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Abstract-Motivated by the dramatic rise of neurological 
disorders, we propose a SNN technique to model electroen­
cephalography (EEG) data collected from people affected by 
Alzheimer's Disease (AD) and people diagnosed with mild 
cognitive impairment (MCI). An evolving spatio-temporal data 
machine (eSTDM), named the NeuCube architecture, is used to 
analyse changes of neural activity across different brain regions. 
The model developed allows for studying AD progression and for 
predicting whether a patient diagnosed with MCI is more likely 
to develop AD. 

I. INTRODUCTION 

Over the last several decades, researchers have been trying 
to understand and model the human brain. The growing size 
of the elderly population and high incidences of neurological 
disorders, such as Alzheimer's Disease (AD), have made 
understanding the human brain a priority for the community 
to deal with. Since neurological disorders affect mechanisms 
involved in the formation of memory and synaptic plasticity, 
scientists from all over the word have focused their resources 
and efforts toward the understanding of these areas. As a con­
sequence of the efforts made, there is a considerable amount 
of data now available. Most of the data collected possess both 
spatial and temporal information, which is difficult to process. 
Although, if we understand when and where abnormalities 
arise in the brain, we can also understand why and how they 
affect the other areas of the brain and evolve. Information 
scientists have developed computational techniques, such as 
spiking neural networks (SNN), that model the data available, 
emulating neural and learning functions of the human brain. 
However, many of the techniques used are not appropriate, 
as the data is heavily pre-processed, which comes at the 
cost of both time and information. Also several models lack 
biological plausibility and therefore they cannot represent the 
phenomena of study. This is why, we need to find a suitable 

modelling technique in order to model and understand the 
brain information available and make proper use of it. A 
type of spatio-temporal brain data (STBD) that has long 
been used to analyse mild cognitive impairment (MCI) and 
AD is electroencephalography (EEG) [ 1]. In this paper, we 
propose a SNN approach that models EEG data to achieve 
neural degeneration prognosis. The methodology is based on 
an evolving spatio-temporal data machine (eSTDM), named 
NeuCube [2]. As demonstrated in [3], the NeuCube allows for 
studying functional changes in brain activity across different 
conditions and different groups of subjects. The NeuCube 
has already been successfully applied to model and analyse 
AD EEG data, demonstrating its potential use as an indicator 
of the onset and/or the progression of a neurodegenerative 
process [4]. Now, we want to apply the NeuCube potential to 
a longitudinal study on patients affected by AD and people 
diagnosed with MCI. We want to study any cognitive fluctu­
ation across time, paying special interest to finding evidence 
of neural degeneration across EEG rhythms. The relevance of 
oscillatory phenomena related to EEG functionality has been 
demonstrated in many studies such as [5]. These phenomena 
correspond to rhythms of type delta (8: 0.5-3.5 Hz, generally 
related to sleep or rest); theta (0: 3.5-7.5 Hz, generally related 
to learning, memory and sensory motor processing); alpha (n:: 

7.5-12.5 Hz, generally related to meditation); beta ((3: 12.5-
30 Hz, generally related to mental calculation, anticipation or 
tension); and gamma (')': 30-60 Hz, generally related to at­
tention and sensory perception). These rhythms are associated 
with different cognitive processes and communication between 
neuronal cells [6]. By extrapolating functional changes of 
brain activity from the EEG rhythms, we aim at developing 
a model that can be used by experts to diagnose the early 
onset of AD and to evaluate its progression. The paper is 
constructed in the following way: Section II describes the data 
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and the methodology used to analyse it; Section ill reports the 
preliminary results obtained; and in Section IV conclusion and 
future work are also discussed. 

II. EEG DATA MODELLING WITH THE NEUCUBE 

ARCHITECTURE 

A. EEG Data Description 

1) Study Population: The EEG data was collected by the 
Scientific Institute for Research, Hospitalization and Health 
Care (IRCCS) Bonino-Pulejo Neurolesi Centre of Messina, 
Italy. The data collection protocol was approved by the local 
ethical committee and consent forms were signed by the pa­
tients under study. Standard inclusion criteria were followed to 
select patients for the analysis. They underwent cognitive and 
clinical assessments, including mini-mental state examination 
(MMSE). Diagnosis of AD was made according to the criteria 
of the National Institute of Ageing-Alzheimer's Association. 
After diagnostic confirmation, patients were discriminated by 
gender, age, education, dementia onset, marital status and 
MMSE scores. All patients were under the influence of drug 
treatments such as cholinesterase inhibitors (ChEis), Meman­
tine, anti-depressants, anti-psychotics and anti-epileptic drugs. 
The dosage of each drug administrated for the three-month 
period prior to the experiment was carefully monitored. 

A total of seven patients were selected for the EEG data 
collection: three affected by AD and four diagnosed as suf­
fering from MCI. They were all followed longitudinally for 
three months. During this period of time, the EEG data was 
recorded twice, at the beginning of the study and at the end 
of it, denoted as to and h. 

2) Data Collection: Before data collection, all patients 
and their caregivers went through a semi-structured interview, 
which included questions regarding the quality and duration 
of their sleep the night before the experiment along with the 
food consumed and the time it was consumed. Recordings 
were carried out using 19 EEG channel locations: Fpl, Fp2, 
F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, 
01, 02 and the A2 electrode was used as reference. These 
were placed according to the sites defined by the standard 
10-20 international system. Data was recorded at a sampling 
rate of 1024 Hz for 5 minutes and a 50 Hz notch filter was 
applied during collection. Data was collected in the morning 
and under resting conditions, with subjects awake with their 
eyes closed and always under vigilant control. 

3) EEG preprocessing: The EEG data was downsampled 
to 256 Hz and processed using a 5 seconds sliding temporal 
window (Le. one window includes 1280 EEG samples). The 
EEG signal was divided into rhythms of type 8, (), a and (3 
by using a set of four band-pass filters implemented in Matlab 
that use inverse Fast Fourier Transform (FFT). The four EEG 
sub-bands were partitioned into m non-overlapping windows, 
where m depends of the length of the recording, which was 
5 minutes on average. 

B. The NeuCube for STBD Modelling and Understanding 

The NeuCube architecture is an eSTDM based on neuro­
morphic, brain-like SNN information processing principles [2]. 
As explained in [7], a NeuCube development system consists 
of 10 different modules. To carry out the research presented 
in this paper, we used the basic configuration of NeuCube for 
STBD modelling and understanding [7] (or module Ml) freely 
available online at: http://www.kedri.aut.ac.nzlneucube/. 

Input Module NeuCube Module 

Data 

Spatlo·Temporal • 
Input data stream 
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Fig. 1: The NeuCube for STBD modelling with its three main 
modules: input module for data encoding; a 3D SNN module; 
an output module for data classification and analysis. 

In Fig. 1 the NeuCube for STBD modelling, classification 
and analysis is divided into three main modules: 

• Input module, where input data are encoded into trains 
of spikes. 

• 3D SNN cube (SNNc) module (the NeuCube module), 
where time and space characteristics of the STBD are 
captured and learned. 

• Output module for data classification and new knowledge 
extraction from the SNNc analysis. 

In the following paragraphs, these modules are used to de­
scribe the methodology applied to the study. 

1) Input Module and EEG Data Encoding: The EEG data 
was first ordered as a sequence of real-value data vectors. 
Every data vector was transformed into a spike train using 
the threshold base representation T BRthr algorithm [8]. This 
threshold was used to generate two types of spike sequences: 
a positive spike train corresponding to the signal increment, 
which is mapped to a specific input neuron in the SNNc; and a 
negative spike train, corresponding to the signal decline, which 
is mapped into another input neuron of the SNNc that is placed 
in the same position as the positive one. Algorithms that apply 
bi-directional threshold to transform vectors of consecutive 
values into trains of spikes, well suit EEG data as they 
identify only significant differences in the signal gradient (as 
demonstrated in Fig. 2). In the example shown in Fig. 2, 1 15 
spikes were generated after applying the TBRthr algorithm to 
the first 500 EEG data points recorded at tl from the central 
Cz channel only of a patient affected by AD. As we can see 
from the figure, out of the total amount of spikes generated, 58 
were positive spikes (identified as + 1) and 57 were negative 
spikes (identified as -1). 

2) NeuCube Module and Unsupervised Learning: The 
spike sequences were presented to the SNNc, which was 
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Fig. 2: Example of encoding spatio-temporal EEG data into trains of spikes using the TBRthr algorithm. The image shows 
the first 500 data points only of one EEG channel (the central Cz channel). The EEG signal (0-64 Hz) recorded from a patient 
affected by AD at time tl of measurement is used for this example. 

implemented using leaky integrate-and-fire (LIF) neurons [9]. 
The number of neurons in the cube was set as 1471 neurons, 
as each neuron represents I em3 of population of the human 
neural cells of the Talairach brain atlas [ 10]. The neurons were 
mapped in the cube following the standard mapping suggested 
in [ 1 1]. Thus, the spike sequences that represent the data from 
EEG channels are presented to the SNNc that reflects the 
number of input variables (e.g. the 19 EEG channels) and the 
functional brain areas associated with them. The SNNc was 
initialised according to the small-world (SW) connectivity [2] 
distance, which is based on the biological process that makes 
neighbouring neural cells to be highly and strongly intercon­
nected Neurons' initial connection weights were calculated 
as the product of a random number [-0.1, +0.1] and the 
multiplicative inverse of the Euclidean distance d( i, j) between 
a pre-synaptic i and a post-synaptic neuron j (calculated 
according to their (x, y, z) coordinates). 20% of these weights 
were selected to be negative (inhibitory connection weights), 
as in the manlmalian brain the number of GABAergic neurons 
is found to be about 20-30% [ 12], while 80% were positive 
(excitatory connection weights). The SNNc was trained in an 
unsupervised mode using the spike time dependent plasticity 
(STDP) [ 13] learning rule, as it allows spiking neurons to learn 
consecutive temporal associations from the EEG data within 
and across EEG channels. By using this unsupervised learning 
rule, a connection between two neurons become stronger as 
their temporal order of activation persists and repeats with the 
time. After learning, the final connectivity and spiking activity 
generated in the network was analysed and interpreted for a 
better understanding of the data and the brain processes that 
generate it (as demonstrated in Section III-B). This makes the 
NeuCube useful for learning spatio-temporal patterns from the 
STBD. 

3) Output Module for Supervised Learning: The output 
classifier was trained via supervised learning method, using the 
dynamic evolving spiking neural network (deSNN) algorithm 
[ 14]. This algorithm combines the rank-order (RO) learning 
rule [ 15] with the STDP [ 13] temporal learning. In one pass 
data propagation, the same data used for the unsupervised 
training was propagated through the SNNc again to train 
the output classifier. Every training sample that represents 

a labelled EEG sequence of a patient was associated to an 
output neuron that is connected to every neuron in the SNNc. 
Initial connection weights between input and output neurons 
were all set to zero. Connection weights were initialised 
according to the RO rule and modified according to the spike 
driven synaptic plasticity (SDSP) learning rule [ 16]. Every 
generated output neuron was trained to recognize and classify 
spatio-temporal spiking patterns of the SNNc triggered by a 
corresponding labelled input data sample (as demonstrated in 
Section III-A). 

III. PRELIMINARY RESULTS 

A. Classification 

To investigate whether data collected during the two dif­
ferent sessions (to and tl) discriminates four different stages 
of neural degeneration (from early MCI to advanced AD), we 
classified the data samples by using the entire EEG signal from 
0-64 Hz. Data was divided into four classes: data collected 
at to from subjects diagnosed as having MCI was labelled as 
class 1 (MCI to), while the data collected at tl from the same 
subjects was labelled as class 2 (MCI h); and data collected 
at to from AD patients was labelled as class 3 (AD to), while 
the data collected as tl from the same patients was labelled as 
class 4 (AD tl). In total we obtained 14 samples, two for each 
of the seven subjects, one at to and one at h. Even though, 
every subject underwent several minutes of data recording, 
we resized each samples to 42240 data points for 19 EEG 
channels, as this was the size of the smallest sample available. 

A crucial step in obtaining desirable results from the 
NeuCube model is the optimisation of its numerous param­
eters. This can be achieved via grid search method, genetic 
algorithm, or quantum-inspired evolutionary algorithm [ 17], 
[ 18]. Therefore, unsupervised and supervised training, and 
validation are repeated changing the values of the parameters 
until the desired classification output is achieved. In this study, 
this was obtained via grid search method that evaluated the 
best combination of parameters that resulted in the highest 
classification accuracy. The optimised parameter values are: 

• The TBRThr for encoding algorithm was set at 0.5; 
• The SW connectivity radius was set at 2.5; 
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• The threshold of firing e, the refractory time r and the 
potential leak rate 1 of the LIF neuron model were set at 
0.5, 6 and 0.002 respectively; 

• The STDP rate parameter a of the unsupervised learning 
algorithm was set at 0.01; rate was set at 0.001; 

• The variables mod and drift of the deSNN classifier 
were set at 0.8 and 0.005 respectively [ 14]. 

In Table I, we report the classification accuracy obtained 
with this combination of parameters. The results, obtained 
after testing, are expressed in the confusion table as the 
number of correctly classified samples versus the number of 
misclassified samples. 

TABLE I: The NeuCube confusion table obtained by clas­
sifying EEG data from 7 patients as a test subset into the 
four classes: MClto, MCIt!. AD to and ADtl. The correctly 
predicted classes are located in the diagonal of the table. 

Melto 
Mel tl 
AD to 
ADtl 

Confusion Table 
Mel to Mel h AD to 

2 1 0 
o 1 0 
o 0 1 
o o o 

ADh 
o 
o 
o 
1 

As a result of training a NeuCube model to classify data 
from the four classes: MClto, MCltl, ADto and ADtl, the 
testing results showed a perfect classification of three classes, 
but not MCltl. These results demonstrated the capability of 
the NeuCube to achieve high classification accuracy for the 
classes MCIto, AD to and ADh, but also to indicate if some 
of the patients data from the MCI tl class is closer to the 
data from the MCI to class or to the AD to class, pointing 
to a possible development of the disease in the future. As 
reported in Table I, one of the two subjects from the MCI tl 
class showed similar EEG patterns at tl as in to, indicating that 
this subject is not likely to develop AD in the near future. The 
four classes were in effect identifying four different stages of 
neural degeneration (from early MCI to advanced AD). This 
is a good indication that a NeuCube model can be used in the 
future for predicting if MCI patients will develop AD. 

B. Analysis of Functional Changes in Brain Activity of AD 

As a case study, we selected EEG data collected from a 
patient affected by AD (a woman of 83 years of age). This 
patient scored 16, at to, and 13, at tl, in the MMSE cognitive 
test, which indicates decline in cognitive ability. However, 
more information can be obtained from the EEG data by 
discriminating relevant EEG sub-bands. Our goal is to better 
understand the advancement of the disease and to localize 
specific areas of the brain that are more seriously affected by 
neural degeneration, this may well lead to a better personalised 
treatment. 

Data was visualised after STDP learning by applying a 
threshold of 0.2 to the total amount of connection weights 
generated. 

Fig. 3 and Fig. 4 show the trained SNNc along with the 
corresponding 12 brain functional areas. Yellow-green denotes 

the temporal lobe; pink denotes the parietal lobe; light-blue 
denotes the frontal lobe; red denotes the fronto-temporal space; 
light-yellow denotes the posterior lobe; orange denotes the 
occipital lobe; green denotes the anterior lobe; blue denotes the 
sub-lobar region; grey denotes the limbic lobe; purple denotes 
the pons; blue-green denotes the midbrain; and brown denotes 
the medulla. Also, the 19 input neurons are labelled according 
to their corresponding EEG channels. In the figures, blue lines 
indicate excitatory synapses and red lines inhibitory synapses; 
the thickness of these lines indicates the strength of activity 
between neurons. 

Fig. 3 shows the SNNc connectivity generated after unsu­
pervised learning of the EEG signal (0-64 Hz) at to and h. 

(a) EEG signal collected at to. 

(b) EEG signal collected at tl. 

Fig. 3: Connectivity generated after unsupervised learning of 
the SNNc was performed on the encoded EEG signal (0-
64 Hz). The figure shows a xy-plane projection and the 3D 
SNNc. 

The figures show significant decrease in neural actIvity 
from to to tl' The observed reduction in the model neural 
connectivity is compatible with neuronal changes associated 
with the advance of the disease. AD is a degenerative brain 
disorder that eventually destroys brain cells causing decline in 
cognitive activity and memory loss [ 19]. Using the NeuCube 
SNN-based visualization, we can obtain a better understanding 
and interpretation of the physiological brain ageing of AD 
patients. 

More information can be extracted from the data by iden­
tifying relevant EEG sub-bands for AD to study the patient 
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(a) a band of EEG collected at to. (b) a sub-band of EEG collected at tl. 

(c) f3 sub-band of EEG collected at to. (d) f3 sub-band of EEG collected at h. 

40 

(e) 8 sub-band of EEG collected at to. (1) 8 sub-band of EEG collected at tl . 
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(g) () sub-band of EEG collected at to. (h) () sub-band of EEG collected at tl. 

Fig. 4: Connectivity generated in the SNNc after unsupervised learning of the EEG data in a, fJ, J and () sub-bands at to and 
h. The figure shows the 2D (xy) plane and the 3D (x, y, z) SNNc. Significant reduction of connectivity is observed in the 
created NeuCube models from time to to tl in the fJ sub-band and less in the Q: and () sub-bands, across the cortical areas. 
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neural activIty. Fig. 4(a)-(h) show the SNNc connectivIty 
generated after unsupervised learning of the EEG data in a, 

(3, 8 and () sub-bands at to and ti' As we can study from 
the figures, functional connectivity decreases as the disorder 
advances (from to to tI). The disease affects both a and () sub­
bands, decreasing the connectivity across the brain regions. 
For the 8 sub-band almost no connectivity is generated over 
the brain regions. Researchers reported that older AD patients 
have relatively more power in the a sub-band compared to the 
8 sub-band [20]. These findings are consistent with the ones 
reported in Fig. 4. Therefore, these brain frequency bands can 
be considered significant EEG markers for this AD patient. 
Higher frequency bands, such as (3, show higher activity at to 

and tl when compared with the other brain waves. Still, neural 
connectivity generated in (3 frequency decreases from to to tl 

(Fig. 4(c) and (d) respectively). Reduction of (3 wave activity 
over time is correlated with severe cognitive dysfunction [2 1]. 
This finding suggests that a decrease in (3 power is not only 
due to ageing, but may reflect an alteration of AD especially 
in the early stages. The analysis of the SNNc models at to and 
tl confirms neurological studies that have found a significant 
decrease of EEG power at 14-18 Hz and 18-22 Hz ((3 sub­
band) in AD patients. Fig. 4(g) and (h) show a reduction in 
the neuronal connectivity, particularly in the temporal regions, 
from to to ti' This is produced by memory impairments in old 
AD patients over time that is most pronounced in the () band 
frequency. This analysis provides new evidences that can be 
used to improve our understanding of AD. Thus, the NeuCube 
can provide a powerful decision making tool that can support 
clinicians to target efficient drug treatments. 

IV. CONCLUSION AND FUTURE WORK 

The goal of the study has been to analyse how the proposed 
NeuCube SNN system can be used for the classification and 
analysis of AD EEG data during longitudinal studies. This is 
important for the creation of new decision-support systems 
for neuronal degeneration prognosis and neurodegenerative 
pathologies understanding. By means of the proposed model, 
we were able to investigate patterns of neurons' electrical 
activity elicited from patients diagnosed with MCI and/or AD 
during a longitudinal study. We demonstrated the potential 
of using SNNs for the analysis of complex dynamic brain 
activity generated by progressive disorders. Particularly, the 
used NeuCube SNN system enables us to predict whether 
a MCI patient is likely to develop AD. If we were using 
traditional statistical analysis methods, such as EEGLAB [22] 
or Neuroguide [23], we would be able to differentiate the EEG 
band frequencies in the longitudinal study only. However, the 
NeuCube visualisation module is also able to reveal the areas 
of the brain involved with the variation of neural activity. 
Significantly, the NeuCube models revealed new findings, 
such as tracing the neural brain activities, which we would not 
have obtained if we were using traditional statistical methods 
instead. Also, our findings prove the NeuCube potential for 
dealing with both spatio and temporal components of EEG 
data without losing any meaningful information. The proposed 

methodology could be further developed in a computational 
neurogenetic model for processing STBD and genetic data 
related to AD. 
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