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a b s t r a c t

The paper presents a novel method and system for personalised (individualised) modelling of spatio/
spectro-temporal data (SSTD) and prediction of events. A novel evolving spiking neural network
reservoir system (eSNNr) is proposed for the purpose. The system consists of spike-time encoding
module of continuous value input information into spike trains; a recurrent 3D SNNr; eSNN as an
evolving output classifier. Such system is generated for every new individual, using existing data of
similar individuals. Subject to proper training and parameter optimisation, the system is capable of
accurate spatio-temporal pattern recognition (STPR) and of early prediction of individual events. The
method and the system are generic, applicable to various SSTD and classification and prediction
problems. As a case study, the method is applied for early prediction of occurrence of stroke on an
individual basis. Preliminary experiments demonstrated a significant improvement in accuracy and time
of event prediction when using the proposed method when compared with standard machine learning
methods, such as MLR, SVM, and MLP. Future development and applications are discussed.

& 2014 Elsevier B.V. All rights reserved.

1. Personalised modelling

Personalised modelling (PM) is concerned with the creation of
an individual model from data to better estimate an unknown
outcome for an individual [1,2]. This is in contrast to global
modelling, where a model is created to cover the whole problem
space. Personalised medicine and many other areas of science and
technology rely now on efficient PM methods. Classical methods,
such as kNN, wkNN, wwkNN and others have a limited success on
complex problems [1,2,13].

In [1] a personalised modelling method and system were
proposed as graphically shown in Fig. 1a. For every new input
vector x, for which an output needs to be estimated, specific input
variables/features (Vx), their weightings (Wx), the number Kx and
the neighbourhood of samples (Dx), as well the model Mx and its
parameters (Px) are optimised together as a common chromosome
used in a genetic algorithm (GA) (Fig. 1b). This method was
explored on different applications in [2,29].

This paper extends the method from [1,2] to apply on spatio/
spectro-temporal data (SSTD) for classification and for an early
prediction of outputs that are results of spatio-temporal patterns
from a stream of SSTD. The classification models are proposed to
be based on spiking neural networks (SNN), suitable to learn and
classify SSTD, rather than on traditional machine learning classi-
fiers that classify static, vector-based data as it is in [1,2].

Spatio- and spectro-temporal data (SSTD), that are charac-
terised by a strong temporal component, are the most common
types of data collected in many domain areas. However, there is
lack of efficient methods for modelling such data. In particular,
there is a need for STPR that can facilitate new discoveries from
complex SSTD and produce more accurate and earlier prediction of
events. This is especially relevant for an early prediction of serious
personal events such as stroke and heart failure, where it would be
desirable to predict these events accurately and at the earliest
possible time. This is also crucial for brain data processing.

This paper suggests a new method and system to address this
challenge. For the proposed method a novel computational archi-
tecture is introduced built of spiking neural networks (SNN). This
can be used to predict early events in many domains, such as
engineering (surveillance for crime prediction and prevention;
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cyber security), bioinformatics (gene expression and protein fold-
ing), neuroinformatics (EEG and fMRI patterns), BCI and neuror-
ehabilitation, ecology (establishment of species), environment
(global warming process), medicine (patients risk of disease or
recovery over time), and economics (financial time series and
macroeconomics).

2. Evolving spiking neural networks for personalised
modelling, classification and prediction of spatio-temporal
patterns

To address the problem of PM with SSTD, here we propose a
method and a system based on SNN. SNN have already proved that
they are superior in learning and capturing spatio-temporal
patterns from SSTD [3–19] (see also: http://ncs.ethz.ch/projects/
evospike). SNN use temporal encoding of data as an internal
mechanism to learn temporal relationships between input vari-
ables related to a spatio-temporal pattern that needs to be learned,
classified and predicted.

The method proposed here for PM based on SNN consists of the
following steps:

(1) For a new individual vector x, described by a set of static
variables Sx and by dynamic, temporal variables Tx, with
unknown output (event) Ox in future times, select the closest
individuals to x according to the static variables from a data
repository of individuals with known output and known time
of event occurrence with the use of Euclidean or other form of
distance measure (e.g. [1,2]).

(2) Create an evolving SNN personalised model, denoted as
PMeSNNr, to predict the chances of event occurrence for x
using the dynamic data sets of the neighbouring individuals
selected in (1) for training the model. After that the temporal
data Tx of the individual x is applied to recall the model and to
predict the outcome for x.

(3) Estimate the time in the future when there is a chance for an
event to happen to the individual x, the accuracy of this
prediction and the likelihood of the event to happen.

(4) Optimise iteratively the features, the neighbourhood and
the parameters of the PMeSNNr using the personalised
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Fig. 1. (a and b) A functional block diagram of a personalised modelling method that optimises each individual model and creates an individual profile (from [1,2]).

Fig. 2. A schematic diagram of the PMeSNNr architecture.
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optimisation procedure from [1], or an alternative one, to
achieve a maximum accuracy for an earliest possible time of
prediction.

The method for the creation of a PMeSNNr model is based on
the recently proposed NeuCube computational modelling
approach for SSTD using SNN [34] and consists of the following
steps realised as functional modules in the system shown in Fig. 2:

(a) encode SSDT into spike sequences: continuous value input
data is encoded into trains of spikes;

(b) construct and train a recurrent 3D SNN reservoir, SNNr, to learn
the spike sequences that represent individual input patterns;

(c) construct and train an evolving SNN classifier to learn to classify
different trajectories of the SNNr activities that represent differ-
ent input patterns from SSTD that belong to different classes;

(d) optimise the model – optimise input features, the neighbour-
hood and the parameters of the PMeSNNr model through
iterative applications of steps (a)–(c) above for different para-
meter values until maximum accuracy is achieved at an earliest
time of prediction;

(e) save the optimised model;
(f) recall the model for the input data x.

The above modules from (a) to (f) are described further in this
section.

2.1. Input data encoding module

Possible methods that can be used to encode input SSTD into
spike sequences are Population Rank Coding; Address Event
Representation (AER); Ben's Spike Algorithm. Fig. 3a shows an
example of encoding a single value of input data (shown as a
thick vertical line) into a spike train of 5 spikes emitted by

5 neurons based on their receptive fields (Gaussian functions).
Fig. 3b illustrates the AER coding.

These series of input spike trains are entered into spatially
located neurons from the SNNr depending on the problem in
hand, e.g. entering input spike sequences into randomly selected

Fig. 3. (a) Population rank-order coding. (b) Address Event Representation (AER) encoding of continuous time series data into spike trains and consecutive recovery of the
signal.

Fig. 4. The most popular spiking neuron model is the leaky integrate and
fire model.
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neurons from the SSNr or into neurons selected based on the
spatial or/and temporal similarity between the input variables;
entering brain data sequences to spatially located neurons that
map brain areas where data is collected. Spike trains are con-
tinuously fed into the SNNr in their temporal order.

2.2. The SNNr module

After selecting the neighbourhood for an individual x based on
static data, a learning phase takes place to build a personalised
model Mx as a PMeSNNr. All temporal input data of all neighbours
of x are propagated one by one in the SNNr and learned as whole
patterns in it. After a whole input pattern is entered (and learned) in
the SNNr, the same data is propagated through the trained SNNr
and an output classifier is trained to recognise every SNNr dynamic
pattern, activated by an input data pattern, in a predefined output
class for this input pattern. The SNNr has a 3D structure connecting
leaky-integrate and fire model (LIFM) spiking neurons with recur-
rent connections [3–10]. A LIFM of a neuron is illustrated in Fig. 4.

In the SNNr we use spike-time dependent plasticity learning
rule (STDP) for the neurons to learn spatio-temporal relationships
from the input data and to adapt their connections in order to
generate specific trajectories when a particular input pattern is
entered [6].

In Fig. 2 a special class of the LIFM is shown – the probabilistic
neuron model [19] that has probability parameters attached to the
connections, the synapses and the output of the spiking neuron.
Before training, the SNNr connectivity is initialised as small world
connections, where closets neurons are connected with a higher
probability and longer connections can be established with a
smaller probability (see also [34]).

Once spike trains are entered into the SNNr, it acts as a larger
dimensional space. The SNNr accumulates temporal information of
all input spike trains and transforms them into high-dimensional
intermediate (‘liquid’) states/trajectories that can be measured over
time. The recurrent reservoir generates unique accumulated neuron
spike time responses for different classes of input spike trains.

As an illustration, Fig. 5a–c shows the spiking activity (a) and
connectivity of a SNNr before training (b) and after training (c) on
illustrative SSTD. It can be seen that as a result of training new
connections have been created that represent spatio-temporal
interaction between input variables captured in the SNNr from
the data. The connectivity can be dynamically visualised for every
new pattern submitted.

2.3. Evolving output classification module

All neurons in the SNNr are connected to an evolving SNN
classifier (eSNN) [13–15]. eSNN uses LIFM of a spiking neuron and
rank order (RO) learning to achieve fast, one-pass learning with
the emphasis of the first incoming spike on a synapse as suggested
in [11] and used in [12]. One of the originality of the proposed
PMeSNNr method is that it utilises the ability of the eSNN to learn
to recognise complex spatio-temporal patterns generated in the
SNNr before the whole input data pattern is entered.

Different types of eSNN can be used, including

– simple eSNN [13,14,16];
– dynamic eSNN (deSNN), as introduced in [15], where RO

learning is used for initialisation of a synaptic weight based
on the first incoming spike on this synapse, but then this
weight is modified based on following spikes using spike time
dependent plasticity (STDP) learning rule;

– spike pattern association neurons (SPAN) as classifiers, where
as a reaction to a recognised input pattern, a precise time
sequence of spikes is generated at the neuronal output [17,18].

The RO learning rule allows in principle for an eSNN to learn
complex spatio-temporal patterns from data streams and then to

Fig. 5. (a–c) Illustrative visualisation of connectivity and spiking activity of a SNNr:
(a) spiking activity – active neurons are represented in red colour and large size;
(b) connectivity before training – small world connections – positive connections are
represented in blue and negative – in red; (c) connectivity after training. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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recognise early an incoming pattern (therefore not necessarily
‘waiting’ for the whole pattern to be presented). This paper
uses this property of the LIFM and eSNN for building accurate
personalised models to predict early onset of an event for an
individual, based on historical SSTD of many individuals for which
the event had happened and on current, temporal data for the new
individual.

An eSNN classifier is schematically shown in Fig. 6. The RO
learning is based on the assumption that most important informa-
tion of an input pattern is contained in earlier arriving spikes
[13,14]. (if this is not in a coherence with the problem and most
recent information is more important, the data can be entered into
the SNNr and into the eSNN classifier in a reverse order, form the
last to the first time unit data). It establishes a priority of inputs
based on the order of the spike arrival on the input synapses for a
particular pattern. RO learning makes use of the information
contained in the order of the input spikes. This method has two
main advantages when used in eSNN: (1) fast learning (as the
order of the first incoming spikes is often sufficient information for
recognising a pattern; only one pass propagation of the input
pattern may be sufficient for the model to learn it); (2) asynchro-
nous, data-driven processing.

eSNN utilise the principles of evolving connectionist systems
[13,20]. (if this is not in a coherence with the problem and most
recent information is more important, the data can be entered into
the SNNr and into the eSNN classifier in a reverse order, form the
last to the first time unit data). An eSNN evolves its structure and
functionality in an on-line manner, from incoming information.
For every new input data vector, a new output neuron is dynami-
cally allocated and connected to the eSNN input neurons (these are
the neurons of the SNNr). The connections are established using
the RO rule for the output neuron to recognise this input vector or
a similar one as a positive example. The weight vectors of the
output neurons represent centres of clusters in the problem space
and can be represented as fuzzy rules [21].

In some system implementations, neurons with similar weight
vectors are merged based on Euclidean distance between them.
That makes it possible to achieve a very fast learning (only one
pass may be sufficient), both in a supervised and in an unsuper-
vised mode [13,14].

During a learning phase of the classifier, for eachM-dimensional
input pattern Pi a new output neuron i is created and its connec-
tion weights wj,i (j¼1,2,…,M) to the input neurons are calculated
based on the order of the incoming spikes on the corresponding
synapses using the RO learning rule

wj;i ¼ α modorderðj;iÞ ð1Þ

where α is a learning parameter (as a partial case, it is equal to 1);
mod is a modulation factor, that defines how important the
order of the first spike is; wj,i is the synaptic weight between a
presynaptic neuron j and the postsynaptic neuron i; order(j,i)
represents the order (the rank) of the first spike at synapse j,i
ranked among all spikes arriving from all synapses to the neuron i;
order(j,i) has a value 0 for the first spike to neuron i and increases
according to the input spike order at other synapses.

While the input training pattern (example) is presented (all
input spikes on different synapses, encoding the input vector are
presented within a time window of T time units), the spiking
threshold Thi of the neuron i is defined to make this neuron
spike when this or a similar pattern (example) is presented again
in the recall mode. The threshold is calculated as a fraction (C)
of the total PSPi (denoted as PSPi max) accumulated during the
presentation of the whole input pattern

PSPi max ¼∑
ðjÞ
modorderðj;iÞ ð2Þ

Thi ¼ C � PSPi max ð3Þ
If the C parameter has a value of 1; it means that during a recall
phase the neuron would need the whole pattern to be propagated
in order for the neuron to recognise this pattern and to emit an
output spike. A value of 0 will make this neuron spike immediately
(and definitely wrongly) after the first input spike is entered into
the neuron. But modifying C from a value of 1 down to 0 (not
reaching it) will make it possible for the neuron, once trained on
the whole input pattern, to emit a spike if only part of it is
presented during recall. And it has to be a correct classification
which requires a careful optimisation of the C value in order to
achieve correct and earliest spiking activity of the output neurons.
This is a key feature of the proposed method that extends the
previous art from [1,2].

Here, optimising C, means how much early an output class will
be recognised after the start of a spatio-temporal data pattern
entry. And the value for C will be different for different classes and
different individuals, i.e. it will be individualised/personalised.

If the weight vector of the evolved and trained new output
neuron is similar to the one of an already trained neuron (in a
supervised learning mode for classification this is a neuron from
the same class), i.e. their Euclidean distance is less than a
similarity threshold Sim, the new neuron will be merged with
the most similar one, averaging the connection weights and the
threshold of the two neurons [13,14]. Otherwise, the new neuron
will be added to the set of output neurons (or the corresponding
class pool of neurons when a supervised learning for classification
is performed). The similarity between the newly created neuron
and a training neuron is computed with the use of the Euclidean
distance betweenweight matrices of the two neurons. The merged
neuron has weighted average weights and thresholds of the
merging neurons. While an individual output neuron represents
a single input pattern, merged neurons represent clusters of
patterns or prototypes in a transformed spatial – RO space. These
clusters can be represented as fuzzy rules [21].

The eSNN learning is evolving, adaptive, incremental, theore-
tically – ‘lifelong’, so that the system can learn new patterns
through creating new output neurons, connecting them to the
input neurons, and possibly merging the most similar ones.

During the recall phase, when a new input vector is presented
to the eSNN, the spiking pattern is submitted to all created output
neurons during the learning phase. An output spike is generated
by neuron i at a time l if the PSPi(l) becomes higher than its
threshold Thi. After the first neuron spikes, indicating a recognised
output class, the PSP of all neurons are set to initial value (e.g. 0) to
prepare the system for the next pattern for recall or learning.

The postsynaptic potential PSPi(l) of a neuron i at time l is
calculated as

PSPiðlÞ ¼ ∑
t ¼ 0;1;2;…;l

∑
ðjÞ
ejðtÞmodorderðj;iÞ ð4Þ

where ej(t)¼1 if there is a first spike at time t on synapse j,
otherwise it is 0; order (j,i) is the rank order of the first spike at
synapse j among all input spikes to neuron i for this recall pattern.

Fig. 6. Integrate-and-fire neuron with RO learning.
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The recall procedure can be performed using different recall
algorithms implying different methods of comparing input patterns
for recall with already learned patterns in the output neurons.

(a) Spikes of the new input pattern are propagated as they arrive
to all trained output neurons and the first one that spikes (its
PSP is greater that its threshold) defines the output. The
assumption is that the neuron that best matches the input
pattern will spike earlier based purely on the PSP (membrane
potential). This method is called eSNNm.

(b) The second method implies a creation of a new output neuron
for each recall pattern, in the same way as the output neurons
were created during the learning phase, and then comparing
the connection weight vector of the new one to the already
existing neurons using Euclidean distance. The closest output
neuron in terms of synaptic connection weights is the ‘winner’.
This method uses the principle of transductive reasoning and
nearest neighbour classification in the connection weight
space. It compares spatially distributed synaptic weight vec-
tors of a new neuron that captures a new input pattern and
existing ones. This method is called eSNNs.

Recently, the eSNN was extended to a dynamic eSNN (deSNN)
model with the two modifications – deSNNs and deSNNm [15]. In
addition to the initialisation of the connection weights based on
the first arriving spikes at a synaptic input, the deSNN model
adjusts dynamically these connections based on following spikes
on the same synaptic inputs using a version of the STDP learning
rule (spike-time dependent plasticity) – SDSP (spike-dependent
synaptic plasticity). A small drift of a synaptic weight is used to
increase the weight if there is a spike, or decrease it if there is no
spike, at each of time moments of simulation.

Both deSNNm and deSNNs can be used for early event predic-
tion in the following ways:

– deSNNm, through the C parameter, but that does not reflect
linearly into the time scale, e.g. if C¼0.75 that means that it
takes approximately 75% of the input pattern to classify it, but
that does not mean that correct classification will occur 25%
earlier in time than the time of the whole pattern presentation,
as most of the information is stored in the connection weights as
a result of the first spikes at the beginning of the input pattern;

– deSNNs, through either learning with the use only of certain
percentage of the patterns in terms of time (e.g. 75%), or
through applying a similarity parameter, which means how
similar the newly created output neuron should be to the
already existing ones in order to classify this neuron (input
pattern) into the class of the most similar one.

The main advantage of the eSNN and deSNN, when compared
with other supervised or unsupervised learning and classification
SNN models, is that it is computationally inexpensive and boosts
the importance of the order in which input spikes arrive, thus
making them suitable for on-line learning and early prediction of
temporal events.

2.4. The optimisation module

For each personalised model, to select an optimal subset of
features (weather variables), a number of neighbouring sample (K)
and parameters of the classifier (for the eSNN they are Mod, Sim
and C), different values for all these parameters are tested in
their combination using a genetic algorithm, whose chromosome is
represented in Fig. 1b [1,2]. Different modifications of genetic algo-
rithms can be used, e.g. Gravitational Search Algorithm [30] as
experimented in [29], quantum inspired genetic algorithms [31], etc.

2.5. Recall of the personalised model for the input data x

During a recall phase the stream of temporal data, which is related
to the individual x, is continuously entered into the SNNr and the
SNNr spiking activity sequences are continuously fed into the output
classifier until the classifier recognises a certain output class (event) –
an output neuron, allocated for a particular class, spikes first. The
ability of the eSNN classifiers [14–16], once trained on whole input
patterns, to recognise similar input patterns in a recall phase when
only initial spikes appear on its synapses, makes eSNN very suitable
for the task of early onset prediction of a personal event.

2.6. Implementation of the PMeSNNr

A current implementation of PMeSNNr is based on the
NeuCube architecture [34]. NeuCube is designed to map brain
data into spatially allocated neurons in the SNNr so that the
neurons map the spatial location of the sources of the brain data
(e.g. EEG channels). The NeuCube architecture can be used for
both brain data and other SSTD depending on the mapping of the
SSDT as trains of input spikes into the spiking neurons from
the SNNr.

3. Personalised stroke occurrence prediction based on the
PMeSNNr

3.1. Problem and data specification

The stroke occurrence prediction problem can be formulated as
follows: Given historical data, both static and temporal, of persons
who had stroke in the past, can we predict accurately and early
enough what the risk of stroke occurrence for a new person will
be in a near future time? This and other stroke related problems
have been described and studied in the past with limited success
[22–26].

In this paper we have used a personalised data set of persons
who had stroke in the past. The experiment uses weather data and
the data of stroke occurrence obtained from the results of an
international collaborative study carried out under the auspices of
six population regions: Auckland (NZ), Perth and Melbourne
(Australia), Oxfordshire (UK), Dijon (France), and Norrbotten and
Vasterbotten (Northern Sweden). The study areas are grouped in
the Southern Hemisphere (Auckland, Perth, and Melbourne) and
Northern Hemisphere (Oxfordshire, Dijon, Norrotten and Vaster-
botten counties). The data has a static component and dynamic
component.

The complete dataset consists of 11,453 samples (all with first
occurrence of stroke). Each sample is described by 9 features/
variables (4 static patient clinical features and 5 temporal weather
features) along with the geographic region. Patient static clinical
features (categorical data) are age, gender, history of hypertension,
smoking status, and geographical region. Weather (temporal)
features (continuous daily data) are temperature (1C), humidity
(%), atmospheric pressure (kPa), wind speed (knots) and wind chill
(1C). All of these weather parameters were measured over a 60-
day period preceding data of stroke (including the day of stroke
occurrence as the last day).

Case-crossover design is used in our experiment. It is a long-
itudinal study which represents a special situation in which no
control group exists for separate comparison. In effect, each
subject serves as both ‘patient’ and ‘control’ at different time
intervals, precluding covariate imbalance. This design has been
widely applied in many medical and health studies. Mukamal et al.
[27] used this approach to compare measures of weather and
ambient air pollution on the day of stroke presentation and on
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other days (as control) for each patient. Vlak [28] applied case-
crossover design to identify trigger factors for rupture of intracra-
nial aneurysms.

Similar conditions exist in our case study dataset where the case-
crossover design is applied to the data as all subjects are ‘stroke’
patients with the absence of healthy subjects (normal/control group).
The period spanning 29 days prestroke occurrence until the stroke
event (30 days of time window) is considered as the ‘stroke’ group.
This is considered as the critical time window potentially contribut-
ing to risk of stroke. For the same participants, period spanning
another 30 days of time window from days 30 to 59 prestroke
occurrence as the ‘normal/control’ group, due to the assumption that
weather parameters 60–30 days prior had no influence on the actual
stroke event. The separate ‘normal/control’ time should represent
the expected distribution of exposure for follow-up time that does
not result in an event. Fig. 7 shows the wind speed variable over the
60 days before stroke for several patients of age 60 and 68 belonging
to the selected subset. It can be seen that during the 30 days before
stroke the changes of the wind speed are different from those during
60 days before and this may help to learn and predict a stroke event.
Still there are no clear patterns when considering each temporal,
climate variable separately. Through training a PMeSNNr will be able
to learn patterns of interaction between all these variables over time
to better predict a stroke event.

3.2. Experimental settings and results

To illustrate the proposed PMeSNNr method and system and to
compare it with other methods, here we have performed perso-
nalised modelling in the following way:

– For a new individual, select the nearest neighbour individuals
from the data repository using static data (geographic
region, age, gender, history of hypertension, and smoking status).

– Create and optimise a PMeSNNr for this individual using the
temporal weather data of the nearest individuals as ‘stroke’ and
‘control’ samples as explained above.

– Recall continuously the model on the individual climate data
with a sliding window of 1 day. If an output neuron that is
trained in the eSNN classifier to recognise the class ‘stroke’ is
activated (fires a spike), this indicates a risk for a stroke for this
person and the number days ahead of the most probable day to
happen can be calculated using the optimised value of the
parameter C for this person and this data or through another
scenario - training on full temporal input patterns and testing
only on part of them as explained below.

As a case study we have tested personalised models for
individuals from the following neighbourhood: Auckland region;
autumn season; age between 60 and 69; experience of hyperten-
sion; current smokers. The number of the individuals in this
cluster is 20. Since a case-crossover design is applied, 40 samples
have been used, 20 in the ‘normal/control’ group and 20 in the
‘stroke’ group derived from the 20 individuals data. Here we
demonstrate that the PMeSNNr framework provides much higher
accuracy than conventional machine learning methods. In addi-
tion, the PMeSNNr will provide early event prediction.

3.2.1. Experimental results
Here we use the NeuCube architecture [34] with an AER

method for encoding the input data. The SNNr consists of 1471

Fig. 7. The wind speed variable over the 60 days before stroke for several patients of age 60 and 68 belonging to the selected subset of patients. It can be seen that during the
30 days before stroke the changes of the wind speed are more significant that may help the model to learn and predict the stroke event.
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LIFM spiking neurons. We apply STDP learning and a deSNN
classifier (see Fig. 8). The following parameter values were
selected for optimal classification accuracy:

– Threshold for the AER 0.1 (applied on normalised input weather
data in the range [0,1]); it means that when the value of input
variable increases above 0.1 at consecutive intervals of time, there
will be a positive spike generated and entered into the SNNr; if
there is a decrease larger than 0.1, there will be a ‘negative’ spike
generated, i.e. a spike sent to an inhibitory neuron from the SNNr;
and if there is no change of the value of the input variable or a
change less than 0.1 there is no spike generated.

– SNNr has 1471 neurons.
– Small World Connectivity (SWC) is used to initialise the

connections in the SNNr, with a radius of initial connections
of 0.15. The initial connections are generated probabilistically,
so that closer neurons are more likely to be connected. The
excitatory connections (with small positive weights) are 80%
versus the 20% of inhibitory connections (small negative
weights).

– Threshold of the LIFM neurons in the SNNr is 0.5.
– The leak parameter of the LIFM neurons is 0.002.
– STDP learning rate is 0.01.
– Mod parameter of the deSNNs classifier is 0.4 and the drift

is 0.25.

The obtained best accuracy of the designed and trained
PMeSNNr with the described above parameter values is 94%
(88% for the TP – stroke prediction, class 2; 100% for the TN – no
stroke – class 1) using 60% of the data for training and 40% for
testing, randomly selected – Fig. 8.

Table 1 shows a comparative analysis on the same data set of
40 samples between classical machine learning methods using

whole input patterns of 30 days (prediction of just 1 day ahead)
versus an optimal PMeSNNr model that uses only part of the input
data to predict stroke events. The PMeSNNr offers a much earlier
and a much accurate prediction. The SVM method uses a poly-
nomial kernel of first degree and 10 variables (5 variables times
30 days). The MLP model uses 150 inputs, 20 hidden nodes and
one output, with a learning rate of 0.01 and 500 iterations.
The PMeSNNr model uses only one iteration for training, produces
a significantly more accurate prediction results and much earlier
(Fig. 8). The use of the one-pass rank-order learning in the deSNN
classifier requires indeed a smaller part of the input pattern to be
entered as the connection weights are mostly defined based on the
first incoming spikes (Mod=0.4), with a smaller adaptation from
the following incoming spikes (Drift=0.25) and the neuron will
spike if only a fraction of its membrane threshold is reached,
defined by the coefficient C in the deSNNm classifier. This means
that the PMeSNNr can potentially predict earlier the event. But, how
much earlier and what is the relationship between early and
accurate prediction?

Fig. 8. A snapshot from the NeuCube implementation of the PMeSNNr applied on selected nearest neighbourhood of 40 samples of stroke data (20 stroke cases and 20
control) from the case study problem.

Table 1
Comparative analysis of classical machine learning methods using whole SSTD
input patterns versus the proposed PMeSNNr model. The data set consists of 40
samples of 5 temporal weather variables. The samples are selected based on 4 static
variables. The best accuracy obtained is indicated in bold.

Method Overall
accuracy (%)

TP – stroke
prediction (%)

TN – no
stroke (%)

Multiple linear
regression (MLR)

67.50 65 70

SVM 72.5 65 80
MLP 87.5 85 90
PMeSNNr 94 88 100
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In order to answer this question, another experiment was
carried out where we used all 30 days data in the training set,
but only 23 days for testing, so that we can establish if the
PMeSNNr system can predict stroke occurrence 7 days before the
day of stroke. The eSNNs classifier was used in this experiment as
in the experiment above. The class 'stroke' was predicted 80%
correct, while 'no stroke' was predicted 65% correct, with a high
value of false positive predictions, with average prediction rate of
72%. A leave-one-out cross validation method was used. The two
standard methods of MLR and SVM were trained and tested on 23
days data as it is not possible to use different number of input
variables for training and testing. Their overall classification results
were again inferior - 65% and 57% overall accuracy correspondingly.

3.3. Future experiments and impact

Other experiments of applying the proposed methodology for
stroke prediction include integrating the presented above stroke data
with solar eruption and geomagnetic data [32]. Future in depth
analysis of the whole cohort of individual-participant stroke data and
various environmental factors (weather characteristics, air pollution,
and geomagnetic activity) collected over the last 25–30 years from
the six participating centres (New Zealand, Australia, France, UK, and
Sweden) will allow more accurate individualised prognostic model-
ling stratified by various patient (e.g. gender, age groups, presence or
absence of hypertension etc.) or environmental characteristics (e.g.
Northern Hemisphere versus Southern Hemisphere).

Applying the methodology on stroke occurrence data from
different geographic regions can improve significantly the popula-
tion health and reduce the extremely high cost for the society.
In China, for example, 2mln people suffer of stroke occurrence every
year, 20% of which die. Most of the rest never recover completely.

This paper will enable the creation of on-line available decision
support systems for a personal risk evaluation of stroke occur-
rence, specific for different geographical regions, such as New
Zealand, China, USA, and Europe, subject to data available.

4. Conclusions and future work

The paper introduces a novel method and system for PM on
SSTD based on SNN. The novelty of the proposed method and
system is in the following (see also [34]):

(1) It is the first personalised modelling method and system
developed to deal with SSTD without defining in advance
the ‘time lags’ of the time series data.

(2) The same paradigm, spiking information processing, used in
the brain efficiently for STPR tasks, is used here to represent
and to process SSTD in the form of spiking neural networks (SNN).

(3) The system is evolving, as previously unknown classes could be
added incrementally as a result of new SSTD patterns being
learned and recognised, which is also a principle of brain
cognitive development.

(4) The system always retains a transparent spatio-temporal
memory that can be mined and interpreted either in real time
or retrospectively for new knowledge discovery.

(5) The system is able to recognise and predict the outcome of a
new SSTD pattern that is similar to previously learnt ones even
before the new pattern is fully presented to its inputs. The
time window for training and testing can be different, which
allows for the method to be used for predictive data model-
ling, e.g. trained on 30 days data and tested on 23 or 25, etc.,
for early event prediction.

(6) For the first time a system is created for early stroke occur-
rence prediction based on temporal data.

Other applications of the proposed PMeSNNr method and
system will include in the future:

– Ecological data modelling and event prediction [33].
– Cardio-vascular risk of occurrence prediction.
– Integrated fMRI-, EEG- and gene brain data modelling.
– Earthquake and other environmental events prediction.
– Financial market crash prediction.
– Machine failure prediction.
– Personal gambling addiction prediction.

There are several avenues to be followed for a future improve-
ment of the model. Further experiments are needed and the model
performance needs to be analysed in terms of both accuracy and
time of event prediction in relation to different types of input SSTD
and different parameter values (e.g. Mod, C, Drift parameters in the
eSNN classifier). The model is indeed very sensitive to parameter
values. The results may differ significantly due to small changes of
the parameter values. Another problem that needs to be addressed
in the future is the initialisation of the connectivity of the SNNr.
Different connectivities may result in different accuracies and times
of prediction. For an optimal performance, the model needs to be
run several times and the best performed model saved for recall.
These are new degrees of freedom in the learning model that need
to be properly utilised for better pesrformance. The eSNNr are
complex systems and they have to be treated and utilised as such.
This is in contrast to the simple and much limited in terms of SSTD
classical machine learning methods, such as SVM, MLR, and MLP.

The complexity of the eSNNr systems requires an optimisation
of a model through multiple runs for different parameter values,
always retaining the best performed model. This is a procedure that
here is realised through a GA as explained in Section 2, but a further
improvement in terms of reducing the time for optimisation is needed.

The paper demonstrates that it is possible to design much more
accurate, although more complex, models for personalised model-
ling on SSTD than the ones developed with the use of traditional
machine learning techniques. The new models can be used for an
early prediction of individual events, such as the chosen case study
problem of stroke prediction.
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