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Abstract—The paper is a feasibility analysis of using the
recently introduced by one of the authors spiking neural networks
architecture NeuCube for modelling and recognition of complex
EEG spatio-temporal data related to both physical and intentional
(imagined) movements. The preliminary experiments reported in
the paper suggest that NeuCube is much more efficient for the
task than standard machine learning techniques, resulting in high
recognition accuracy, a better adaptability to new data, a better
interpretation of the models, leading to a better understanding
of the brain data and the processes that generated it.

I. INTRODUCTION

NeuCube is a spiking neural network (SNN) architecture
in which both spatial and temporal neuroinformatics data can
be encoded as both locations of synapses and neurons, as well
as the timing of their spiking activity. NeuCube is capable
of learning noisy data either on-line or with low amounts of
training. In addition, its brain-like structure can be visualized
for greater knowledge extraction than purely statistical or
mathematical techniques. NeuCube is based on the idea of
physiological Hebbian plasticity, which states that neurons
that fire together wire together [1]. Contemporary research
indicates that the temporal relationship of firing between the
neurons is important in determining the firing association
between the neurons. The theory of spike-time dependent
plasticity states that pre-synaptic activity that precedes post-
synaptic firing can induce long-term potentiation (LTP), revers-
ing this temporal order results in long-term depression (LTD)
[2]. The NeuCube is consistent with the theory of spike-timing
dependent plasticity as temporal information about spike tim-
ing is retained. This advantage may facilitate understanding
of recovery from neurological injury and recovery related to
rehabilitation. NeuCube was first published in [3] then further
developed in [4] and [5]. A block diagram is depicted in Fig.1.
The NeuCube architecture consists of the following modules:

e Input information encoding module;

e 3D spiking neural network reservoir (SNNr) module
(the Cube);
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e  Output/classification module;
e  Gene regulatory network (GRN) module (Optional).

e  Optimisation module (optional)

The input encoding module converts neuroinformatic data
into trains of spikes using one of a number of algorithms,
including the BSA [6], Population Encoding [7], and Address
Event Representation [8] methods. The 3D SNNr is modelled
after the human brain, with a population of Leaky-Integrate-
and-Fire neurons spatially located according to the Talairach
stereotactic atlas. Collected neuroinformatic data is used as
inputs to spatially located neurons in the SNNr. The spatial
location of these neurons correspond to spatial location of
the sections of the brain where the corresponding data was
collected (e.g. the location of the EEG electrodes). For ex-
ample, EEG input channel data are entered into neurons from
the SNNr according to the excellent mapping provided in [9].
This preserves the spatio-temporal relationships within the data
that is a significant source of information, generally overlooked
by other techniques. The number of neurons in the SNNr is
scalable. It is set in our experimental NeuCube SNNr at 1471
neurons, each representing lcm3 of brain tissue [4].

The output module contains a number of classifiers, which
are chosen based on the desired output type. These include
the deSNN(s,m) classifiers for simple class-based discrimi-
nation [10] and the multiSPAN classifier for defined output
spike trains [11]. The GRN module was not included in this
experiment. In principle, it includes some information on how
AMPA, GABAA, GABAB, and NMDA neuronal receptors can
modulate the simulated neurons activity much as they do in
the real brain.

A focal neurological insult that causes changes to cerebral
blood flow, such as in a stroke, can result in mild to severe
motor dysfunctions on the contralateral side of the body.
Although some spontaneous recovery usually occurs in the
first 6 months after stroke only about 14% of people with
stroke recover normal use of the upper limb [12]. The driver of
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Fig. 1. A block diagram of the NeuCube architecture from [3]

functional recovery after stroke is neural plasticity, the propen-
sity of synapses and neuronal circuits to change in response
to experience and demand [13]-[15]. Whilst it is known that
frequency and intensity of intervention following stroke is
important high intensity rehabilitation is resource-limited. In
order to deliver interventions at a high enough intensity and
frequency for neural plasticity we need to develop devices that
can assist with rehabilitation without the concentrated input of
rehabilitation professionals.

Motor imagery (MI), or the mental rehearsal of a move-
ment, is an approach used by rehabilitation professionals to
encourage motor practice in the absence of sufficient muscle
activity [16]-[18]. MI is thought to activate similar cortical
networks as activated in a real movement, including activation
of the primary motor cortex, premotor cortex, supplementary
motor area and parietal cortices [19], [20]. Recent evidence
suggests that although there are common cortical networks
in real and imagined movement (frontal and parietal senso-
rimotor cortices) there are also important differences, with
ventral areas being activated in imagined movement, but not
in real movement. These specific additional activations in the
extreme/external capsule may represent an additional cognitive
demand of imagery based tasks.

Recovery of movement control is greater after motor
execution training than after MI training alone. Interestingly
the combination of MI training with even passive movement
generates greater recovery than MI alone [21]. Combining
motor imagery with functional electrical muscle stimulation,
via Brain Computer Interface (BCI) devices, may result in
greater neural plasticity and recovery than motor imagery
alone, or motor imagery combined with passive movement.
The additional feedback to the brain provided by executing
a movement may enhance plasticity and reduce the cognitive
demand of motor imagery. Many people following stroke or
other neurological disorder have some residual muscle activity
but fail to recruit enough motor units at an appropriate speed
and pattern, to generate sufficient force to complete the desired
movement [22], [23]. A BCI device in which motor imagery
triggers an appropriate signal to a functional electrical stimu-
lation system would facilitate the practice of real movements
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and potentially result in greater neural plasticity and functional
recovery.

EEG records brain signals through electrodes on the scalp
and is the most widely used method for recording brain data
used in BCI devices. EEG is non-invasive and has good
temporal and spatial resolution. However, EEG systems have
been criticized because of the time consuming and complex
training period for the potential user [24]. One advantage of
the NeuCube framework is that intensive training of the user
is not required as NeuCube classifies naturally elicited cortical
activity, rather than a specific component of the EEG signal,
such as the P300 wave, the production of which has to be
learned by the user. In addition, the NeuCube is capable of
learning in an on-line fashion, training as it is used.

We are investigating the feasibility of using NeuCube with
EEG data to develop a functional electrical stimulation BCI
system that is able to assist in the rehabilitation of complex
upper limb movements. Two methods of use are under consid-
eration, firstly for people who have no voluntary activity in a
limb who would drive the device using MI, and secondly for
people who have some residual activity in their muscles that, in
addition to using MI, may augment the device with their own
muscle activity. To do this it is important to establish a high
degree of accuracy of classification of movement intention and
movement execution to ensure that the appropriate electrical
stimulation output is then provided. One of the challenges to
any BCI system is the extent to which it accurately classifies
the input signal.

In [24] real movement, consisting of a pinch grip to a
specified force level, compared to a resting state, was used.
Data were collected using functional Near Infrared Spectrom-
etry (fNIRS) combined with other physiological data, such
as blood pressure and respiratory information. Using hidden
Markov Models (HMMs) as the classifier framework accura-
cies ranging between 79.6% and 98.8% over 2 classes were
achieved. Using fNIRS in a trial of MI [24] investigated the
classification accuracy of a simple imagined tap of the thumb
on a keyboard versus a complex multi-digit tapping sequence.
Linear discriminant analysis (LDA) was used in combination



with careful selection of the best performing data channel (out
of 3 possible channels) and best 4 features for each participant.
The study in [25] reported classification accuracies in a 2-
class model (simple imagined movement or complex imagined
movement) of between 70.8% and 91.7%. A Sparse Common
Spatial Pattern (SCSP) optimization technique that reduced
EEG channels by disregarding noisy channels and channels
thought to be irrelevant was reported in [26], however this
approach results in a loss of data that could be informative.

We were interested in determining if it was feasible to
use the NeuCube framework as a driver of BCI devices. As a
first step we wanted to determine if the NeuCube was at least
equivalent in classifying movement tasks as other commonly
used methods. As proof-of concept we designed a study that
required NeuCube to classify imagined and real movements in
two different directions and at rest (wrist flexion, extension or
rest). The general hypothesis is that NeuCube using EEG data
can correctly identify brain patterns corresponding to specific
movements. Previous work from our lab in association with
research collaborators has indicated the potential of NeuCube
to identify different EEG patterns relating to different imagined
movements from a commercially available 14 channel EEG
headset. In this trial imagined wrist extension, rest and wrist
flexion achieved accuracy in 1 individual of 88%, 83% and
71% respectively [27].

The specific hypothesis for this study was that the NeuCube
would accurately classify both single joint real and imagined
movements of the hand into one of three classes, flexion,
extension or rest. This paradigm built on the earlier work in
[27] by increasing the complexity of the task by requiring the
NeuCube to distinguish three conditions, two different muscle
contraction patterns (flexion or extensor muscle activity) or rest
[27]. A secondary hypothesis was that the NeuCube would
perform better than other classification methods, including
Multiple Linear Regression (MLR), Support Vector Machine
(SVM), Multilayer Perceptron (MLP) and Evolving Clustering
Method (ECM) [28], along with offering other advantages
such as adaptability to new data on-line and interpretability
of results.

II. METHOD
A. Participants

Three healthy volunteers from our laboratory group par-
ticipated in the study. None had any history of neurological
disorders and all were right handed.

B. Protocol

All measures were taken in a quiet room with participants
seated in a dining chair. The task consisted of either performing
the specified movements or imagining the movements, or
remaining at rest. All tasks were completed with eyes closed
to reduce visual and blink related artifacts. The movement
execution task involved the participant resting, flexing the wrist
or extending the wrist. The starting position was from mid-
pronation with the forearm resting on the persons lap. The
movement intention task involved the participant imagining
or performing the movements as described above. Participants
were required to imagine or perform each movement in 2
seconds and to repeat that 10 times.
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C. Data acquisition

A low-cost commercially available wireless Emotiv Epoc
EEG Neuroheadset was used to record EEG data. The Epoc
records from 14 channels based on International 10-20 loca-
tions (AF3, F7, F3, FC5, T7, P7, Ol1, 02, P8, T8, FC6, F4,
F8, AF4). Two additional electrodes (P3, P4) were used as
reference. Data were digitized at 128 Hz sampling rate and
sent to the computer via Bluetooth. An important factor was
that no filtering was applied to the data, either online or offline.

D. Data processing

The data was separated into classes denoting each task.
Each set of ten samples was then evenly divided into a training
(seen) and a testing (unseen) set. The data was then converted
into trains of spikes (one train per channel, 14 in total) with
the Address Event Representation algorithm, utilizing a spiking
threshold of 6. No other data processing was applied.

E. Classification

Each training sample was presented to the NeuCube once,
entered as 14 input streams of EEG continuous data collected
at the msec time unit, encoded using AER with a step size
of 6. The spiking activity of every neuron was recorded over
the time of the sample, and these presented to the deSNNs
classifier. The deSNNs was initialized with a Mod of 0.9 and
drift factor of 0.25 (empirically established values for this
dataset). The synaptic weights for both the NeuCube and the
deSNNs were then fixed at their final (learned) values for
the validation phase. The unseen data samples were presented
in the same way, and the predicted classes recorded. The
predicted classes were then compared to the actual classes of
those samples.

F. Comparative Study

The NeuCube described above was compared to some
popular machine learning methods: MLR, SVM, MLP and
ECM. The SVM method uses a Polynomial kernel with a
rank 1; the MLP uses 30 hidden nodes with 1000 iterations
for training. The ECM (Kasabov and Song, 2002) uses m=3;
Rmax=1; Rmin=0.1. Data for these methods is averaged at 8
msec intervals and a single input vector is formed for each
session, as is general practice.

III. RESULTS

The classification accuracy of the NeuCube was on average
76%, with individual accuracies ranging from 70-85%. There
was a consistent rate of recognition between the real and the
imagined movement. In terms of the comparison with other
classification approaches, it is clear from the results shown
in Table 1 that the NeuCube performed significantly better
than the other machine learning techniques with the highest
average accuracy over all subjects and samples, whilst the
closest competitor was SVM with the second highest average
accuracy of 62%. MLR was the poorest performing, with an
average accuracy of 50.5%, or just over the chance threshold.



TABLE 1. RESULTS OF THE COMPARATIVE STUDY; ACCURACY
EXPRESSED AS PERCENTAGE FOR REAL AND IMAGINED MOVEMENTS.

Subject/Session MLR  SVM  MLP ECM  NeuCube
1-Real 55 69 62 76 80
1-Imagined 63 68 58 58 80
2-Real 55 55 45 52 67
2-Imagined 42 63 63 79 85
3-Real 41 65 41 45 73
3-Imagined 53 53 63 53 70
Average (appr.) 52 62 55 61 76

IV. DISCUSSION

This was a feasibility study to investigate the potential of
using NeuCube in BCI based rehabilitation devices. In con-
sidering the classification accuracies, which ranged from 70-
85%, it is important to consider three factors. Firstly, the data
were collected in an unshielded room using a commercially
available gaming EEG headset, resulting in an EEG signal
with relatively high signal to noise ratio. Secondly, there was
no processing or feature extraction performed on the data prior
to classification, the raw, noisy, EEG data was used as the
input. Thirdly, all comparative methods in this study, excepting
NeuCube, were validated using Leave-One-Out (all but one
sample used for training), while the NeuCube was validated
with a more disadvantageous 50/50 (half used for training,
half for testing) split. The accuracy of the NeuCube was still
significantly higher than the other techniques and would likely
rise when trained with leave-one-out paradigms.

Bearing these three factors in mind the classification ac-
curacies obtained using NeuCube are in a similar range to
those reported in other research and demonstrates that Neu-
Cube is capable of accurately classifying noisy and relatively
low-quality data. In addition, unlike many other approaches
NeuCube does not require a lengthy feature extraction process,
instead using all the raw data for classification, thus utilizing
a rich data set that does not lose any potentially useful data.

We chose to use a relatively cheap and accessible EEG
headset because two major factors that prevent the adoption
of high technology interventions into rehabilitation practice
are cost and complexity. EEG systems commonly used in
research and clinical situations are expensive and unlikely to
be widely available to rehabilitation specialists. The Emotiv
neuroheadset has a limited number of channels with a fixed
electrode placement, which may serve to improve usability as
it reduces the preparation time and is easy for users to put on
themselves.

An advantage of the NeuCube is that it allows for interpre-
tation of results and understanding of the data and the brain
processes that generated it. This is illustrated in Fig.2 where the
connectivity of a trained SNNr is shown for further analysis.
The SNNr and the deSNN classifier have evolvable structures,
i.e. a NeuCube model can be trained further on more data
and recalled on new data not necessarily of the same size and
feature dimensionality. This allows in theory for a NeuCube
to be partially trained on highly accurate data captured in
a controlled manner with medical devices, and then further
trained and adapted to the particular subject with a cheaper,
less accurate device such as the Emotiv. This will increase
potential uses in clinical and rehabilitation applications.

The large number of parameters that need to be optimized
for every experiment to achieve the best results limits the
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Fig. 2. Example visualisation of the connectome of the trained NeuCube.
Blue lines show strong excitatory connections between two neurons, and red
strong inhibitory.

current NeuCube. The results presented in this study are
obtained through manual parameter optimization. To mitigate
this, adaptive and evolutionary techniques (including the GRN
discussed prior and quantum-inspired optimization) are being
developed for this system, so that parameter selection is
automated in a desirable way.

V. CONCLUSION

The results of this study support the premise that Neu-
Cube is feasible to use in BCI based rehabilitation devices.
Additionally, the ability of the NeuCube to both spatially and
temporally represent brain data and provide visualization of
the data could be useful in future applications. Observing
changes in neural representation and spike timing throughout
rehabilitation interventions could provide valuable information
on human learning and adaptation to advance rehabilitation
interventions.
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