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Abstract. This paper investigates a novel support vector machines (SVMs) based 
technique to segregate speech segments from the concurrent background. The goal of the 
speech segment extraction is to separate the acoustic events of interest in a continuously 
recorded signal from the other parts of the signal (background). Speech segment 
extraction is an essential step in many front-end processors in speech recognition and 
coding systems and it has a direct effect on their performances. The investigated 
technique is an on-line process that can classify the speech features on a frame basis. Our 
SVMs approach is compared with another successful technique based on the hidden 
Markov model and showed an advantage in detecting the intra-word silence as well the 
inter-word silence periods. 

 
1 Introduction 
 
An important step in many speech applications is the speech segment extraction, which is 
defined as the separation of the signal of essence from its background. It is an important 
step in implementing speech recognition and coding systems. In automatic speech 
recognition (ASR) systems two models are used: one for word extraction, and the other for 
word recognition. In speech coding and compression this task is important because the 
silence periods have to be excluded from the signal ahead of any other operation to 
minimise the processing time and the storage space. The detection of the presence of speech 
was classically referred to as endpoint detection (EPD) problem [1]. The problem of 
detecting endpoints would seem to be relatively trivial, but, in fact, it has been found to be 
very difficult in practice, except in the case of very high signal to background-noise ratio 
(SNR). Some of the principal causes of endpoint detection failures are weak fricatives (e.g., 
/f/, /h/) or voiced fricatives that become unvoiced at the end (“has”), weak plosives at either 
end (/p/, /t/, /k/), nasals at the end (“gone”), and trailing vowels at the end (“zoo”).  
     An early milestone technique used explicit features for speech non-speech 
discrimination such as speech signal energy and zero-crossings rate [1, 2]. This technique is 
not very reliable as it depends in its operation on statistics calculated from the first 100ms 
of the incoming signal and any deviation from this statistics during the rest of the signal 
will lead to a serious failure. A more successful attempt for speech/non speech 
discrimination based on the hidden Markov model (HMM), was developed [3]. In this 
attempt, the detector consists of an ergodic HMM with two main states (speech and non 
speech) and a number of intermediate states. Yet, it is not possible to make the 
discrimination on the frame level due to the need of several successive states to let the 
Viterbi algorithm to work. A method based on the entropy has also been proposed. It 
depends on many empirical constraints and it requires calculating several statistics before 
start [4]. Another technique for word boundary detection has also been proposed [5]. 
Although it is efficient, it needs to acquire the whole utterance before making the decision 
on the end points.   



 

This paper illustrates a novel SVMs based technique that can be used to detect and delete 
the silence, background♠, periods from within a word (intra-word) and between words 
(inter-word). SVMs classifiers are getting a growing interest from the speech community. 
SVMs are striking because they can be used efficiently to learn non-linear decision 
boundaries.  
     For using SVMs, a training dataset has to be prepared beforehand. We used 50 examples 
spoken by different speakers in different environmental conditions. The silence (non-
speech) periods in the training examples should contain different noise levels as well as 
some artifacts such as lip slaps, breaths, and microphone clicks. To increase the robustness 
of the word extraction models, we used different microphone types in recording the training 
dataset. The relevant acoustic features used to represent each processed frame of the 
incoming signals are constructed from 12 Mel frequency cepstral coefficients (MFCC1-12) 
as well as one energy coefficient (MFCC0) [6-8]. These are for capturing the stationary 
spectra of the speech segments. The speech signals were pre-emphasised and the frame 
length was chosen to be 23 ms taken each 9 ms. The MFCC feature vectors were cepstrally 
mean normalised by subtracting their means which increased robustness toward the channel 
and the environment variability [9].  
     The rest of this paper is organised as follows: Section 2 introduces the HMM based 
segmentation technique which is used to benchmark the SVMs technique. Section 3 
demonstrates the SVMs concept. Section 4 depicts the use of SVMs in speech segment 
extraction. Section 5 evaluates the two techniques. Finally, section 6 derives final 
conclusions from the research. 
 
2 HMM based segmentation method  
 
Previously, we have developed an efficient HMM based technique for extracting the spoken 
words, speech segments, from their background environments [10]. This technique will be 
taken here as a reference to benchmark the newly developed SVM technique. In the HMM 
based technique, a trained 3-state HMM model is prepared by using the 50 examples and 
MFCC features described in section 1. The signals are denoised first, using wavelet method 
[11].  Denoising has a strong effect in helping the word extraction model differentiate the 
speech state from background states. The signals are denoised using the biorthogonal 
wavelet (bio2.2) which is one version of different possibilities of the biorthogonal wavelets 
with a level of decomposition of 16, to mute the noise before starting the word extraction 
procedure [12]. This model can efficiently discriminate the speech signal from the two 
coherent pre-word and post-word silence segments. During the detection of the speech 
segments, the incoming signals are classified into three distinctive and consecutive states 
representing the pre-silence, speech, and post-silence segments respectively [13]. The states 
were detected by using the backtracking phase in Viterbi algorithm. Then, the extraction of 
the speech segment is simply done by removing, from the original signal, the input samples 
belonging to the first and third states, while keeping the speech samples of the second state. 
 
3 Support Vector Machines in Recognition Problems 
 
One of the relatively new and promising methods for learning separating functions in 
pattern recognition (classification) tasks, or for performing functional estimation in 
regression problems, are the Support Vector Machines (SVMs) developed by Vapnik and 
                                                           
♠ Background and silence are used interchangeably in this thesis. 



 

Chervonenkis [14]. Our problem of speech-silence detection is posed as the problem of 
binary classification or dichotomization. Training data are given as 
 (x1, y1), (x2, y2), . . ., (xl, yl),    (1) 
were x is a thirteen-dimensional input vector of mel scale cepstral coefficients, i.e., vector x 
∈ ℜ 13, the desired (target) value y is a binary valued variable, i.e., y ∈ {+1, -1} for a 
speech and silence respectively and l stands for the number of data pairs. (Here, 160 data 
pairs have been used for training; 128 representing speech and 32 for silence).  
     In a SVM's learning [14, 15] for two linearly separable classes, one aims at finding a 
separating ' maximal margin' hyperplane which gives the smallest generalization error 
among the infinite number of possible hyperplanes. The data on margin and/or the closest 
ones are called support vectors. They are found by solving quadratic programming (QP) 
problem. Very often (and, this is also the case in our speech-silence detection problem 
here), the separation function between the classes is nonlinear. In this case, the data will be 
mapped from an input space into a high dimensional feature space by a nonlinear 
transformation Φ(x). Because the QP problem in a feature space depends only on a dot 
product Φ(xi)

TΦ(xj) the very learning can be performed by using Mercer theorem for 
positive definite functions that allows replacement of Φ(xi)

TΦ(xj) by a positive definite 
symmetric kernel function K(xi, xj) = Φ(xi)TΦ(xj). Here the Gaussian positive definite 
kernel i.e., Gaussian radial basis function (RBF) was used. In this high dimensional feature 
space, the generalized optimal separating hyperplane is constructed by solving the 
following QP problem, 
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where αi are the Lagrange multipliers that define the output weights of the model (as wi = 
yiαi) and K(xi, xj) is a value of a chosen Gaussian kernel (placed at the point xj) for the point 
xi. In a more general case, because of noise or generic class’ features, there will be an 
overlapping of training data points and the nonlinear ‘soft’ margin classifier will be the 
solution of the quadratic optimization problem given by (2) subject to new constraints 
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Thus, in the case of overlapping (i.e., for a ‘soft’ margin classifier) there is an upper bound 
C on the Lagrange multipliers αi. The decision hyper-surface d(x) is determined by 
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where b represents a threshold value not needed when one uses positive definite kernels 
such as Gaussian ones because for a Gaussian RBFs d(x)
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particular case the second constraint in (3) is also missing. 
     There are two basic design parameters that determine the goodness of an SVM. Here, for 
a classification tasks, they are the parameter C and the shape parameters that define the 
width of 13-dimensional Gaussian functions contained on the diagonal of the covariance 
matrix. Both parameters have been selected after the cross-validation runs. The 'optimal' 
value for C is found to be 75 while the 'best' shape of the Gaussian functions is when the 
standard deviation of the Gaussian hyper-bell equals 2 times average distance between the 
training data pairs in corresponding directions. There were 160 training data pairs (128 for 



 

speech and 32 for silence), and after the training only 67 data points have been selected as 
support vectors. The results on selected test data sets and comparisons with HMM are given 
in the next section. 
 
4 SVM based segmentation method  
 
The HMM based method described  in section 2 is reliable in extracting the pre- and post 
silence segments from the speech signal. However, it cannot discriminate the intra-word 
and the inter-word silence periods from the speech signal on a frame basis.  These periods 
are speaker dependent artefacts, they mostly have no information to carry, and they could 
degrade the performance of a speaker independent speech recognition system. However, in 
some systems, the intra-word silence periods might be considered a cue to detect the 
plosive phonemes. In speech coding systems, the inter-word silence periods add up to a 
substantial proportion of the whole spoken utterances.  
     In this paper, we developed a technique using SVMs to extract the speech samples from 
the background. This technique has three main advantages: First, it detects the intra-word 
silence periods as well as the two coherent silence terminals, which leads to better 
recognition/coding performance when removed. Second, it reduces the number of samples 
to be processed in any subsequent stages and this leads to faster processing speed. Third, it 
classifies the feature vectors, to speech or silence, immediately without the necessity of 
reading the whole input then detecting the states using Viterbi backtracking to extract the 
relevant speech signal. The third advantage is mostly useful in spontaneous speech 
recognition systems as the classification is carried out on a frame basis. Even though the 
SVMs method might have some misclassification errors, mostly they are not harmful to the 
recognition/decoding process. For better performance, we need an extra pruning process to 
minimize spurious errors. 
     Regarding the implementation, the first thing to prepare is the training data to train the 
SVMs in a supervised way. These data must be prepared from different words spoken in 
different environments and each feature vector labelled by either a speech or silence tag.  
We can use these tagged vectors directly to train the SVMs but this is a very time 
consuming method as there are several thousands of the tagged vectors needed for training 
to introduce all the signal variability to the SVMs module. On the other hand this training 
method needs huge memory resources. To overcome this problem we introduced a fast 
training method based on vector quantisation technique [16]. In this method the feature 
vectors tagged as speech frames are quantised into C1 clusters and those tagged as silence 
are quantised into C2 clusters. Then, the centre of gravity of each cluster is used as a 
representative for training. Thus we only have C1+C2 vectors for training. Several numbers 
of clusters have been tested for C1 and C2. We have seen that   C1 = 128 and C2 = 64 is a 
good choice to represent the training set of feature vectors. The SVMs used have 13 inputs 
corresponding to the 13 coefficients of the feature vectors -one power and 12 MFCCs, and 
67 support vectors.  
     The trained SVMs can classify the input feature vectors instantly whether it belongs to 
the speech or silence segments. Some spiky input belonging to the silence segments might 
give a false alarm that it is from the speech state.  A pruning technique has been used to 
reduce this effect by considering that, for a short window length, the next future vector is 
expected to stay at the current state unless other future vectors consolidate the change of 
state. The pruning technique improves the classification performance while sacrificing the 
spontaneous decision capability of this method.  This is because pruning needs the current 
and the next five frames to be available simultaneously to process. This implies that, to 



 

decide the state of the next frame, we have to delay the process until we read the next five 
frames. Figure (1) shows the outputs of the SVM and the pruned outputs of spoken digits 
“5678”. This figure also depicts that when the same signal is presented to the HMM of 
section 3 then it would only detect the pre and post-silence segments.  
 
 
 
 
 
 
 
 
 
 
 
 
 
5 Evaluation of the two methods 
 
There are some important differences from the computation cost perspective. The 
differences are in both in the training and in the detection steps. The computation cost of 
each method can be estimated by counting the number of multiplication and division 
operations, which are the most computationally demanding operations. We have found that 
the best way to evaluate structurally different methods is to calculate the CPU time required 
to fulfil the same task using the same computer.  The tasks are the training procedures 
required to construct a model and the detection procedures required to detect speech 
segments. The training of the HMM model requires 70.6 seconds while that of the SVM 
needs only 9.4 seconds (not including the VQ processing time). Detection (unlike the 
training) is needed to be very fast as it is executed in every speech recognition/coding 
process. To evaluate the computational performance of the two techniques we used a long 
utterance and calculated the CPU time of the discrimination process required by each 
method. The detection time for connected spoken digits “5678” required by the SVM is 1.2 
second while that required by the HMM is 3.84 seconds. The execution time measured in 
all cases is that needed by the CPU to carry out the algorithms written in a MATLAB♣ 
environment version 5.2 running on a 1800 MHz computer. This execution time can be 
reduced by a factor of 6-10 when the MATLAB programs are compiled into their 
executable (*.exe) forms. 
 
6 Conclusions  
 
The goal of the speech segment extraction is to separate acoustic events of interest (speech 
segment to be recognised) in a continuously recorded signal from other parts of the signal 
(background). We introduced a novel technique using the SVM. The SVM based model 
detects the silence or speech frames in a frame-based mode. For more accurate results we 
introduced a pruning method that processes each five consecutive frames to decide the final 
processed frame class (i.e. speech or silence). The SVM technique has been benchmarked 
against our previously developed HMM based technique. In this later technique, we have 
                                                           
♣ MATLAB is a trademark of Math Works Inc. 
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proposed that the utterance is composed of a sequence of states (i.e silence state – speech 
state – silence state). This means that the relevant speech segment can be filtered out by 
excluding the speech samples belonging to the first and the last states from the entire 
acquired utterance. The SVM technique has the advantage, over the HMM method, of 
detecting the silence periods when they are within the speech segment. The HMM 
technique can still detect the pre- and post-silence periods more precisely in some cases and 
in these cases it is the recommended method. It depends on the concrete task.  
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