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Abstract

This paper presents the multi-streams paradigm as a technique for improving speech

signal feature set design and as a performance booster for speech recognition systems,

based on the continuous-density hidden Markov model (CHMM) framework. In the

multi-streams paradigm we are dealing with different feature sets independently to es-

timate the same task, and then combining their results at a suitable stage. This paradigm

combines the strengths of many varied feature vectors to attain better statistical esti-

mation. Under the proposed paradigm the feature vectors are split into three inde-

pendent streams, and each stream is used to model an independent CHMM. Then the

outcomes of these models, when subjected to any speech input, are merged under a

certain strategy. This technique alleviates the dominance effect of the features, and re-

duces the dimensionality of the feature vectors used in each model. The F -ratio tech-

nique is used to further reduce the dimensionality of each stream. Experimental results

on different datasets show superiority of the developed paradigm over the corre-

sponding single-stream baseline.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Speech recognition; Hidden Markov modelling; Feature selection; Multi-

streams paradigm; CHMM; Dimensionality reduction; F -ratio
* Corresponding author.

E-mail address: w.abdulla@auckland.ac.nz (W.H. Abdulla).

0020-0255/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/S0020-0255(03)00162-2

mail to: w.abdulla@auckland.ac.nz


22 W.H. Abdulla, N. Kasabov / Information Sciences 156 (2003) 21–38
1. Introduction

Speaker-independent speech recognition systems have many parameters to

optimise during the implementation course. There are vast uncertainties to
deal with, coming from varied production behaviour of different speakers.

Statistical approaches using HMM show superiority over the other techniques

to capture and model the features that are carrying the spoken information.

The HMM framework interprets the speech signals to changeable-duration

sequence of events called states [25]. The performance of the HMM model in

discriminating the acoustic classes is highly affected by the observation feature

vectors. They are considered as abstract mappings of the highly redundant

speech samples. The feature vectors needed to be as short as possible in terms
of dimensions which imply redundancy removal, and contain as much as

possible of linguistic information. The selected features must assure fast

training and recognition procedures, as well as superior acoustic class dis-

crimination. The feature vectors have been widely investigated, and many

suggestions have been proposed to reach the ultimate optimality goal of good

abstraction and representation. The current approaches rely mainly on the

successful Mel frequency cepstral coefficients (MFCCs) vectors to represent

the speech samples. Other types of features, different from the MFCCs, have
also been introduced and have some strength in certain applications. No

feature set can be decided as the best absolute performer under all environ-

mental conditions, in the automatic speech recognition (ASR) systems. One

solution to exploit the strengths of the different feature sets is to combine

them deliberately under a suitable paradigm. The combination of the features

can be done at several points within the ASR structure. The features can be

concatenated at the very beginning stage in the feature streams domain and

presented to the general classifier, or left as they are in different independent
streams and presented to separate classifiers. Also, the outcomes of the

classifiers can be merged then presented to the general HMM decoder, or left

as they are and presented to separate HMM decoders. The two main ques-

tions that needed to be answered in any multi-stream based ASR system

design are: What feature set to stream? And, where to merge? There is no

agreed analytical procedure to answer these queries, and they have mainly

heuristic oriented solutions. However, there are some trends in using statis-

tical notions to help in some decisions. The conditional mutual information
(CMI) is used to predict which feature streams will merge most advanta-

geously, and which of the many possible-merging strategies will be most

successful, it answers the first question. The CMI of the raw feature streams is

supposed to help in deciding whether to merge them together as one large

stream, or to feed them separately into independent classifiers for later

merging [7,8]. The results of the CMI technique are not very encouraging as

reported.
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The important property regarding the feature streams nature is that com-

bining a number of diverse feature streams often improves the recognition

performance, and the greatest benefits come from combinations between the

most diverse features [30]. Different front-end structures can be used to max-
imise the feature stream diversity. Combining perceptual linear predictive

(PLP) features with the modulation-filtered spectrogram (MSG) features im-

proves the recognition rate significantly [9]. In fact, any change in the feature

vectors preparation procedure will lead to an improvement in the recognition

rate. Bella et al. [4] found that the combination of nearly identical sets of

features with only difference in frame rate, which was set between 80 and 125

frames per second, was enough to introduce some decorrelation between the

errors in the streams. The merged system performed significantly better than
any one of the component streams. Variable frame rate is also useful in single

stream ASR system. In this case, the frame rate is increased for rapidly

changing segments with relatively high energy, and reduced for steady-state

segments [31].

The classifiers are either Gaussian mixture models (GMM) or neural net-

works (NNs). Hybridising HMM with NN is widely used in single-stream

structure for continuous speech recognition systems [22]. HMM speech rec-

ognition systems typically use GMM. The NNs are becoming popular in the
multi-stream paradigm, due to their potential in estimating the probability

functions and classifications. Merging the streams after the classification stage

(posterior merging), rather than feature concatenation, ameliorates the rec-

ognition rate one step further [7,8,26]. The classifiers outcomes might be

merged and decorrelated first, then presented to a GMM of a classical HMM

decoder for better recognition performance [9]. The multi-estimation notion is

also applicable to the NN based systems. It has been shown that recognition

performance can be improved by using the same feature sets to train two NNs,
with different initialisation points [19].

The other interesting approach in multi-streams research trends comes from

sub-band notion. Rather than deriving the probability streams from com-

pletely different acoustic representations, it is also possible to divide a single

representation into disjoint regions across the spectrum. Each of the sub-bands

can then be used as the basis for separate probability estimators. The output of

these estimators can be combined, either by averaging the log posterior

probabilities for each class, or by using more complex methods including
multi-layer perceptrons or weighted combinations [5,6]. More specifically, in

the sub-band technique, the whole frequency band of the speech signal is split

into several sub-bands. Then, each of these sub-bands is processed indepen-

dently, mostly by a hybrid HMM neural network model. This technique is

based on the assumption of sub-band independence, which is not very true, as

in reality there is dependency between them. Next, the sub-band outcomes are

recombined at several stages during the utterance period according to certain
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criteria. The main advantage of this approach is the robustness of the rec-

ogniser to selective narrow-band noise [21]. This technique is also adopted in

random field modelling to model the hidden states of HMM [12].

The multi-streaming is also viewed from another perspective by splitting the
feature vectors into a specified number of sub-vectors, which are then pro-

cessed by different quantizers, and a vector of discrete values with the same

length as the number of sub-vectors is the input to the discrete recogniser [28].

This system was experimented with 9, 15, 24, and 39 sub-vectors, and it showed

improvement in recognition rate as compared with the conventional CHMM.

The multi-stream approach was also investigated from the recognition rate

in noisy environment perspective, and it showed substantial improvement in

recognition performance under different noise sources [27].
In this paper, we will deal with the Mels coefficients and their first and

second derivatives, as three independent streams. These streams have some sort

of dependency, as it is obvious from the way of producing them. However, they

showed enhanced effectiveness on the recognition rate when they were dealt

with as independent. Thus, the feature vectors adopted comprise 39 coefficients

(12 Mels and one power coefficient with their first and second derivatives) per

observation; equally divided between three streams. Then we will reduce the

dimensionality of each stream, using the F -ratio technique as a figure of merit.
This reduction leaves only 28 MFCCs per observation vector to be used in our

ASR system, instead of the original 39 coefficients.

This paper is organised as follows. Section 2 briefly demonstrates some re-

lated feature vectors designs. Section 3 describes the F -ratio as a figure of merit

to assess the importance of the features, and how it can be directly applied on

the HMM parameters. Section 4 explains the parallel HMM notion and the

dimensionality-reduction application. Section 5 evaluates the performance of

ASR systems based on different paradigms. The conclusions will be summar-
ised in Section 6.
2. Feature vector design based on static and dynamic coefficients

The current approaches rely mainly on the successful Mel frequency cepstral
coefficients (MFCCs) vectors to represent each 10–50 ms window of speech

samples, taken each 5–25 ms, by a single vector of certain dimension. The

window length and rate as well as the feature vectors dimension are decided

according to the application task. For many applications the most effective

components of the Mel scale features are the first 12 coefficients (excluding the

zero coefficient), which are also called static coefficients. These coefficients are

the features used by the HMMs to detect the stationary events in the speech

signal spectra. Moreover, it has been shown that the speech recognition rate
is noticeably improved when using additional coefficients, representing the
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dynamic behaviour of the signal. These coefficients are the first and second

derivatives of the cepstral coefficients of the static feature vectors [10,11,16,17].

The power coefficients, which represent the energy content of the signal and

their first and second derivatives, have also important roles to be included in
the representation of the feature vectors. The first and second derivatives are

approximated by difference regression equations, and accordingly they are

named delta and delta–delta coefficients or first and second deltas, respectively.

The power coefficient, which represents the power of the signal within the

processed windows, is concatenated with the Mel coefficients. The static co-

efficients are normally more effective in a clean environment, while the dynamic

coefficients are more robust in a noisy environment [14]. Concatenating the

static coefficients with their fist and second derivatives increases the recognition
rate, but it has two drawbacks. First, the static coefficients will dominate the

effect of the dynamic coefficients. Second, it increases the dimensionality of the

feature vectors. Fig. 1 shows the power and Mel coefficients with their deriv-

atives for the phoneme ‘‘O’’, and how the static coefficients dominance is ap-

parent. This dominance lets the static coefficients be more effective than the

first and second deltas during the measurement of the distances between the

feature vectors, although the 1st and the second deltas might carry more in-

formation in certain parts of the signal. The distance measurement is the salient
operation in all speech recognition algorithms. If we normalise the coefficients,
Fig. 1. The power and Mel-scale coefficients with their first and second derivatives.
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as a remedy to this problem, we will misplace the actual weight of each coef-

ficient within the feature vector.

One approach in the feature vectors design; a composite distance metric

approach, was applied to accommodate for the relative importance and mag-
nitude of different entities of the feature vectors [10,11,20]. The following

distance metric ‘‘Dist’’ was used, in preparation of the Vector Quantization

(VQ) bins for speech recognition system using HMM
Dist ¼
X12

i¼1

ðCr
i � Ct

i Þ
2 þ Wd

X12

i¼1

ðDr
i � Dt

iÞ
2 þ WpðCr

0 � Ct
0Þ

2 þ Wp0 ðDr
0 � Dt

0Þ
2

ð1Þ
where Ci represents an LPC cepstrum coefficient, Di is a difference LPC cepstral

coefficient (delta), C0 is the power term and D0 is the difference power. Wd , Wp,

and Wp0 are empirically determined weighting factors that account for the

relative importance and magnitude of the first difference coefficients (the sec-
ond difference was not used). The superscripts �r’ and �t’ refer to the reference

and test vectors. The performance of the speech recogniser was improved ac-

cording to this formula but the VQ distortion was still high.

Another more developed feature-vector design can be achieved by quan-

tising each set of feature-vectors by a separate codebook which introduces

multiple codebooks [15,17,18]. Multiple codebooks were introduced as a better

option than the composite distance technique [13]. This technique outper-

formed the composite distance metric approach by reducing the quantization
error, resulting from long feature vectors, which lead to better recognition rate.

The multiple codebooks approach was adopted by the SPHINX speech rec-

ognition system based on the semi-continuous hidden Markov model

(SCHMM) framework [18].

This technique belongs to a multi-streams paradigm, as the static and dy-

namic features are dealt with independently to find the observation probability

distribution. The HMM should be modified in this case to produce multiple

short observation vectors at each time instant, instead of single long obser-
vation vectors. The observations output probability should be modified by

merging the probability of different streams to be suitable to embed in the

HMM baseline, according to the formula
biðOtÞ ¼
Y

c

XL

k¼1

pcðOtjvckÞ:bci ðvckÞ ð2Þ
where biðOtÞ is the output probability of observation Ot given state i. pcðOtjvckÞ
is the probability of observation Ot being in a codebook c and having a
codeword vk. bci ðvckÞ is the a priori probability of the codeword vk of codebook c
being in state i. L is the number of codewords in each codebook.
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Our method tackles both the dominance and the dimensionality problems in

a more effective way. It considers each stream as an independent feature vectors

set and construct an HMM for each of them. The final responses of these

models to any set of input vectors are combined to decide its class. Each feature
vectors set is independently reduced in dimensionality, using the F -ratio
technique. The advantage of our technique is justifiable by a statistical belief

stated that combining multiple estimators for the same underlying value leads

to better estimation.
3. Dimensionality reduction based on the F-ratio figures

The F -ratio is a measure that can be used to evaluate the effectiveness of a

particular feature. It has been widely used as a figure of merit for feature se-

lection in speaker recognition applications [24,29]. It is defined as the ratio of

the between-class variance (B) and the within-class variance (W ). In the contest

of feature selection for pattern classification, the F -ratio can be considered as a

strong catalyst to select the features that maximise the separation between

different classes and minimise the scatter within these classes. The following
assumptions have to be satisfied when using the F -ratio as a figure of merit for

dimensionality reduction:

• The feature vectors within each class must have Gaussian distribution. This

condition can be satisfied if we use sufficient training dataset, according to

the central limit theorem.

• The features should be statistically uncorrelated. In practice this condition is

hardly satisfied, and the correlated features can be transformed into uncor-

related features via suitable transformation such as the principal component
analysis (PCA) and the linear discriminant analysis (LDA) techniques. How-

ever, if we use the Mel frequency cepstral coefficients to construct the feature

vectors, then we can consider the feature vectors uncorrelated, since the dis-

crete cosine transform (DCT) is used to prepare these vectors, which per-

forms the adequate decorrelation.

• The variances within each class must be equal. Since the variances within

each class are generally not equal, the pooled within-class variance is used

to define the F -ratio.
The F -ratio technique can be formulated as follows [23]:

Let us consider that the number of training feature vectors, training pat-

terns, in the jth class of K classes is Nj. Thus the F -ratio of the ith feature can

be defined by
Fi ¼
Bi ð3Þ

Wi

where Bi is the between-class variance and Wi is the pooled within-class vari-
ance of the ith feature, which can be mathematically defined by
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Bi ¼
1

K

XK

j¼1

ðlij � liÞ
2 ð4Þ

Wi ¼
1

K

XK

j¼1

Wij ð5Þ
where lij and Wij are the mean and variance of the ith feature, respectively, for
the jth class, and li is the overall mean of the ith feature. These are given by
lij ¼
1

Nj

XNj

n¼1

xijn ð6Þ

Wij ¼
1

Nj

XNj

n¼1

ðxijn � lijÞ
2 ð7Þ

li ¼
1

K

XK

j¼1

lij ð8Þ
where xijn is the ith feature of the nth training feature vector, training pattern,

from the jth class.

In our approach in using the F -ratio we make use of the HMM properties to
facilitate the implementation of this technique in assessing and reducing the

number of features. The HMM technique used is implicitly considering the

Gaussian behaviour of the feature vectors which satisfies the first condition

needed by the F -ratio method. The second condition is satisfied by using di-

agonal covariance within the structure of the HMM. Finally, the F -ratio av-

eraging is conducted across all the models according to the formula
F ave ¼ 1

H

XH

i¼1

Fi ð9Þ
where H represents the number of the HMMs.

The averaged F -ratio can be sorted into descending order, and then we can

select the corresponding top Q features, which simply indicate the most
prominent features within the whole set of features. Fig. 2 shows the mean F -
ratio using this technique. If we sort the values of the resulting mean F -ratio in

descending order, we can determine the features from the most prominent one

to the least prominent one.
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Fig.  2. F -ratio of several HMM models and their mean. 

 
 

4. Parallel HMM multi-streams-based system 
 

   We  developed  this  system  based  on  the multi-stream notion,  targeting  the 
advantages of alleviating the dominance problem, the dimensionality reduction 
and flexibility of the design [3]. The speech signal feature vectors selected are 
the  power  and  Mel-scale  coefficients  with  their  first  and  second  
derivatives, deltas. This selection is due to the high potential of these coefficients 
in carrying the static and temporal information of the spoken signals. The first 
derivative can be approximated by the regression formula 
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where N  is the delta period over which the difference is taken.  
    The second derivative, ∆∆x, is approximated  by applying the above equa- 
tion on the resultant ∆x(n).  The spectral behaviours of the three components  x, 
∆x, and ∆∆x are different even they are derived from the same source, and       
the  dependency  is  obvious   from  the   way  of  derivation.  This  leads   to  the 



Fig. 3. Feature vector segmentation and processing. The prime and the double prime notations

refer to the delta and delta–delta coefficients, respectively.
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assumption that the stationary states of the three components are different

from each other. To substantiate this assumption an experiment has been done,
in which the three components of the feature vectors are considered to be in-

dependent, to model three CHMMs. The 39 coefficients feature vectors are

extracted from the input speech signal: one power and 12 Mel coefficients

with their first and second derivatives. Then this long vector is segmented

into three 13-coefficient vectors to be dealt with as three independent compo-

nents as shown in Fig. 3. Three streams CHMMs are trained on a certain

word and the stationary states are backtracked for each stream using Viterbi

algorithm [25].
Fig. 4 shows the states detected by the three CHMM models. This figure

shows clearly that the states boundaries detected by the three models are not

synchronised most of the time. This finding is due to the difference in the

spectral characteristics of the states corresponding to each stream. There is no

association between the states assigned to a certain feature in the different

stream models. These states represent stationary classes of speech signal and

there is also no correspondence between them and the linguistic units such as

the phonemes and the sub-word classes.
The unsynchronised states are the reason for not adopting the technique of

representing the output probability density by the sum of the individual log
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Fig.  4. State assignment by the three streams CHMM. The vertical lines are the states’ boundaries. State 
6 of Mels model and states 2 and 9 of the delta Mels model are skipped and indicated by Xs6, Xs2, and 
Xs9. This is due to the left-to-right CHMM structure, which allows one state skip. 

 
 

probabilities of the streams at a certain time, as indicated in Eq. (2). A better 
choice would be to leave the streams behave as independent components (al- 
though, even this is not quite true), and merge the log likelihood at the end. The 
developed system has two phases to build: training and recognition. In the training 
phase, the topology used is left-to-right, allowing one state skip, and  the  type  of  
the  model  is  CHMM  with  nine  states  and  five  mixtures  per state. Then three 
CHMMs have to be trained, one model per stream. During the recognition phase, 
the input speech signal is pre-processed and extracted  from  its  background,  first  
[1,2].  Then,  each  segment  of  the  feature vectors  is  presented  to  its  
corresponding  model.  The  output  log-likelihood probabilities  of  the  three  
streams  are  merged  to  decide  the  recognised  word. The  block  diagram  of  the  
proposed  system  of  the  three  streams  is  shown  in 
Fig. 5. 

If the log-likelihood of each stream is represented by ( / )sP O λ ,  where s is 1, 
2, or  3  for  three  streams,  then  the  merging  strategy  can  be  achieved  by  two 
methods: 
(a)  The recognised word in this method is simply the weighted sum of the log 

probabilities of the three streams 
 
                (11) P w P∑O system O λ

=
=

3

1

( | ) ( | )s s

s 
The weighting factor was taken to be equal in the developed system  and 
also was adjusted heuristically according to the importance of the streams 
using the F -ratio technique, as will be discussed later in this section. 



Fig. 5. Implemented multi-stream system structure.

32 W.H. Abdulla, N. Kasabov / Information Sciences 156 (2003) 21–38
(b) A more sophisticated technique using neural networks can be used. This

technique takes into account the importance of each stream according to

a certain maximisation criteria. Despite the superiority of this method over

the previous one in part (a), we are not in favour of it. This is because it
would need a larger training dataset, and it adds more parameters to the

model. These parameters are increasing in the order of OðmNÞ, for one

layer only, where N is the number of words to be recognised and m is

the number of streams. The neural networks can be more beneficial to a

system trained on the phonemes, as their number is limited, and it is ex-

pected to offer better optimisation decision than the simple heuristic

weighted sum.

The structure depicted in Fig. 5 suggests investigating adding more streams
from other features, like isolating the power coefficient with its deltas into

independent stream.

The feature vectors dimension of the existing streams could be reduced by

choosing the features that are more influential than the others, using the F -
ratio technique discussed in Section 4. The F -ratio can also be used her as a

figure of merit to identify the weight of each feature set in the classification

property. Following the same method described in Section 4, we can plot the

state F -ratio curves of the three streams and their means as in Fig. 6.
The features can also be sorted according to their classification importance

to form Table 1. If we compare the F -ratio scores plotted in Figs. 2 and 6, we

will see high coherence between them, which suggests the selection of the F -
ratio as a successful figure of merit. In the top 28 ranked features the pro-

portions of the Mel coefficients are fjQ0j þ jQ1j þ jQ2j þ jQ3j ¼ 3þ 10þ
9þ 6g, which is exactly the same result achieved from the single-stream ex-

periments plotted in Fig. 2.

The F -ratio can also be used successfully in deciding the weight of each
stream in the multi-stream paradigm systems. The average F -ratio of each

stream has been taken and considered as the weight that decides the impor-

tance of this stream in the classification decision. Thus we will have the fol-

lowing weights corresponding to each stream:



Fig. 6. State F -ratio of the multi-stream models. The thick red lines indicate the mean of the class

F -ratio curves.
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w1 ¼ 1:662 for the first stream ðstaticÞ

w2 ¼ 1:0531 for the second stream ðdeltaÞ

w3 ¼ 0:5549 for the third stream ðdelta–deltaÞ
We can also see from Fig. 6 that the mean state F -ratio scores for multi-stream
case are higher than those indicated in Fig. 2 for single stream case. This in-

dicates that the classification property of the multi-stream-based models out-

performs its corresponding single stream counterpart.

5. Comparative studies of different ASR system paradigms

In this section, we depict the recognition rate of some successful ASR sys-

tems. The feature vectors used in all the systems are of 28 MFCCs and in the
proportion specified in the previous section. The paradigms will be denoted by

the following names for simplicity:

ASR-1: is a single stream multi-mixture model of type CHMMwith nine states

and five mixtures.

ASR-2: is a multi-stream ASR with equal stream merging weights. Three

streams are used; each of them is modelled by a five mixtures CHMM

with nine states. This system is shown in Fig. 5.

ASR-3: is the same as ASR-2 but uses the F -ratio merging weights.
Upon testing these systems under the same conditions and using three da-

tasets we got the results indicated in Table 2. The datasets are collected from



Table 1

Multi-stream Mel frequency cepstral coefficients (MFFC) feature ordering using F -ratio as a figure

of merit

Rank Feature index Corresponding coefficient F -ratio value

1 2 C1 5.1971

2 1 C0 3.8122

3 15 DC1 2.9792

4 6 C5 2.7751

5 14 DC0 2.6531

6 5 C4 2.2297

7 4 C3 2.2220

8 19 DC5 1.9283

9 3 C2 1.7663

10 17 DC3 1.5716

11 18 DC4 1.3029

12 7 C6 1.3009

13 16 DC2 1.2727

14 28 DDC1 1.2622

15 27 DDC0 1.0269

16 32 DDC5 1.0012

17 20 DC6 0.9454

18 8 C7 0.9201

19 9 C8 0.8401

20 30 DDC3 0.8121

21 21 DC7 0.6948

22 10 C9 0.6748

23 22 DC8 0.6519

24 29 DDC2 0.6199

25 31 DDC4 0.5449

26 23 DC9 0.5314

27 11 C10 0.5246

28 33 DDC6 0.4313

29 35 DDC8 0.3922

30 34 DDC7 0.3351

31 13 C12 0.3333

32 12 C11 0.3312

33 24 DC10 0.3266

34 26 DC12 0.3134

35 36 DDC9 0.2898

36 25 DC11 0.2048

37 37 DDC10 0.1782

38 38 DDC11 0.1119

39 39 DDC12 0.0958
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the Otago Speech Corpus 1 and the number of words in each of them is in-

dicated between brackets in the table.
1 Otago Speech Corpus can be downloaded from http://kel.otago.ac.nz/hyspeech/corpus



Table 2

Recognition rates of four different ASR systems using three datasets

Recognition rate (%)

DATASET-I (10) DATASET-II (30) DATASET-III (54)

ASR-1 100 97.3 92.5

ASR-2 100 99.2 97.3

ASR-3 100 99.2 98.9
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Several conclusions can be deduced from Table 2. Perfect results obtained

from all the ASR systems when tested by DATASET-I. Thus under this dataset

we recommend ASR-1 system since it is the simplest paradigm. The multi-

stream models, ASR-2 and ASR-3, show their superiority over the single

stream one, ASR-1, when tested by DATASET-II and DATASET-III. The F -
ratio merging weights based system, ASR-3, is the best among all the three

systems when subjected to DATASET-III.
6. Conclusions

In this paper, we have investigated the problem of improving the speech

recognition performance by restructuring the method of using the feature

vectors. Instead of dealing with the composite static and dynamic speech signal

features based on the MFCCs as a single stream, we proposed splitting them

into three independent streams. Despite the fact that the streams’ independence

assumption is not very precise, from the method of deriving their vectors, the

multi-streams paradigm has outperformed the baseline single-stream para-
digm. This improvement is mostly predicated to two reasons. First, multi-

streaming alleviates the dominance problem of any feature set over the others.

Second, it reduces the dimensionality of the feature vectors used in each

stream, which prevents the curse of the dimensionality problem. Merging the

streams prematurely in an early stage, as discussed in Section 3, to construct

one model only, would improve the performance of the recogniser over the

single-stream based systems but not as much if we let each stream have its own

model. This is due to the unsynchronised nature of the states among the
streams, as depicted in Fig. 4, which makes the premature merging inefficient.

Thus, in our paradigm we favour letting each stream’s model detects its own

stationary states. Then, the resultants of the parallel models are combined,

under a certain hypothesis merging strategy. We demonstrated two merging

strategies. One presumed equal-weight streams while the other suggested that

the streams weights were proportional to the F -ratio average values. The latter

had outperformed the first as depicted in Table 2. A NN can be introduced as

an option in deciding the merging weights. However, we ruled out this option,
because it would need bigger training data sets and it required more parameters
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to optimise. The NN increases the number of parameters in the order of

OðmNÞ, for one layer only, where N is the number of words to be recognised

and m is the number of streams. The neural networks can be reconsidered on

the phonemes based speech recognition systems, because the number of pho-
nemes is limited and it is expected to offer better optimisation decision than the

simple heuristic weighted sums.

The notion of the dimensionality reduction has been studied from another

perspective. The F -ratio as a figure of merit in evaluating the feature impor-

tance was relied on, to select 28 MFFC features out of the full 39 features. In

this case we have had 11, 10, and 7 features in the static and the two consec-

utive dynamic streams respectively. We applied the F -ratio technique directly

on the HMM parameters rather than the usual long method based on the
training data.

The potential of the multi-streams paradigm is very flexible and opens the

door to investigate adding more streams from mechanisms other than MFCC

features, such as the perceptual linear prediction coefficients (PLP). The in-

crease of the dimensionality problem from the inclusion of extra features is not

yet a problem in the multi-streams paradigm, as we can sensibly split the

features and forward them to relevant streams.

However, the pitfall in this paradigm is in using the HMM decoding for as
many streams as there are in the system. This problem can be diminished

through using hardware processors to implement the HMM decoding. In this

case, the whole processing time will be less than that of the single high-di-

mension stream because the streams’ models are independent and working in

parallel.
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