

bership functions and parametersof sensitivity threshold
Sthr=0.85;error thresholdErrthr=0.1; learningratefor both
the first andsecondlayer lr=0.5. Overall classificationrate
afterpart(1) wasSetosa- 50/50(100%); Versicolour- 50/50
(100%)Virginica30/50(60%). Oncepart(2) hadbeencom-
pletedtheclassificationratewasSetosa- 50/50(100%);Ver-
sicolour- 50/50(100%)Virginica 50/50(100%). Using the
rule extractionalgorithm17 ruleswereextracted.Whenpart
(3) wascompletedthe classificationratewasSetosa- 50/50
(100%); Versicolour- 48/50 (96%) Virginica 45/50 (90%).
Theresultswerebasedon 17 rules.

6.An Architecture of Intelligent Expert System that Uti-
lizes Rule Insertion and Rule Extraction from EFuNNs

Traditionally the architectureof conventionalexpert sys-
temshada fixed structureof modulesanda fixed rule base.
Althoughthey weresuccessfulin veryspecificareas,thispar-
ticular architectureresultedin little or no flexibility for the
expertsystemto adaptto thechangesrequiredby theuseror
theenvironmentin which theexpertsystemoperated.

Data/Environment
• Text
• Images
• Time series data

Adaptive
Learning

Repository of  modules

• Data Transformation
• Neural Networks
• Fuzzy Logic
• Genetic Algorithms
• EFuNNs

Expert System

Module 1

Module 2

Module
Generation

Intelligent Design Interface

Solution
Images, rules or text

Rule
Extraction

User task
Specification  Results

Expert
Knowledge

Base

Rule
Insertion

Figure5: A blockdiagramof anon-lineadaptive expertsystem.

To addressthesedeficiencies,we proposean Intelligent
Expert System(IES) that consistsof a seriesof modules
which areagentbasedandgenerated“on thefly” asthey are
needed.Fig.5 shows a generalarchitectureof an IES that is
underdevelopment. The User specifiesthe initial problem
parametersandtaskto besolved. Intelligentagentsthencre-
ateModulesthatmay initially have no rulesin themor may
be setup with rulesfrom the ExpertKnowledgeBase. The
Modulesthencombinethe ruleswith the Datafrom the En-
vironmentto form theExpertSystem.TheModulesarethen
trainedwith theData from the Environment. The rulesmay
be extractedfor lateranalysis,or aggregatedandre-inserted
into new Modulesfor re-trainingor testing. Oncethe Mod-
uleshave beentrained,they aretestedwith new Data from
the Environmentandthe resultsextracted. Thesethenform
thesolutionto theproblemandmaybefurtherinterpretedby
anothersetof Modules. TheModuleswill dynamicallyadapt
their rulesetastheenvironmentchangessincethenumberof
rulesis dependenton the datathat is beingpresentedto the



Module. Modules(agents)aredynamicallycreated,updated
andconnected.They will bedestroyedif necessaryat a later
stageof theoperationof theIES.

7.Conclusions

Thepapersuggestsa methodologyfor building intelligent
expert systems(IES), expert systemsthat can changetheir
knowledgebasedynamicallyasthesystemworks. They can
adaptin anon-linemode,possiblyin realtime, to achanging
environment. The methodologyusesrule insertion,rule ex-
tractionandfastadaptationmethodsfor evolving fuzzyneural
networks. Themethodologyis appliedto practicalproblems
in predictionandclassification.
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