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Abstract. Abnormal activity detection in a video is a challenging and
attractive task. In this paper, an approach using spatio-temporal feature
and Laplacian sparse representation is proposed to tackle this problem.
To detect the abnormal activity, we first detect interest points of a query
video in the spatio-temporal domain. Then normalized combinational
vectors, named HNF, are computed around the detected space-time inter-
est points to characterize the video. After that, we utilize the Laplacian
sparse representation framework and maximum pooling method to gain
a more discriminative feature vector from the HNF set. Finally, the sup-
port vector machine (SVM) is adopted to classify the feature vector as
normal or abnormal. Experiments on two datasets demonstrate the sat-
isfactory performance of the proposed approach.
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1 Introduction

In surveillance videos, the abnormal activities can be defined as aberrant events
such as people fights, crowded escape activities. Thus, the abnormal activity
detection is to identify these aberrant events from normal ones, which is a two-
class classification problem. This problem is divided into the detection of global
abnormal activity (GAA) and local abnormal activity (LAA). For GAA, there is
only normal activity or abnormal activity at the same time in the entire scenario.
For LAA, normal and abnormal activities emerge simultaneously in the scenario.

In some existing surveys, the global features are used to describe video clips
for GAA. In [8], the streakline representation based on Lagrangian framework
for fluid dynamics is utilized to detect abnormal activity. In [9], Mehran et al.
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use the social force model [4] to analyze the human activity. The description of
human activity in social force model is based on the intention of movement.

On the other hand, some surveys [10,11] utilize the Bag-of-Words (BoW)
framework to tackle both GAA and LAA problem. The BoW model consists
of three modules: (1) feature extraction; (2) codebook producing and feature
quantization; (3) classification.

For the feature extraction, [10,11] use the local spatio-temporal feature to
characterize video clips. They first detect the space-time interest points (STIP)
[5] of video clips. Then spatio-temporal descriptors such as Histograms of Ori-
ented Gradients (HOG) and Histograms of Optical Flow (HOF) are computed
respectively around the detected STIP to describe video clips. However, HOG
or HOF is not discriminative enough to encode the information of appearance
and action. In [6], the HOG and HOF descriptors are combined into normalized
vectors for the recognition of human actions. The combinational feature vec-
tors of HOG and HOF, named HNF, are discriminative enough to describe the
appearance and action in video clips. Note that detecting abnormal activity also
needs to encode the appearance and action information. Therefore, the HNF is
also a discriminative descriptor for the abnormal activity detection.

For the second module, BoW model first utilizes the K-means clustering to
produce the codebook which contains several visual words. Then each feature
is only assigned to its nearest visual word to generate a frequency histogram of
visual words, which is called the feature quantization. However, the information
loss [1] in feature quantization is severe because of the hard assignment approach
used in BoW model. In order to reduce the information loss, [12] adopts the gen-
eral sparse coding to generate the codebook and quantize features in abnormal
activity detection, which achieves better performance than BoW model.

However, the general sparse coding disposes features separately, ignoring the
similarity among features, which decreases the accuracy and robustness of sparse
representation. In order to tackle this problem, Gao et al. [3] propose the Lapla-
cian Sparse Representation (LSR) approach for image classification. In the LSR
approach, the similarity matrix is used to preserve the similarity information
among features, which can further reduce the feature quantization error and
make the sparse representation more robust. Thus, we can also utilize the LSR

Fig. 1. The main framework of our approach
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approach to learn a better codebook and produce a more descriptive video rep-
resentation for abnormal activity detection.

As mentioned above, we propose an approach using the spatio-temporal fea-
ture and the Laplacian sparse representation for both GAA and LAA problem.
The main framework is summarized in Fig. 1. Firstly, we detect the space-time
interest points of a query video. Then the HNF descriptors are computed in the
nearby 3D patches of the detected interest points. After that, the sparse repre-
sentations of HNF descriptors are generated by applying the Laplacian sparse
coding. Then we utilize the maximum pooling method among the entire Lapla-
cian sparse representation set of the query video to obtain a more descriptive
feature vector. Finally, we use the SVM to classify this feature vector and deter-
mine whether the query video includes the abnormal activity.

The rest of this paper is organized as follows: we present the details of our
approach in Sect. 2. In Sect. 3, we report the experimental results and show the
comparisons of different methods. We give the conclusion in Sect. 4.

2 Methodology

2.1 Spatio-Temporal Feature

In order to detect the abnormal activity, we first extract the spatio-temporal
features from a query video, which contains two procedures. The Fig. 2 illustrates
the extraction of spatio-temporal features.

Detection of Space-Time Interest Points. Detecting interest points in a
video clip is to locate the local regions with intense variation of image intensity
in the spatio-temporal domain. In this paper, we utilize the approach proposed
by [5] to solve this problem.

Fig. 2. The illustration of extracting spatio-temporal features

Firstly, let fst : R
2 × R �→ R represent a video clip. Then, we convert the

fst into linear scale space by applying the convolution of fst with an anisotropic
Gaussian kernel. After that, we compute the second moment matrix with respect
to the linear scale-space representation of fst. Then we integrate the second
moment matrix with an Gaussian kernel to obtain a matrix Γst. Eigenvalues
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with large values of the matrix Γst indicate the local bricks which have intense
variation of image intensity. Thus, following the work [5], the extended Harris
corner function Hst with respect to the eigenvalues of Γst is introduced to tackle
the problem.

Hst = λ1λ2λ3 − ξ · (λ1 + λ2 + λ3)3 = λ3
1(ωη − ξ · (1 + ω + η)3) (1)

where λ1, λ2, λ3 denote the eigenvalues of matrix Γst, ω = λ2/λ1, η = λ3/λ1,
ξ ≤ ωη/(1 + ω + η)3, and Hst ≥ 0. We can detect space-time interest points by
finding the local positive maximum values of Hst.

HNF Descriptors for STIP. After the detection of interest points, we use the
HNF descriptors [6] to characterize the video. Firstly, Histograms of Oriented
Gradient (HOG) and Histograms of Optical Flow (HOF) are computed respec-
tively in the nearby 3D patches of detected interest points. Then, to obtain the
HNF descriptors, we combine the HOG and HOF into vectors and normalize
them. As shown in Fig. 2, the 3D video patch is divided into a grid with 3×3×2
spatio-temporal bricks. In each brick, there are 4-bin HOG descriptors and 5-
bin HOF descriptors. Therefore, one HNF descriptor vector has 162 dimensions,
including 72 elements from HOG and 90 elements from HOF. With the combi-
nation of HOG and HOF, the HNF descriptor can provide more information of
appearance and action.

2.2 Laplacian Sparse Representation for Spatio-Temporal Feature

In order to produce a more descriptive and precise representation for the appear-
ance and action of a video clip, we utilize the Laplacian Sparse Representation
(LSR) method [3] to encode spatio-temporal feature vectors. In the LSR method,
the matrix S is used to preserve the similarity information among features and a
regularization term with respect to the similarity matrix S is applied to improve
the robustness and accuracy in feature quantization.

Let X = [x1, x2, . . . , xN ] ∈ R
d×N denote the spatio-temporal features set,

and let H = [h1, h2, . . . , hK ] ∈ R
d×K be the codebook learned by LSR. Then

the problem of LSR is formulated as follows:

min
H,M

‖X − HM‖2F + λ
∑

i

‖mi‖1 +
β

2

∑

ij

‖mi − mj‖2Sij

= min
H,M

‖X − HM‖2F + λ
∑

i

‖mi‖1 + β · trace(MLMT )

s.t. ‖hm‖2 ≤ 1

(2)

where the mi denotes the Laplacian sparse representation of the i-th feature vec-
tor xi and M = [m1,m2, . . . ,mN ] ∈ R

K×N . The λ is a regularization parameter
with respect to the sparsity and β is the similarity constraint. The Laplacian
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matrix is L = D − S and the Dii =
∑

j Sij denotes the degree of the i-th node.
We use the histogram intersection I(xi, xj) to compute the similarity matrix S.

I(xi, xj) =
d∑

l=1

min(xil , xjl) (3)

where xil is the l-th entry of the d dimensional feature vector xi. Let Sij = Sji =
I(xi, xj) if xi is the k nearest neighbor of xj , where i �= j and k = 5. Otherwise
let Sij = 0.

The problem defined by Eq. (2) is not convex if we optimize H and M con-
currently. However, when one of H and M is fixed, the optimization for the other
one is convex. Thus, H and M are optimized alternately following the work [3].

Firstly, we fix the codebook H, then each element in the sparse representation
set M can be optimized individually. If we want to compute each mi, the other
sparse representations mj , where j �= i, should be fixed. Then the feature sign
search algorithm [7] is used to solve the following optimization to produce mi:

min
mi

‖xi − Hmi‖2 + β(mT
i (MLi) + (MLi)Tmi − mT

i Liimi) + λ‖mi‖1 (4)

where the i-th column of the Laplacian matrix L is Li, and the (i, i)-th element
of L is Lii. M is the initialized sparse representation set and should be updated
after the optimization of mi, where mi denotes the i-th column of M .

When we fix the sparse representation set M , the learning of codebook H
can be defined as:

min
H

‖X − HM‖2F s.t. ‖hm‖2 ≤ 1 (5)

The Lagrange dual proposed in [7] is utilized to solve the Eq. (5).
In our approach, we randomly extract some features to learn the codebook H

by optimizing Eqs. (4) and (5) iteratively, which is an offline learning task. After
we obtain the codebook H, we only need to solve Eq. (4) to learn the sparse
representation for each feature in the spatio-temporal features set X.

2.3 Maximum Pooling

Through the Laplacian sparse representation method, we can obtain a set of
sparse representations of a query video, denoted by {m1,m2, . . . ,mn}. Then we
utilize the maximum pooling over this sparse representation set to obtain a K
dimensional feature vector ρ which is used to characterize the video. Let ρj
denote the j-th element of ρ, then the maximum pooling can be defined as:

ρj = max{|m1j |, |m2j |, . . . , |mnj
|}, j ∈ {1, . . . , K} (6)

where mij is the j-th element of the vector mi. Each column of the codebook
H represents a basic pattern of the feature space. With the maximum pooling
method, we reserve the strongest response to each basic pattern and produce a
feature vector with K dimensions for a query video, which also reduces the influ-
ence of irrespective information and improves the robustness of our approach.
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2.4 Abnormal Activity Detection via SVM

The detection of abnormal activity in a video is a two-class classification problem.
In our approach, we utilize the support vector machine (SVM) [2] with a radial
basis function (RBF) kernel to solve this problem. The kernel trick used in SVM
can map the linearly inseparable features into the high-dimensional space, which
can make features linearly separable in the new space. After we obtain the feature
vector ρ, we use the SVM to classify ρ as normal or abnormal.

3 Experiments

In this section, we conduct experiments on the UMN dataset [9] and the Hockey
dataset [10] to test our approach.

3.1 Experimental Results on the UMN Dataset

This dataset contains 7740 frames with the crowded escape activities in 3 scenes.
And the resolution is 320 × 240 pixels. We cut the whole video into 258 clips,
including 196 normal video clips and 62 abnormal video clips. All video clips
are divided into 5 subsets to test our approach for the global abnormal activity
detection with 5-fold cross validation. In addition, the size of codebook in this
experiment is set to 1000.

We compare our approach with three different methods on the UMN dataset,
including social force model [9], optical flow [9], and streakline representation
method [8]. The ROC curves are shown in Fig. 3 and quantitative comparisons
are reported with the area under ROC curve (AUC) in Table 1.
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Fig. 3. The ROC curves on the UMN dataset

As reported in Table 1, the AUC of our approach is 0.971, which outperforms
the optical flow method, streakline representation method and social force model.
Experimental results on the UMN dataset have proved that our approach can
perform effectively in the global abnormal activity detection.
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Table 1. The performance comparisons on the UMN dataset with AUC

Method Social Force Model [9] Optical Flow [9] Streakline [8] Ours

AUC 0.96 0.84 0.90 0.971

We analyze the influence on our approach of parameters λ and β in Eq.(2).
With the increase of λ, the sparse representation of feature is more sparse. We set
λ among 0.3 ∼ 0.4 in the UMN dataset and find that λ = 0.32 performs best.
The parameter β influences the similarity constraint in sparse representation
generation. We set β among 0.1 ∼ 0.3 and find that our approach achieves good
performance when β = 0.1.

3.2 Experimental Results on the Hockey Dataset

The Hockey dataset is composed of 1000 video clips with a resolution of 360×288
pixels, including 500 clips with fight events among athletes and 500 normal clips.
Each video clip contains 50 frames. We test the proposed approach for the local
abnormal activity detection on this dataset with 5-fold cross validation.

We present the comparisons among our approach, methods based on BoW
model [10] and method using general sparse coding [12] in Table 2.

Table 2. The comparisons on the Hockey dataset with 5-fold cross validation

Visual
Words

HOG
with
BoW [10]

HOF
with
BoW [10]

MoSIFT
with
BoW [10]

MoSIFT with
sparse coding [12]

Ours

Accuracy Accuracy Accuracy Accuracy AUC Accuracy AUC

50 87.8 % 83.5 % 87.5 % 90.9 % 0.951 91.8 % 0.955

100 89.1 % 84.3 % 89.4 % 92.6 % 0.958 93.0 % 0.962

150 89.7 % 85.9 % 89.5 % 93.4 % 0.963 93.9 % 0.966

200 89.4 % 87.5 % 90.4 % 94.1 % 0.971 94.7 % 0.974

300 90.8 % 87.2 % 90.4 % 94.1 % 0.968 94.8 % 0.976

500 91.4 % 87.4 % 90.5 % 94.3 % 0.971 95.1 % 0.979

1000 91.7 % 88.6 % 90.9 % 94.0 % 0.967 95.3 % 0.978

According to Table 2, the approach using general sparse coding [12] gains a
higher prediction accuracy than approaches based on BoW model, which indi-
cates that the sparse coding method achieves better performance than BoW
model in the feature quantization. Our approach obtains a higher prediction
accuracy than the other approaches, which indicates that HNF descriptor is
discriminative. Furthermore, the AUC of our approach is larger than approach
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using general sparse coding, which indicates that Laplacian sparse representa-
tion method produces less feature quantization error because of the preserving of
similarity among features. The experimental results indicate that our approach
has achieved promising performance in the detection of local abnormal activity.

We also apply the same parameter analysis as the UMN dataset on this
dataset. We find that our approach performs best when λ = 0.3, β = 0.1.

4 Conclusion

In this paper, we propose an approach based on spatio-temporal feature and
Laplacian sparse representation to detect abnormal activity in a video. We use
the HNF descriptor to characterize the appearance and action of a query video
after the detection of space-time interest points. Then the Laplacian sparse rep-
resentation and maximum pooling method are applied to obtain a more descrip-
tive feature vector. With the introduction of similarity matrix in the LSR, we
preserve the similarity among spatio-temporal features, which improves the accu-
racy and robustness in feature quantization. Experimental results on the UMN
dataset and the Hockey dataset demonstrate that our approach can achieve sat-
isfactory performance in the detection of both global abnormal activity and local
abnormal activity.
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