
Poisson Image Denoising
Based on BLS-GSM Method

Liangdong Li1, Nikola Kasabov2, Jie Yang1(&), Lixiu Yao1,
and Zhenghong Jia3

1 Institution of Image Processing and Pattern Recognition,
Shanghai Jiao Tong University, 200240 Shanghai, China
{jamesleee,jieyang,lxyao}@sjtu.edu.cn

2 Knowledge Engineering and Discovery Research Institute,
Auckland University of Technology, 92006 Auckland, New Zealand

nkasabov@aut.ac.nz
3 School of Information Science and Engineering,

Xinjiang University, 830046 Urumqi, China
jzhh@xju.edu.cn

Abstract. Poisson noise removal is of significant importance for many
applications such as spectral imaging, night vision and especially in medical
imaging and astronomy. Gaussian scale mixture based methods have been
widely used in image denoising. In this paper, we focus on the Poisson noise
and propose a new strategy based on Bayesian least squares method for its
removal. We begin with a method that removes Poisson noise by reducing it to
an additive Gaussian noise with a Variance Stabilizing Transformation. Then we
combine the localized version of BLS-GSM method to bring out a new
denoising strategy for images corrupted by Poisson noise and experimentally
show that it outperforms some of the best existing methods for Poisson noising
removal both numerically and visually.

Keywords: Poisson noise removal � Variance stabilizing transformation �
Gaussian noise � Localized BLS-GSM method

1 Introduction

In a wide range of imaging applications, observations are collected by counting pho-
tons hitting a detector array or vehicles passing a sensor. For example, in nuclear
medicine, night vision, astronomy, traffic analysis and many other applications, there is
a limited amount of available light. Even in well-lit environment, photon limitations
can arise when using a spectral imager which heavily depends on the wavelength of
each received photon. Thus Poisson noise removal is of significant importance in these
applications above. As the noise variance equals to the expected value of the true value
of observed images, Poisson noise depends on the true value. In this case, the premise
of Poisson noise removal is very different from the scene of additive white Gaussian
noise whose variance is usually assumed by signal processing designers and thus is
known during preprocessing.

Up to now, many types of denoising methods specifically designed for Poisson
noise removal have been proposed. Jin et al. [1] proposed an algorithm to restore the
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Poisson noise by combing the special properties of the Poisson distribution and the idea
of Optimal Weights Filter [2]. This algorithm can reconstruct the image contaminated
by the Poisson noise efficiently and achieve good visual effect as well. Salmon et al. [3]
proposed an algorithm which combines elements of dictionary learning and sparse
patch-based representations of images. This method employs both an adaption of
Principal Component Analysis (PCA) for Poisson noise and recently developed
sparsity-regularized convex optimization algorithms for photon-limited images.
Deledalle et al. [4] proposed an extension of the NL-means for images contaminated by
the Poisson noise, based on probabilistic similarities to compare noisy patches and
patches of a pre-estimated image, and on a minimization of the Mean Square Error
(MSE) with respect to the denoising parameters. There are also many other methods
(see [5, 6] for detail about the multiscale maximization a priori method and [7, 8] for
regularization based on a total variation semi-norm).

Different from the algorithms mentioned above, the most popular methods of Poisson
noise removal are usually performed by reducing it to nearly additive Gaussian noise
through the following three steps. Firstly, the variance of the Poisson noise is stabilized
by applying a Variance Stabilizing Transformation (VST) such as Anscombe root
transformation [9], so that the transformed data are approximately homoscedastic and
Gaussian. This step will produce a noisy image data in which the noise can be handled as
additive Gaussian noise with unitary variance. Secondly, the noise is removed by a
conventional denoising method for additive Gaussian white noise such as NL-means
[10], BM3D [11] and BLS-GSM [12]. Thirdly, an inverse transformation is applied to the
denoised data, obtaining the estimate of the signal of interest. Makitalo et al. [13, 14]
focused on the last step, and introduce the Exact Unbiased Inverse (EUI) method. Authors
[15–17] improved both the first and last step and achieved remarkable denoising results.

In this paper, we focus on a strategy for Poisson noise removal based on BLS-GSM
[12, 18]. We begin with a Variance Stabilizing Transformation method that suppresses
Poisson noise to an additive Gaussian noise with unitary variance. Then we combine
the localized version of BLS-GSM method to bring out a new denoising strategy for
images contaminated by Poisson noise. We will show that the resulting method is
state-of-the-art in terms of PSNR.

The paper is organized as follows: in Sect. 2 we explain the Poisson noise removal
problem with more details about VST, EUI, and BLS-GSM, and then propose our
three-stage algorithm for Poisson denoising. In Sect. 3 we conduct some experiments
and analysis to prove that EUI combined with localized BLS-GSM gives rise to a very
efficient filtering solution that is competitive with some of the best existing methods for
Poisson noise removal. In Sect. 4 we make some discussions to conclude this paper.

2 Method Description

2.1 Poisson Noise

Let xi; i ¼ 1; . . .;N be the observed pixel values obtained through an image sensor
where xi is an independent random Poisson variable whose mean yi � 0 is the under-
lying intensity value to be estimated. Thus the discrete Poisson probability of each xi is:
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P xijyið Þ ¼ yxii e
�yi

xi!
: ð1Þ

As the mean of the Poisson variable is equal to its variance, so we have

E xijyif g ¼ yi ¼ var xijyif g: ð2Þ

As we have mentioned above, the noise variance depends on the true intensity
value, thus Poisson noise is signal dependent.

2.2 Our Algorithm

In this subsection we present our algorithm for removing Poisson noise and discuss in
full detail in the following.

A standard way to denoise Poisson noise image is using a variance stabilizing
transformation (VST). To remove the data-dependence of the noise variance, we apply
VST to make it constant throughout the whole denoising procedure with a conventional
Gaussian denoising method. In the recent years, many variance stabilization transforms
have been developed [15–17], among which the most popular VST is the Anscombe
transformation [9]:

f xð Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
xþ 3

8

r
: ð3Þ

However, applying (3) directly to Poisson distributed data can only produce an
approximately Gaussian distributed data with variance 1. This holds still when the
mean of the Poisson data is greater than 4. The denoising of f xð Þ produces a signal
D that can be considered as an estimate of Eff xð Þjyg. We will discuss later on.

After applying the Anscombe transformation, we need to apply conventional
denoising technique for Gaussian noise such as Bayes Least Squares – Gaussian
Mixture Model (BLS-GSM) method [12]. Instead of using it directly, we introduce an
improved version (i.e. localized BLS-GSM). For rigorous reason we make some dis-
cussion and show more details than the original paper. The basic mind of the algorithm
is to model a noiseless wavelet coefficient neighborhood x, by a Gaussian scale mixture
which is defined as

x ¼ ffiffiffiffi
m

p
u ð4Þ

where u is a zero-mean Gaussian random vector and m an independent positive scalar
random variable. Without loss of generality, we can assume the expectation of
Efmg ¼ 1. Thus we have Cx ¼ Cu, where C represents the covariance matrix of a
vector. The idea of denoising is as follows: (1) decompose the noisy input image into a
wavelet pyramid, (2) apply the whole denoising process on wavelet coefficients,
(3) obtain the final denoised image by reconstruction. Besides, to avoid ringing artifacts
in the reconstruction, a redundant version of wavelet transform steerable pyramid is
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used. For an n1 � n2 image, the steerable pyramid is generated in log2 min n1; n2ð Þð Þ � 4
scales and eight orientations. Assume that the image is contaminated by independent
additive Gaussian noise. Thus, a typical neighborhood of wavelet coefficients can be
written as

y ¼ xþw ¼ ffiffiffiffi
m

p
uþw ð5Þ

where y is the observed noisy neighborhood to be estimated, x the original neigh-
borhood and w the independent additive white Gaussian noise signal with known
variance r. With the observed noisy vector y, a Bayes Least Square (BLS) estimation
of x, Efxjyg is calculated as follows

E xjyf g ¼ Z1

0

pðzjyÞE xjy; zf gdz: ð6Þ

According to the original work [12], discrete form of E xjyf g can be computed as

E xjyf g ¼
X13
i¼1

pðloge zið ÞjyÞE xjy; loge zið Þf g: ð7Þ

To get E xjyf g, we just need to calculate pðlogeðziÞjyÞ and E xjy; logeðziÞf g
respectively. For notational simplicity, we replace the logeðziÞ term with zi. The
detailed derivation process of the two components can be found in [12]. Therefore, we
omit the details in this paper and thus we have:

E xjy; zif g ¼ zMK zKþ Ið Þ�1v ð8Þ

where Cw ¼ SST , QKQT ¼ S�1Cu S�1� �T
, M ¼ SQ, v ¼ M�1y.

The discrete form of p zijyð Þ is

p zijyð Þ ¼ pðyjziÞpz zið ÞP13
j¼1 pðyjzjÞpz zj

� � ð9Þ

where pzðziÞ / 1
zi
.

The main point of this procedure is to use any wavelet coefficient, either extracted
from a single orientation/scale or mixing orientations and scales. The idea is to denoise
all these wavelet coefficients in the pyramid, and then a reconstruction step of the
denoised image is performed by the inverse pyramid.

After discussing the BLS-GSM method, we realize the denoising procedure by
firstly partition the input n1 � n2 noisy image into

ffiffiffi
d

p � ffiffiffi
d

p
blocks, where d ¼

min
ffiffiffiffiffi
n1

p� �
;

� ffiffiffiffiffi
n2

p� �Þ. And then we apply BLS-GSM to each block.
Having finished the two successive steps above, the only work we need to do is

applying an inverse transformation to D in order to obtain the denoised estimate of y.
In [13] the authors proposed three inverse transformations: algebraic inverse,
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asymptotically unbiased inverse and exact unbiased inverse. In this paper we just focus
on the EUI method which will be discussed in the following.

Given a perfect denoising, that is to say D can be treated as Eff xð Þjyg, and the EUI
of the Anscombe transformation f is an inverse transformation:

T : Eff xð Þjyg 7!Efxjyg: ð10Þ

As mentioned in 2.1, for any given y, we have E xjyf g ¼ y. Then the problem of
finding the inverse transformation T reduces to computing the values Eff xð Þjyg
defined as:

E f xð Þjyf g ¼ Zþ1

�1
f zð ÞpðzjyÞdz; ð11Þ

where pðzjyÞ is the generalized probability density function of z conditioned on y. For
discrete Poisson probabilities PðxjyÞ, we have the following form:

E f xð Þjyf g ¼
Xþ1

x¼0

f xð ÞPðxjyÞ: ð12Þ

Take (1) and (3) into consideration, we have the finally form:

E f xð Þjyf g ¼ 2
Xþ1

x¼0

ffiffiffiffiffiffiffiffiffiffiffi
xþ 3

8

r
� y

xe�y

x!

 !
: ð13Þ

To solve the problem of approximately transformation mentioned at the beginning
of 2.2, for data in D that is greater than 2

ffiffiffiffiffiffiffiffi
3=8

p
, we set to 0.

3 Experiments and Analysis

Having introduced the main strategy in Sect. 2, in this section we implement our
algorithm and make comparison with other Poisson denoising methods. As described
above we will perform our method in three successive steps: (1) an Anscombe VST is
used to stabilize the Poisson noise variance. (2) the localised BLS-GSM method is used
for denoising the signal produced in the last step, which can be treated as additive white
Gaussian noise. (3) the exact unbiased inverse is applied to the denoised signal,
obtaining the estimate of the signal of interest. In the second step, we compare the
performance of the localized BLS-GSM method with a few recent classic denoising
algorithms for Gaussian noise removal: NL-means [10], K-SVD [19], BM3D [11]. We
also conduct comparisons against algorithms specifically designed for Poisson noise
removal such as Weights Optimization Filter (WOF) [1], Non-local PCA [3] and
Unsupervised Non-local Means (UNL-Means) [4].
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To describe quantitatively performance of denoising results, two classic measures
are introduced, the Root Mean Square Error (RMSE) and Peak Signal to Noise Ratio
(PSNR). The RMSE is computed as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ŷi � yið Þ2
N

s
;

where ŷi represents the estimated intensities, yi the respective true value,N the total
number of pixels in the image. The smaller the RMSE, the better the denoising.
The PSNR is evaluated in decibels (dB):

PSNR ¼ 20log10
max yið Þ
RMSE

� �
:

The larger the PSNR, the better the denoising.
To make objective and balanced comparisons, we conduct our experiments with the

set of test images all of which are 256 × 256 in size provided by the authors of [17]
showing in Fig. 1. They are Spots [0.03, 5.02], Galaxy [0, 5], Ridges [0.05, 0.85],
Barbara [0.93, 15.73] and Cells [0.53, 16.93]. These test images can be downloaded
from http://www.cs.tut.fi/foi/invansc/. Table 1 provides the numerical denoising results
of these noise removal methods in terms of PSNR(dB)/RMSE. The experiments results
show that the Localized BLS-GSM method is competitive with the more recent
denoisng algorithms specifically designed for Poisson noise removal [1, 3] which
achieve excellent denoising results. Figures 2 and 3 show the visual quality perfor-
mance of these methods and the comparison of our strategy with other noise removal
methods.

As shown in the Figs. 2 and 3, the Localized BLS-GSM algorithm preserves the
sharpness of edges. The denoised images preserve more detail of the original ones than
NL-Means(e), K-SVD(f) and UNL-Means(i) although a little inferior to BM3D ones.
Besides, it also introduces fewer artifacts than most of the other methods. Overall, the
visual performance is superior to most of the other recently proposed Poisson noise
removal algorithms, while a little inferior to the BM3D’s.

All in all, the performance of the Localized BLS-GSM algorithm is state-of-the-art
in terms of both visual quality and numerical results of PSNR/RMSE.

(a)Spots (256x256) (b)Galaxy(256x256) (c)Ridges(256x256) (d)Barbara(256x256) (e)Cells)256x2569

Fig. 1. Original test images used in the experiments.
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(a)Original image (b)Noisy image, PSNR=15.42 (c)LBLS-GSM, SNR=29.37

(d)BM3D, PSNR=28.05 (e)NL-Means, PSNR=26.69 (f)K-SVD, PSNR=27.11

(g)WOF, PSNR=29.37 (h)NL-PCA, PSNR=28.62 (i)UNL-Means, SNR=27.24

Fig. 2. Visual quality comparison between LBLS-GSM algorithms and others of Galaxy.

(a)Original image (b)Noisy image, SNR=14.94 (c)LBLS-GSM, SNR=26.44

(d)BM3D, PSNR=25.92 (e)NL-Means, PSNR=24.97 (f)K-SVD, PSNR=25.11

(g)WOF, PSNR=25.78 (h)NL-PCA, PSNR=26.03 (i)UNL-Means, SNR=25.32

Fig. 3. Visual quality comparison between LBLS-GSM algorithms and others of Galaxy.
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4 Discussion and Conclusion

In this part we present the experiments results and make some conclusions.
A new strategy for denoising images corrupted by Poisson noise is implemented.

By combining the Localized BLS-GSM method with VST we implement Poisson noise
removal effectively. Compared with other conventional Gaussian noise removal
method and algorithms specifically designed for Poisson noise removal, the
LBLS-GSM can achieve excellent effect in terms of both visual quality and numerical
results of PSNR/RMSE.
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