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Abstract| Environment and genotype a�ect the composition, quality, storabil-

ity and sensory properties of plant based-products. Visible-near infrared (NIR)

spectral measurements is used increasingly to monitor fruit properties such as

maturity, sensory properties and storability non-destructively both prior to har-

vest and during storage. To explore this problem, at harvest and after storage,

visible-NIR spectra containing 1024 individual data points were measured on ki-

wifruit berries sourced from six pre-harvest fruit management treatments. These

raw spectra were processed by principal component analysis, or by Fourier, Hart-

ley, Haar, Hurst, range renormalisation or polar coordinate transforms in order

to extract a smaller set of features selected independently of treatment. In order

to reduce their dimensionality further, the extracted features were processed by

canonical variate (cv) analysis. The ability of various connectionist and linear

discrimination pattern recognition models to predict the treatment source of un-

known fruit on the basis of these features were evaluated. Thus far, this work
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has established that the performance of the non-linear model was shown to be

signi�cantly better in comparison to the linear model. From these results, it has

also been shown that both the feature extraction and selection techniques have

a marked e�ect on the ability to classify fruit by treatment source and storage

date. In general, the best classi�cations were based on features extracted using

the FFT method, but the best performance in any single classi�cation was given

by the Haar transform in conjunction with the scaled conjugated gradient learning

method.

Keywords|VNIR Spectra, Kiwifruit, Linear discrimination, Arti�cial neural

networks, Feature extraction, Pattern recognition and Classi�cation, Canonical

variate analysis.

1 INTRODUCTION

Increasingly, visible-near infrared (visible-NIR) spectrophotometry is being used

in horticultural research to characterise fruit quality attributes such as water con-

tents and sugar content of the expressed juice (soluble solids) [?]. For fresh fruit,

an important aspect of this technique has been the ability to non-destructively

assess internal quality attributes such as soluble solids concentration, dry matter

content, acidity and �rmness [?]. The technique is rapid, allowing fruit to be

graded on commercial packing lines [?]. More recently, visible-NIR spectroscopy

has been used, on the vine, at harvest or during storage, to distinguish di�erences

between fruit grown under di�erent conditions or to predict storability [?].

For the non-destructive prediction of fruit compositional attributes, such as

water and sugar content, multivariate linear regression (MLR) or partial least

squares (PLS) analysis are used to relate speci�c spectral regions to changes in

the concentration of a known attribute [?, ?]. In kiwifruit (Actinidia deliciosa

(A. Chev) C.F. Liang et A.R.Ferguson var. deliciosa), this approach was used
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to estimate soluble solids content and dry matter in ripened berries [?]. Likewise,

similar techniques have been used to predict post-ripening sensory properties in

mangoes [?], which are also harvested in an unripe state. In kiwifruit, although

dry matter and soluble solids content can be measured by visible-NIR techniques,

other properties such as texture [?], esh coloration [?] and aroma [?] are also

important in determining sensory properties.

Alternatively, spectral data of a fruit can be treated as a signature, allowing

fruit to be grouped on the basis of their spectral similarities. In the processed food

industries, such an approach is used in product control, for example, to detect

adulteration of food products such as fruit juices [?], jams [?], co�ee [?], and

grains [?]. Recently, based on this approach, we have used visible-NIR spectra

to di�erentiate persimmon (Diospyros kaki L.) treated with growth regulators

during late fruit development and ripening [?] and kiwifruit berries grown under

di�erent development conditions.

One of the main problems encountered in product identi�cation and charac-

terisation from such spectra has been the large volume of primary data (typically

between 250 and 2000 points per spectrum, depending on the instrumentation

used). In the previous work on kiwifruit, the original visible-NIR absorption

spectra were reduced to a series of principal components (PC) which were then

analysed by canonical variate (cv) and linear discriminant (LD) techniques. It

was shown that individual fruit could be distinguished by treatment from the

weightings of these components. Furthermore, a preliminary study showed that

connectionist-based methods could provide superior classi�cation for these sys-

tems [?].

Pattern recognition systems appropriate for fruit spectra are likely to consist

of three stages. Firstly, the dimensionality of the raw data is reduced by a feature

extraction process to the extent possible while retaining su�cient information
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to enable the resultant features to be used for classi�cation. For this purpose,

principal component analysis (PCA) has been the main technique used [?, ?],

but other approaches, notably the Fast Fourier Transform (FFT) [?] and related

Fast Hartley Transformation (FHT) [?, ?], have been proposed. The rules for

the extraction are normally derived from a randomly selected subset of the whole

sample. Unlike the FFT and FHT, the results of the PC analysis are strongly

dependent on the variation that exists in the training subset.

Wavelet [?] and polar coordinate transforms (PCT) [?] have also been con-

sidered as primary feature extraction approaches. The Haar transform (HT) [?],

a simple wavelet transformation, by forming the normalised average of adjacent

terms, halves the volume of data for each transformation cycle. For polar coor-

dinate transforms, the spectra are represented in a 2D coordinate system, where

centres, determined variously from the individual points, the perimeter or the

bounding surface can be used to can be used to reduce the spectra to 2 � 6

points [?]. A further technique, that has not previously been applied to spectral

analysis, is the rescaled range (RR) approach used in Hurst exponent analysis

[?].

The second stage of the pattern recognition process is feature selection. A

wide variety of techniques including canonical variate analysis, genetic algorithms

(GA) classi�cation and regression trees (CART), and intermediate partial least

squares (IPLS) search techniques, have been used to select features by which

features suitable for discriminating treatments can be derived [?, ?, ?]. In some

systems, these features may be extracted directly from the primary data, but

more commonly they are derived from the features extracted above. Whilst the

selection of these features may result in a further reduction in dimensionality,

a more important aspect is the elimination of wavelength regions and features

that are less important to the classi�cation, thus reducing sources of noise, thus

resulting in more robust calibration equations [?].

4



The �nal stage is pattern recognition, based on extracted or selected features,

are used to predict speci�c fruit quality attributes, such as dry matter, or classify

unknown fruit into known groupings, such as high or low storability. In some

situations, the extracted features may be satisfactory without further processing,

and any further processing is necessarily compared with that option. Tradition-

ally, MLR, PLS, principal component regression (PCR), and LDA have been the

main pattern recognition techniques applied to visible-NIR spectral data.

More recently, connectionist-based methods, such as back-propagation (BP),

multi-layer perceptrons (MLP), self-organising maps (SOM), GA's and neuro-

fuzzy models, and machine learning methods, such as CART, have been success-

fully applied to visible-NIR pattern recognition problems [?, ?, ?, ?, ?, ?, ?, ?].

Here, research e�orts have focused on determining whether speci�c connectionist

approaches could improve upon the traditional calibration methods, particularly

in systems where there is expected to be substantial non-linearity [?], and whether

they o�er any computational advantages.

Generally, connectionist methods have been used in quantitative problems

but have recently been applied to qualitative analyses [?, ?, ?]. In either case,

multi-layer perceptrons (MLP), usually trained within the generalised delta rule

and the back-propagation (BP) algorithm, is the basic architecture [?]. Because

the BP algorithm is equivalent to the steepest descent algorithm, these algorithms

tend to converge slowly for practical problems.

In this paper we discuss and evaluate several high performance algorithms

which can converge faster than the standard BP algorithms. Faster convergence

algorithms used in the �eld of nonlinear optimisation, such as the resilient back-

propagation (Rprop) method [?], scaled conjugate gradient (SCG) [?], adap-

tive learning rate back-propagation (ABP) [?], and quick-propagation method

(Qprop) [?] may accelerate the convergence of the BP algorithm.
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These faster algorithms fall into two main categories. The �rst category uses

heuristic techniques, which were developed from an analysis of the performance

of the standard gradient descent method. One heuristic modi�cation is the mo-

mentum technique, which has been successfully used in many pattern recognition

problems. However, this paper will discuss another two heuristic techniques:

ABP and Rprop.

The second category of fast algorithms uses standard numerical optimisation

techniques, i.e. second order optimisation methods, which make use of second

derivatives of the error in weight space. In this paper a variation on conjugate

gradient (CG) descent, scaled conjugate gradient (SCG), that takes some account

of the non-quadratic nature of the error surface in weight space has been con-

sidered. Unsupervised pattern recognition methods are an alternative method

for qualitative analysis [?]. Supervised methods will, however, be described and

evaluated in this work.

The aim of the current work is to evaluate a range of pattern recognition

techniques for their use in spectral data processing, and the particular problems

of fruit classi�cation. In this regard, this paper compares the performance of a

linear pattern recognition technique, LDA, with non-linear techniques based on

MLPs with variations on BP learning such as ABP, Rprop and SCG to classify

kiwifruit grown under di�erent conditions using a range of features extracted from

visible-NIR spectra.

2 Neural Network Classi�ers

The supervised learning algorithm is given the training data set consisting of N

training data pairs. These training pairs (xi; yj) are often called examples, where

xi is an m-dimensional pattern vector, whose components are called features, and
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yj is a known class. The mapping function f , y = f(x), is obviously not known.

The training set represents information about some domain with the frequency

used assumption that the features represent only properties of the examples but

not the relationships between the examples. The supervised learning algorithm

then searches the space of possible hypotheses that best estimates the unknown

function f : x ! y. This is typi�ed by the use of the multilayer perceptrons

(MLP), which is also called multilayer feedforward networks.

The MLP has probably been the most widely used of neural network ar-

chitectures and is a feedforward network with one or more layers of nodes or

neurons between the input and output nodes. The layers between the input and

the output are called hidden, intermediate or middle layers and have no connec-

tions to the external world. It can be shown that two hidden layers are su�cient

to perform any classi�cation task although real problems are often much simpler

and can be solved using only one hidden layer. An illustration of a multilayer

feedforward net with two output variables and one hidden layer is given in Fig ??.

Each neuron in connectionist models is a simple computational device which

calculates the weighted sum of its input signals to get the net input. From this net

input it calculates the output signal using a nonlinear function which is sometimes

called squashing function (also called transfer function or activation function). In

general the output function can be of any nonlinear type, although the training

method used in most of the networks, performs best with the sigmoid function,

by which the weight changes can be calculated in a very easy way. The sigmoid

signal processing in a node or neuron is illustrated in Fig. ??.

The knowledge of a network is represented by its topology and the weights

of the neuronic inputs. Given a certain topology the network can change and

adjust its knowledge by adjusting its weights according to the presented samples

of data. In other words the network creates a nonlinear mapping of the input
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space to the output space by adjusting its weights in a proper way. A commonly

used process involves the repeated exposure of a network to inputs and associated

outputs. By allowing the network to examine its mathematical error in the light

of a true outputs, the system is able to arrive at some form of optimal weighting

arrangements. When learning is complete, stimulation of the network with a

set of input values enables it to produce outputs consistent with what it has

experienced during learning.

The training algorithm normally used for the MLP is called back-propagation

(BP) of errors [?, ?]. The supervised BP model is the most commonly imple-

mented paradigm today because it is the best generalised model. The BP al-

gorithm is a generalisation of the LMS algorithm (or Delta rule) and provides

a theoretically sound method for training multilayer feedforward networks. BP

is the canonical feed-forward network where an error signal is fed back through

the network, altering weights as it goes and is a numerically intensive technique,

and there are many di�erent ways to perform BP to teach the arti�cial neural

networks (ANNs) how to respond.

There are numerous algorithms available to be used for training the ANNs,

such that it remains necessary to select appropriate learning rule in order to

achieve an acceptable solution. The starting point for the derivation of a training

algorithm is the de�nition of an error (cost) function which will be minimised by

adapting the network weights. Almost all gradient descent training algorithms

minimise the total summed squared error (SSE) function and apply the well-

known BP algorithm. Starting with the output layer, BP repeatedly applies the

chain rule to the SSE in order to compute error values in the hidden units. By

means of these error values the connection weights gradient can be computed by

the so called generalised delta rule. Unfortunately it can be very slow convergence

for practical applications.
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The simple gradient descent algorithm proposed in has been modi�ed by

various heuristics in order to speed up the convergence and to improve the per-

formance of the trained networks. BP and its variants learn by doing gradient

descent using the partial �rst derivative of the error with respect to each weight.

Since we do not know how the error surface is constructed we have to take small

steps to keep from overshooting as we move down the error surface. If we knew

something about curvature of the error function, we could use this information to

decide how large a step to take and in what direction. We can get this information

by using the second derivative of the error with respect to the weight.

Over the last few years many improvement strategies have been developed to

speed up BP learning. Today's most successful BP variants are adaptive learning

rate BP (ABP) [?], resilient back-propagation (Rprop) [?], and scaled conjugate

gradient (SCG) [?]. Although the used heuristics can not be theoretically jus-

ti�cated, they outperform even the most sophisticated algorithms from the �eld

of nonlinear optimisation. The following briey describes an overview of three

di�erent speed up techniques, which are known most e�cient variants of the BP

learning algorithms. The standard back-propagation algorithm was evaluated

and described by several researchers [?, ?, ?, ?, ?].

2.1 ABP

It is important to see BP as an algorithm for computing @E
@w
. It is not an opti-

misation procedure in itself, although it is a simple step to implement a gradient

descent optimisation procedure from the derivatives furnished by BP. However,

other optimisation procedures can use the gradients computed by BP. These op-

timisation procedures can work faster than steepest gradient descent.

The simple approach to �nding suitable weights is to follow the gradient of

the error surface in weight space to minimise some error criteria E. Let the set
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of weights at iteration n be denoted by w(n). Then the update rule for gradient

descent is given as follows. In the batched mode variant the descent is based on

the gradient rE for the total training set:

�w(n) = ��
@E

@w
jn + ��w(n� 1) (1)

where @E
@w
jn is the vector of gradients of the total error E with respect to each

weight w evaluated at iteration n, �w(n � 1) refers to the most recent weight

change, and � (< 1) and � (< 1) are two non-negative constant parameters called

learning rate or step size and momentum, respectively. The value of the learning

rate, or step size, is crucial for the success of the algorithm.

A small step size leads to slow learning and the possibility of getting trapped

in local minima of the error surface. A large step size can overshoot the minimum.

The weights may then be set to a point in weight space on a high plateau of the

error surface. A plateau in the error surface will exist where the nodes have

saturated activations. Here, the gradient is small and the small gradient then

means the large step size is irrelevant and the network learns slowly again, but this

time with a high error. Thus both small and large step sizes are undesirable. The

best step size depends on the error surface, itself a function of the architecture

of the network(e.g. the number of nodes and the connections between them)

and the training data. Adding a momentum term to gradient descent alters

the search direction by adding some of the previous search directions to the

current gradient. In practice, the momentum can speed up training in very at

regions of the error surface and suppresses weight oscillation in step valleys or

ravines. Unfortunately it is necessary propagate the whole training set through

the network for calculating rE. This can slow down training for bigger training

set. Therefore the update is based just on the gradient for the actual training

pattern rEp:

�w(n) = ��
@Ep

@w
jn + ��w(n� 1) (2)
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As can be seen these methods o�er the bene�t of simplicity, but their per-

formance depends sensitively on the parameters � and �. A good choice of � and

� is very essential for training success and speed. Adjusting these parameters

by hand can be very di�cult and might take a long time for more complicated

tasks. Unfortunately, BP learning algorithms may be also limited by their poor

scaling behaviour. As the size of the network increases, the network becomes

more computationally intensive, and so the time required to train the network

grows exponentially and the learning process becomes unacceptably slow. What

is required is a more e�cient procedure. This circumstance has given rise to a

plethora of heuristics for adaptive variable step size algorithms [?, ?, ?, ?, ?, ?, ?].

Most of gradient descent techniques have their roots in the well-explored

domain of optimisation theory. These techniques can roughly be divided into

two categories. Algorithms that use global knowledge of the state of the entire

network, such as the direction of the overall weight-update vector, are referred

to as global techniques [?]. There are many examples where adaptive learning

algorithms make use of global knowledge: steepest descent used in the standard

BP algorithm and the conjugate gradient methods [?, ?, ?, ?, ?].

By contrast, local adaptation strategies such as Qprop [?] and Rprop [?]

are based on weight-speci�c information only, such as the temporal behaviour of

the partial derivative of this weight. The local approach is more closely related

to the neural network concept of distributed processing in which computations

can be made in parallel. Furthermore, it appears that for many applications

local strategies work far better than global techniques, although they use less

information and are often much easier and faster to compute [?].

With standard gradient descent, the learning rate (�) is held constant through-

out training. The performance of the algorithm is very sensitive to the proper

setting of the learning rate (or step size). It is not practical to determine the
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optimal setting for the learning rate before training, and, in fact, the optimal

learning rate changes during the training process, as the algorithm moves across

the performance surface.

The performance of the gradient descent algorithm can be improved if we al-

low the learning rate to change during the training process. An adaptive learning

rate will attempt to keep the learning step size as large as possible while keeping

learning stable. The learning rate is made responsive to the complexity of the

local error surface.

An adaptive learning rate requires some changes in the training procedure.

First, the initial network output and error are calculated. At each epoch new

weights are calculated using the current learning rate. New outputs and errors are

then calculated as follows. The learning rate (�) is varied according to whether of

not an iteration decreases the performance index. If an update results in reduced

total error, � is multiplied by a increasing factor (> 1) for the next iteration.

If a step produces a network with a total error more than a few percent above

the previous value, all changes to the weights are rejected, � is multiplied by

a decreasing factor (< 1), momentum (�) is set equal to zero, and the step is

repeated. When a successful step is then taken, � is reset to its original value.

The rational behind this maneuver is that as long as the topography of the

terrain is relatively uniform and the descent is in a relatively smooth line, the

memory implicit in � will aid convergence. The recommended ratio to increase

learning rate and to decrease learning rate is 1.05 and 0.7, respectively.

2.2 Rprop

MLP networks typically use squashing functions in the hidden layers, since they

compress an in�nite input range into a �nite output range. Sigmoid functions are

characterised by the fact that their slope must approach zero as the input gets
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large. This causes a problem when using steepest or gradient descent to train a

MLP network, since the gradient can have a very small magnitude, and therefore

cause small changes in the weights and biases, even though the weights and biases

are far from their optimal values.

On the other hand, resilient back-propagation (Rprop) [?] uses the local

topology of the error surface to make a more appropriate weight change, which

evolves during the learning process according to its local view of the error function.

Rprop is very powerful and e�cient because the size of the weight step taken is no

longer inuenced by the size of the partial derivative. It is uniquely determined

by the sequence of the signs of the derivatives, which provides a reliable insight

about the topology of the local error function. Only the sign of the derivative

is used to determine the direction of the weight update; the magnitude of the

derivative has no e�ect on the weight update. The size of the weight change

is determined by a separate update value. These can be eliminate the harmful

e�ects of the magnitudes of the partial derivatives.

Rprop [?] is the fastest training algorithm and a local adaptive learning

scheme [?]. Rprop uses di�erent step sizes for each weight. However, it only

uses the sign of the local gradient, @e=@w, when updating the weight, not its

magnitude. The size of the derivative is taken to indicate the direction of the

weight update and the sizes of the weight update are adapted with respect to the

sign of the actual and the last derivative. The step sizes are bounded by upper

and lower limits in order to avoid oscillation and arithmetic underow of oating

point values.

The following computational scheme of Rprop can be used:

1. Choose some small initial value for every update step size �(0).
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2. The vector of step sizes � and Delta is de�ned as follows:

�(i) =

8>>>>>>>>><
>>>>>>>>>:

�(i� 1)�+ : @e
@w

���
i

@e
@w

���
i�1

> 0;

�(i� 1)�� : @e
@w

���
i

@e
@w

���
i�1

< 0;

�max : �(i) � �max;

�min : �(i) � �min;

(3)

where �max and �min limit the size of the step above and below.

3. The weights were updated as follows:

�w(i) =

8>><
>>:
�( @e

@w

���
i
)�(i) : @e

@w

���
i

@e
@w

���
i�1

� 0;

0 : otherwise;
(4)

such that w(i + 1) = w(i) + �w(i). A further detail concerns the stored

value of the previous gradient

@e

@w

�����
i�1

:

If, for a particular weight,

@e

@w

�����
i

@e

@w

�����
i�1

< 0;

the value of the stored gradient for that weight would be set to 0 for the

next time step.

Recommended values for the parameters are: �max = 50:0; �min = 0:000001;

�+ = 1:2; and �� = 0:5.

2.3 SCG

The basic BP algorithm adjusts the weights in the steepest descent direction

(negative of the gradient). This is the direction in which the performance func-

tion is decreasing most rapidly. It turns out that, although the function decreases

most rapidly along the negative of the gradient, this does not necessarily produce
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the fastest convergence. In the conjugate gradient algorithms a search is per-

formed along conjugate directions, which produces generally faster convergence

than steepest descent directions.

M �oller [?] has introduced a variation on conjugate gradient (CG) descent

that takes some account of the non-quadratic nature of the error surface in weight

space: the line search part of CG minimisation can be tricky and there exists a

variant, Scaled Conjugate Gradient (SCG) [?], that avoids the line search by

estimating the minimisation step �t through

�i =
�dTi rEi

dTi H di
: (5)

This SCG method is usually faster than normal CG since it avoids the line search.

Eq. (??) has been avoided in the past due to the e�ort of �nding the Hessian

H. The Hessian may be approximated by a method of �nite di�erences, or the

product Hd may be approximated by taking a di�erence of gradients [?]. The

quadratic optimal step size given in Eq. (??) gives the distance to the turning

point of the error along the search direction under the quadratic assumption.

This turning point nay be a maximum or a minimum. The Hessian can be used

to �nd whether the turning point is a maximum or a minimum.

The product Hd of the Hessian and a direction d is the rate of change of

gradient in the direction d. The expression dT H d is negative if the gradient is

increasing along the direction d, and positive if the gradient is decreasing along

the direction d. Within the quadratic assumption, the Hessian is constant, and

the sign of the change of gradient along the direction is constant. If the gradient

is increasing, the graph of the error along d is a cup, and there is a minimum,

otherwise there is a maximum.

To monitor the sign of the product dT H d, and therefore the type of the

turning point, de�ne � by � = dT H d. If � � 0 for non-zero d, there is a

minimum along the direction d. But for non-quadratic error surface, it may be
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that � � 0 and yet there is still a minimum to �nd, since H changes along d [?].

The SCG method takes account of this. M �oller introduces two new variables, �

and ��, to de�ne an altered value of � and ��. These variables are charged with

ensuring that �� > 0. �� is de�ned as follows:

�� = � + (��� �)dTd: (6)

The requirement for �� > 0 gives a condition for ��:

�� > ��
�

dTd
: (7)

M �oller then sets �� = 2( �
dTd

) to satisfy Eq. (??) and so ensures �� > 0. This

allows for a substitution in Eq. (??) to give:

�� = �� + � dTd: (8)

Subsequently, �� is substituted for expressions that would otherwise involve �.

Thus the step size � is found by substituting �� for � in Eq. (??):

�i =
�dTi rEi

��
=

dTi rEi

�� � �dTi di
: (9)

It is now necessary to specify how to update the scale �. This is based on a

measure of �t between the quadratic approximation and the real surface. The �t

is measured by the variable �, and is a ratio between the actual change in error

E produced by stepping along the search direction d by an amount �, and the

predicted change in that error based on the quadratic approximation. � is then

updated as follows:

�i+1 =

8>>>>><
>>>>>:

1
4
�i; if �i > 0:75

�i +
d
T

i
Hi di(1��i)

dT
i
di

; if 0 < �i < 0:25

�i otherwise

(10)

where �i is the value of � at iteration i.
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Class Substance Training Validation

1 1C 68 82

2 1E 59 91

3 1F 74 77

4 1L 67 83

5 1P 82 68

6 1U 72 78

7 2C 71 79

8 2E 91 66

9 2F 77 73

10 2L 73 77

11 2P 77 73

12 2U 68 82

Total 1808 879 929

Table 1: List of substances and the number of spectra used for training/validation:

C (control); E (ethephon); F(foil); L (leaf-removal); P (plastic-house); U (un-

pruned), and pre�x 1 and 2 indicate harvest and after storage time, respectively.
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3 Experimental

3.1 Data collection and Pre-processing

For the spectral data, visible-NIR spectra were collected at harvest and after stor-

age at 0� C for 16 weeks from kiwifruit berries sourced from six pre-harvest fruit

management treatments applied to vines grown at the Blands Research Orchard

near Hamilton, New Zealand in the 1996 harvest season. The treatments were as

follows:

Control: Normal thinning of annual vegetative growth;

Ethephon: Thinning of annual vegetative growth, dipping the berries in a

ripening agent (7 mg / L ethephon) two weeks prior to harvest set with

normal thinning of annual vegetative growth;

Foil: Wrapping the berries in foil to exclude light at one month after fruit-set,

together with normal thinning of annual vegetative growth;

Leaf-Removal: Removing of leaves and fruiting shoots two months prior to

harvest, together with normal thinning of annual vegetative growth;

Plastic-House: Covering the vine with plastic �lm, with no thinning of annual

vegetative growth;

Unpruned: No thinning of annual vegetative growth.

Di�use reectance spectra (consisting of 1024 averaged measurements over

the 516-998nm range) were collected with a �bre optic probe visible-near in-

frared spectrometer (PS1000 Ocean Optics Inc. Florida) from a single equatorial

location on each berry using 150 berries per treatment. Reference spectra were

collected from a white halon tile and spectral data were corrected for baseline
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drift where it occurred. The reectance spectra were calculated as the ratios of

the signal to the tile reference at each wavelength. The �rst 11 CV scores were

calculated for each fruit from the PC, FFT, FHT and HT transforms of these

reectance spectra as described in Table ??.

The primary feature extraction techniques used were PC, FFT, FHT, RR

(Hurst), Haar and polar coordinate (calculated centroid for mean centred log(1/R)

data) transformations. Canonical variates (cv) were calculated for the FFT, FHT,

Haar, RR and PC feature data sets, thus deriving a secondary set of 11 data per

fruit. This latter set, or the original extracted features were used to evaluate

their suitability for categorising the fruit treatments by the pattern recognition

techniques.

A short description on the features and data sets transformed by canonical

variate analysis are listed in Table ??. Table ?? summarised the substance name

and the number of spectra used in learning and testing. The performance of the

classi�cation algorithms was assessed using both the primary extracted features,

or the CV scores derived from them. In either case the data was divided into

training and validation subsets comprising 879 and 929 spectra, respectively.

Fig. ?? shows the scores of the �rst two canonical variates (cv) of the val-

idation sets for the spectra taken at harvest and after storage. The berries at

harvest and after storage were segregated clearly, although the foil shaded and

ethephon treated berries were clearly distinguished at harvest, but these were not

at later time.

3.2 Software and hardware used

The features were extracted using Array Basic scripts running under Grams 32

software (Galactic industries Corp., Salem, NH, USA). JMP (SAS Institute, Cary,

NC, USA) was used for the CV and LD analyses. The experiments were carried
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Table 2: Extracted Spectra features used to pre-process spectra

Group Feature Short Remarks

FFT The fast Fourier transform (FFT) coe�cients (50 per fruit)

FHT The fast Hartley transform (FHT) coe�cients (49 per fruit)

1 Haar The 4th order Haar transform coe�cients (60 per fruit)

RR(Hurst) The rescaled range (log(range/SD)) (13 per fruit)

PC The principal component (pc) scores (14 per fruit)

The polar coordinates of point and surface

Polar
calculated centroid for mean centred log(1/R) data a

The canonical variate (cv) scores (11) derived

cv-FFT
from the FFT data and knowledge of the treatments

The canonical variate (cv) scores (11) derived

cv-FHT
from the FHT data and knowledge of the treatments

The canonical variate (cv) scores (11) derived2

cv-Haar
from the Haar transform data and knowledge of the treatments

The canonical variate (cv) scores (11) derived

cv-Hurst
from the Hurst Range Renormalisation (RR)

The canonical variate (cv) scores (11) derived

cv-PC
from the pc data and knowledge of the treatments

aPolar coordinates provide a 2D map of the higher dimensional space of the 512 point spectra,

the point and surface centroids are 2 di�erent methods for calculating the moment of the shape

that the spectra take when plotted as polar coordinates. Xp and Yp describe the centroid of a fruit

spectra derived from the points, and Xs and Ys describe the centroid of a fruit spectra derived from

the surface occupied by the spectra.
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Figure 3: Mean scores and approximate 99 % con�dence circles for the �rst

two canonical variates (cv) derived from visible-NIR spectra of treated kiwifruit:

control (c), ethephon (e), foil (f) and leaf removal (l) treatments plus unpruned

(u) and plastic-house (p) treatments at harvest (1) and after storage (2)
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out using variously a SUN Sparcstation (SunOS 5.6) and a PC (Microsoft Win-

dows NT 4.0). The programs for the simulation of the MLPs with variations of BP

were written in MATLAB scripts and MATLAB NN Toolbox (The MathWorks

Inc., MA).

3.3 Network topologies

In this study, the MLPs are constructed of three layers. We de�ne a feature vector

F = (f1 ; f2 ; : : : ; fN ) composed of various number of features which are listed in

Table ??; its task is to produce the correct output label for each input feature

vector. The architecture of our supervised network is a MLP with 1 hidden layer.

An important question is what kind of output encoding to use for the labels.

We use a local 1-out-of-N code in which each unit represents a di�erent label: we

assume that we have the classi�cation information available for the training set,

so added 20 components to the training data, corresponding to an 1-of-N binary

coding of the groups. This code has the advantages that the trained classi�er

can be decomposed very simply into N separate classi�ers and, furthermore,

the outputs have a simple interpretation as approximations to the a posteriori

probabilities [?]. The classi�cation is determined by the maximum output value

and we have selected an approach in which a class label is assigned to a case

when one and only one output node has an output that exceeds a node-dependent

threshold. In this study we have set the threshold for all nodes at 0.5, the range

of possible outputs being 0 � 1. When this requirement is not ful�lled, the case

stays unclassi�ed.

Before training, all networks were initialised by random numbers drawn from

a normal distribution with zero mean and a standard deviation of 0.01. Thus, all

algorithms had equal initial conditions. In Rprop, SCG and ABP, the number

of neurons in the hidden layer ranged from 5 to 15 while the output layer had
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12. The optimal network sizes and parameters used for each of the problems are

listed in Tables ??, ?? and ??.

There are three parameters of interest in ABP: the learning rate (�); the

increasing learning rate (�+); and the decreasing learning rate (��). The learning

rate(�) was set to various factors depending on the problems, �+ to 1.05, and ��

to 0.7. And there are one parameter of interest in SCG: the regulating parameter

(�). The regulating parameter (�) of the Hessian was set to di�erent values

depending on the problems. On the other hand, Rprop used an initial step width

(�(0)) of 0.01, up/down factors (�+=��) of 1.2/0.5 and a minimal/maximal

step width (�min=�max) of 0.07/50.0, respectively. The optimal network sizes of

di�erent tasks are described in Tables ??, ?? and ??.

4 Results and Discussion

For each of the problems, an appropriately sized network was constructed as in

Tables ??, ??, and ??. The input layer contained as many neurons as the number

of dimensions of the data set. The output layer contained as many neurons as the

number of classes present in the data. Since the input and output of the network

are �xed by the problem, the only layer whose size had to be determined is the

hidden layer. Also, since we had no a priori information on how the various input

characteristics a�ect the classi�cation, we chose not to impose any structure on

the connection patterns in the network. Our networks were thus fully connected.

There have been several heuristics proposed to determine an appropriate

number of hidden-layer nodes. It should be small enough to permit generali-

sation from the training data and large enough to form an adequate internal

representation of the domain. A good heuristic that we utilised was to set the

number of hidden-layer nodes to be a fraction of the number of features taking
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care that it does not signi�cantly exceed the number of classes in the domain.

Each method previously discussed was operated with a wide range of the

parameters that control its behaviour. Many techniques exist for solving the

problem of �nding optimal values for the network parameters. We trained with

�ve choice of the control parameters and the choice leading to the best perfor-

mance was considered for performance evaluation. Each network was trained

until the weight converged, i.e., when subsequent iterations did not cause any

signi�cant changes to the weight vector. The optimal network is assumed to be

the simplest network which achieves the minimum error on the test set. From

the available data, we determine that the network with 10 hidden units is the

optimum in almost all di�erent set of features. We report the results from only

the best set of parameters and due to space considerations, we provide only the

generalisation accuracy.

We wish to analyse the performance of the neural network classi�ers in order

to determine its limitations. It is well-known that the leave-one-out method

of error rate estimation is preferable to the optimistically biased re-substitution

method. However, in our case, leave-one-out would be impractical due to the

computational complexity for re-training the network many times. We therefore

use the hold-out method and divide the available labelled examples randomly

into a training set and a test set.

In each of the techniques, the number of patterns classi�ed correctly was de-

termined as follows: we consider �rst the confusabilities of the labels. A standard

analysis technique from statistical pattern recognition theory is to compute the

confusion matrix which is de�ned as:

Cij =
NX
k=1

!̂i(xk)!j(xk); (11)

where !̂i(xk) is the true class of pattern xk and !j(xk) is the class predicted by the

classi�er. The classi�cation accuracy for a true pattern class !̂i and a predicted
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class !j is de�ned as:

Ai = P(!ij!̂i)P(!̂i) (12)

from which obtains the expected classi�cation accuracy:

A = E [Ai] =
1

M

MX
i=1

P(!ij!̂i)P(!̂i) (13)

A picture of the confusion matrix Cij (true classes across rows, predicted classes

across columns) emphasises the performance more clearly as a concentration of

values on the diagonal.

4.1 Neural Network Classi�ers

MLP networks perform a mapping from the problem characteristic vector to an

output vector describing class memberships. The generalisation performance of

the network is measured by the classi�cation accuracy on a validation set of

unseen examples. The best possible performance is that theoretically achievable

by the Bayes classi�er. However, it is known that ANNs of the MLP architecture

are able to approximate the optimal Bayes decision boundaries [?].

The training set consists of 879 measurement vectors and again 929 measure-

ments are available for testing. The training period was limited to 3000 epochs

using a �xed 3 layer network architecture with 12 output units and the network

was fully connected. The weights of the network have been randomly chosen by

a normal distribution (� = 0:0; � = 0:01). Experiments to obtain the best com-

bination of parameters have been carried out. Training stops when any of the

following conditions occur:

� The maximum number of epochs (steps) is reached.

� Percentage of correctly classi�ed cases greater than some threshold.

� Performance (total error) has been minimised to the goal (0.0001).
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The resulting classi�er is tested with fresh data to evaluate the goodness of the

model. Rather than adapting the weights after processing of each case (on-line or

incremental mode), the weights in the network were updated after each complete

pass through all learning cases (batch mode).

SCG assumed a low value of the regulating factor (�), approximately 5�107.

Also, the parameter inuences the performance of SCG. The parameters such as

the learning rate (�), the increasing learning rate (�+), and the decreasing learning

rate (��) were chosen a �xed value of 0.01, 1.05, and 0.7, respectively. Rprop also

provided a similar power of performance, but had an extremely fast convergence

rate. We chose a �xed value of �min because the algorithm re�nes it iteratively

and we set an upper bound 50 on the weight changes �max. The best performance

were achieved at (�min;�max) = (0.07, 50). It was observed that the ideal value

of �0 was in the range, 0.01 � 0.07.

See Tables ??, ??, and ?? for the performance of supervised neural networks

on the 11 data sets. Networks with very good performance have been trained.

The performance measurement of the mean square error (MSE) and the mean

prediction error (MPE) are used for training and validation, respectively. The

three paradigms classify most of the problem patterns correctly, although the

Hurst and Polar transformed features gave a high proportion (> 50%) of mis-

classi�cations. The generalisation error on the Group 1 data sets resulted in an

extremely low error for SCG, and, conversely, a little bit higher error for the

Rprop and ABP algorithms. SCG was found to be a very good algorithm for

classi�cation in Haar transformed data set. However, training with the larger

network with the smaller training set instead of the smaller network leads to the

expected degradation of performance.
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Features Network Parameter (�0) MSE MPE accuracy (%)

FFT 50-10-12 0.07 0.0035 0.0085 92.36

FHT 49-10-12 0.07 0.0058 0.0109 88.48

Haar 60-10-12 1� 10�6 0.016 0.0130 86.33

RR(Hurst) 13-10-12 0.01 0.044 0.073 49.84

PC 14-9-12 0.07 0.0039 0.0092 88.70

Polar 4-9-12 0.07 0.061 0.099 35.85

cv-FFT 11-9-12 0.01 0.0021 0.0076 89.24

cv-FHT 11-10-12 0.01 0.003 0.0274 82.99

cv-Haar 11-9-12 0.07 0.0047 0.0189 84.92

cv-Hurst 11-10-12 0.01 0.041 0.0889 46.72

cv-PC 11-15-10 0.07 0.0048 0.0097 87.62

Table 3: Results for Resilient back-propagation (Rprop)

Features Network Parameter (�) MSE MPE accuracy (%)

FFT 50-10-12 1� 10�5 9� 10�6 0.0105 93.65

FHT 49-10-12 1� 10�6 0.00099 0.00254 86.98

Haar 60-10-12 5� 10�7 0.00029 0.00013 93.76

RR(Hurst) 13-10-12 0.001 0.039 0.0539 46.39

PC 14-11-12 5� 10�7 0.0013 0.0042 86.98

Polar 4-10-12 5� 10�7 0.062 0.0929 37.03

cv-FFT 11-5-12 1� 10�6 0.0067 0.0076 87.19

cv-FHT 11-15-12 1� 10�6 0.0014 0.00574 81.05

cv-Haar 11-7-12 5� 10�6 0.0053 0.00509 82.13

cv-Hurst 11-10-12 0.1 0.039 0.0889 44.03

cv-PC 11-9-12 5� 10�6 0.0044 0.0057 86.11

Table 4: Results for Scaled Conjugate Gradient (SCG)
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Features Network Parameter (�) MSE MPE accuracy (%)

FFT 50-10-12 0.01 0.0048 0.0055 93.0

FHT 49-15-12 0.01 0.011 0.034 87.73

Haar 60-15-12 0.01 0.025 0.043 83.42

RR(Hurst) 13-15-12 0.01 0.046 0.079 47.15

PC 14-15-12 0.01 0.0016 0.0042 87.94

Polar 4-15-12 0.01 0.064 0.103 34.34

cv-FFT 11-15-12 0.01 0.0083 0.0086 87.84

cv-FHT 11-15-12 0.01 0.0051 0.0094 82.35

cv-Haar 11-15-12 0.01 0.0019 0.0079 82.88

cv-Hurst 11-15-12 0.01 0.036 0.0589 42.84

cv-PC 11-15-12 0.01 0.0054 0.009 86.33

Table 5: Results for Adaptive Back-Propagation (ABP)

4.2 Analysis

Previous work had shown that, in general, linear discrimination analysis (LDA)

models, using canonical variate (cv) scores derived from principal component

(PC) scores of visible-NIR spectra, were adequate for distinguishing between

the groups of kiwifruit berries [?]. However, the connectionist methods that

we tried out performed well, in terms of % accuracy. The results are shown

in Tables ??, ?? and ??. The tables list the predictive abilities of the three

neural networks for both groups of benchmark tasks. According to classi�cation

performance connectionist methods are comparable to statistical models in terms

of generalisation errors and accuracy.

In summary, the neural network algorithms appear to achieve high accuracies

consistently for all data sets. Table ?? and Fig. ?? summarise the classi�cation

accuracies of these algorithms. For the MLP methods, FFT feature extraction
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gave consistently good classi�cation, although the best classi�cation overall was

given by the Haar transform in conjunction with SCG.

The performance of the SCG and LDA classi�ers for FFT and Haar trans-

forms after applying the unseen examples is shown in the confusion matrices in

Tables ??, ??, ?? and ??. The best classi�cation overall was given by SCG-Haar,

followed closely the SCG-FFT where the misclassi�cation was approximately one

half that given by the linear model.

Overall the conversion of the features by forming the canonical variates gave

inferior classi�cation. The RR (or Hurst) and Polar transforms gave a high pro-

portion (> 50%) of misclassi�cations, although still signi�cantly better than a

random assignment. For this dataset, linear discrimination models based on the

features extracted by FFT gave a superior classi�cation in comparison to the

features extracted by the other methods. However, the overall classi�cation error

based on the FFT based linear discrimination model was about 12%; about twice

the error of the best MLP-based classi�ers.

5 Conclusions

This work demonstrates that a classi�cation system's performance depends strongly

on the feature extraction used, and the subsequent selection methods, which is

particularly true for the problems we considered here. This was achieved with-

out recourse to other measurements, such as tactile �rmness, which would exhibit

more characteristic of components. While each and every orchard in New Zealand

turns out a product which is unique and which has distinctive qualities, it would

clearly be di�cult if not possible to try them all out. In such cases, we show that

arti�cial neural network or connectionist methods can successfully be used. These

techniques build models directly based on process measurements, and thus pro-
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Multilayer Perceptrons

Features
Rprop SCG ABP

DA

FFT 7.64 6.35 7.0 11.84

FHT 11.52 13.02 12.27 19.81

Haar 13.67 6.24 16.58 14.32

RR (Hurst) 50.16 53.61 52.85 56.08

PC 11.3 13.02 12.06 20.34

Polar 64.15 62.97 65.66 71.15

cv-FFT 10.76 12.81 12.16 11.09

cv-FHT 17.01 18.95 17.65 19.48

cv-Haar 15.18 17.87 17.12 13.89

cv-Hurst 53.28 55.97 57.16 56.08

cv-PC 12.38 13.89 13.67 17.55

Table 6: The overall classi�cation performance (% error) of the discriminate

analysis (DA) and connectionist algorithms
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1C 1E 1F 1L 1P 1U 2C 2E 2F 2L 2P 2U total

1C 71 0 0 2 0 9 0 0 0 0 0 0 82

1E 0 89 4 0 0 0 0 0 0 0 0 0 93

1F 0 0 69 0 0 0 0 0 0 0 0 0 69

1L 9 0 1 79 1 0 0 0 0 0 0 0 90

1P 1 0 2 2 59 4 0 0 0 0 0 0 68

1U 1 0 0 0 8 65 0 0 0 0 0 0 74

2C 0 0 0 0 0 0 59 0 0 15 0 0 74

2E 0 2 1 0 0 0 0 65 0 1 0 0 69

2F 0 0 0 0 0 0 0 0 68 0 12 3 83

2L 0 0 0 0 0 0 20 0 0 60 2 0 82

2P 0 0 0 0 0 0 0 0 3 1 58 0 64

2U 0 0 0 0 0 0 0 1 2 0 1 77 81

total 82 91 77 83 68 78 79 66 73 77 73 82 929

Table 7: Confusion matrix for the linear discrimination of kiwifruit treatments

based on features extracted by FFT of the validation set of VNIR spectra (Error:

11.84%)
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1C 1E 1F 1L 1P 1U 2C 2E 2F 2L 2P 2U total

1C 73 0 0 5 1 11 0 0 0 0 0 1 91

1E 0 86 1 0 0 0 0 0 0 0 0 0 87

1F 0 1 74 0 0 0 0 0 0 0 0 0 75

1L 8 2 1 76 0 0 0 0 0 0 0 0 87

1P 1 0 0 2 56 3 0 0 0 0 0 0 62

1U 0 0 0 0 11 64 0 0 0 0 0 0 75

2C 0 0 0 0 0 0 53 0 0 13 0 0 66

2E 0 2 1 0 0 0 0 66 0 0 0 1 70

2F 0 0 0 0 0 0 0 0 62 0 15 3 80

2L 0 0 0 0 0 0 26 0 0 62 2 0 90

2P 0 0 0 0 0 0 0 0 4 2 52 5 63

2U 0 0 0 0 0 0 0 0 7 0 4 72 83

total 82 91 77 83 68 78 79 66 73 77 73 82 929

Table 8: Confusion matrix for the linear discrimination of kiwifruit treatments

based on features extracted by Haar transformation of the validation set of VNIR

spectra (Error: 14.32%)
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1C 1E 1F 1L 1P 1U 2C 2E 2F 2L 2P 2U total

1C 74 0 0 0 0 8 0 0 0 0 0 0 82

1E 0 89 2 0 0 0 0 0 0 0 0 0 91

1F 0 1 75 0 0 0 0 0 0 0 0 0 76

1L 0 0 0 80 1 0 0 0 0 0 0 0 81

1P 1 0 0 3 62 4 0 0 0 0 0 0 70

1U 7 0 0 0 5 66 0 0 0 0 0 0 78

2C 0 0 0 0 0 0 73 0 0 2 0 0 75

2E 0 1 0 0 0 0 0 66 0 0 0 0 67

2F 0 0 0 0 0 0 0 0 67 0 3 6 76

2L 0 0 0 0 0 0 6 0 0 74 1 0 81

2P 0 0 0 0 0 0 0 0 1 1 68 0 70

2U 0 0 0 0 0 0 0 0 5 0 1 76 82

total 82 91 77 83 68 78 79 66 73 77 73 82 929

Table 9: Confusion matrix for the SCG of kiwifruit treatments based on features

extracted by FFT of the validation set of VNIR spectra (Error: 6.35%)
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1C 1E 1F 1L 1P 1U 2C 2E 2F 2L 2P 2U total

1C 76 0 0 0 0 7 0 0 0 0 0 0 83

1E 0 87 0 2 0 0 0 0 0 0 0 0 89

1F 0 0 76 1 1 0 0 0 0 0 0 0 78

1L 3 0 0 78 0 0 0 0 0 0 0 0 78

1P 3 0 0 2 59 3 0 0 0 0 0 0 67

1U 0 0 0 0 8 68 0 0 0 0 0 0 79

2C 0 0 0 0 0 0 71 0 0 0 0 0 71

2E 0 4 1 0 0 0 0 66 0 0 0 1 72

2F 0 0 0 0 0 0 0 0 66 0 2 2 70

2L 0 0 0 0 0 0 8 0 0 76 2 0 86

2P 0 0 0 0 0 0 0 0 5 1 69 0 75

2U 0 0 0 0 0 0 0 0 2 0 0 79 81

total 82 91 77 83 68 78 79 66 73 77 73 82 929

Table 10: Confusion matrix for the SCG of kiwifruit treatments based on features

extracted by Haar transformation of the validation set of VNIR spectra (Error:

6.24%)
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Figure 4: Results of classi�cation: Comparison of Rprop, SCG, ABP and LDA

vide a means to analyse processes without explicit physical process model. The

data sets have been transformed into various PC, FFT, FHT, Haar, Hurst trans-

form, associated canonical variate (cv) transforms and Polar coordinate datasets.

We also provide the insights to determine which features to select from the ones

that we have extracted.

In order to evaluate the proposed task we used three variants of BP|Rprop,

SCG and ABP as supervised neural networks and LDA as a linear model.

As it has been seen, the arti�cial neural network approach and the results

obtained are rather di�erent from the conventional model-based methods of prob-

lem solving. Neural networks are particularly interesting because of their inherent

claim to analyse noisy or error data and to deal with problems that have no clear

cut solution, in addition to their critical di�erentiation from other techniques,

namely their ability to learn. This is important for those tasks where examples
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of the desired behaviour are easily given but where we are not sure how to arrive

at the answer. It was shown that, if we have some idea of how to proceed, this

can be used to form feature vectors which can be used to train a MLP.

In this study, supervised connectionist methods have proven to outperform

the investigated conventional multivariate analysis and we guess that it is the

fastest training algorithm at the time being. The general applicability of this

result needs to be evaluated in di�erent systems, but clearly show promise and

may meet the requirements of practical fruit classi�cation.

Although all of the methods gave some degree of classi�cation, the high per-

formance of the FFT extraction was unexpected in view of the current literature

preference for PC [?], and clearly warrants more detailed investigation.

This work demonstrates that the classi�cation performance depends strongly

on the feature extraction used, and the subsequent selection methods. Arti�cial

neural networks appear to be well suited to the classi�cation of fruit grown or

stored under di�erent conditions. In particular this study has shown that non-

linear classi�cation based on the SCG algorithm could give low rates of error if

combined with appropriate feature extraction methods. The classi�cation was at

a level of practical utility, and the approach may be more generally applicable to

fruit classi�cation.
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