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ABSTRACT

Although widely studied for many years, colour quan-
tisation remains a practical problem in image process-
ing. Unlike previous works where the image can only
be quantised after the whole set of image data is ac-
quired, we propose to use an evolving localised learning
model for on-line colour quantisation. This approach
is compared with some conventional algorithms.

1. INTRODUCTION

Image colour quantisation is a process for reducing the
number of colours of a digital colour image. It is one of
the most frequently used operations in computer graph-
ics and image processing and is closely related to vector
quantisation and image compression. Despite of the
popularity of 24-bit graphics hardware, the practical
value of colour quantisation remains and is also found
in image analysis applications. On the other hand, it
remains a time consuming task although being widely
studied for many years.

Typically a two-phase process is needed to reduce a
given true colour image into one with less colour reso-
lution. The first phase, is to select a palette with best
representative colours. The second, is to map each
colour in the image to a corresponding colour in the
palette. There are two general classes of quantisation
methods: fixed and adaptive. In fixed quantisation,
a pre-defined set of display colours and a fixed map-
ping from the image colours to display colours are used.
Fixed quantisation is very fast, but sacrifices the quan-
tisation quality. In adaptive quantisation, colour space
of the image is partitioned into clusters of a target num-
ber and the centroids of these clusters define the result-
ing colour map. Some popular implementations include
median-cut [5] and octree[6] etc. These methods are
mainly based on colour histogram, requiring the whole
set of image data to be acquired so that partitioning

can proceed. They give much better quantisation re-
sults, but take much more time than fixed quantisation.
Another branch of the adaptive solution is connected
with clustering algorithms [9][8]. Although not popu-
larly applied yet, this approach is promising with good
adaptability and on-line learning ability.

In the context of data clustering and vector quan-
tization (VQ), assume we have a data manifold χ of
dimension D, i.e., χ ⊆ RD. We aim at finding a set
of prototypes W = {w1, ...,wN}, which encodes the
data manifold with small quantization error. VQ usu-
ally utilises a competitive rule, i.e., the input vector x
is represented by the best matching unit wi(x), which
satisfies

‖x−wi‖ ≤ ‖x−wj‖,∀j 6= i, i, j ∈ [1, N ] (1)

The goal is to minimise the reconstruction error

E =
∫
dDxP (x)‖x−wi(x)‖2 (2)

Here P (x) is the probability distribution of data vectors
over the manifold χ.

A straightforward approach for clustering and VQ is
the well known K-means algorithm. Its on-line version
is [7]:

∆wi =
{
γ(x−wi), if i = i(x)
0, otherwise (3)

with γ as the learning rate. Such an on-line learning
rule is likely to be trapped in local minima. A solution
to this is to adopt some “soft” computing schemes in
which not only the “winner” prototype is modified, but
all reference vectors are adjusted depending on their
proximity to the input vector.

Kohonen’s self-organizing feature map (SOM) [4]
is another VQ-related algorithm in the neural network
category. SOM features abilities of topology preserving



and approximation of data distribution. The topology
of the low dimensional feature map is pre-determined.
This is good for visualisation purpose, but it also limits
its data modelling ability, as the data manifold can be
rather complicated. The size of SOM is also fixed and
therefore it is not an ideal choice for on-line tasks.

The constraint of a low dimensional map topology
is removed in the neural-gas model [7], with a learn-
ing rule similar to SOM, but the prototype vectors are
organised in the original manifold of the input space.
The weight updating rule is similar to that of SOM,
but requiring the calculation of neighbourhood rank
of the prototypes related to the current input, since
no topology order is defined. This brings up the time
complexity for each step of weight adapting. In [3]
Fritzke introduced a growing neural gas (GNG) model
which originates from the neural gas, but the network
is allowed to adaptively grow. GNG needs to calculate
local resources for prototypes, which introduces extra
computational effort and reduces their efficiency.

We proposed an evolving self-organising map algo-
rithm (ESOM) [2] as an evolving variation of SOM for
on-line VQ and classification tasks. It features fast one-
pass on-line learning, evolvable network structure and
good topology preserving ability. In this paper, we will
further explore the plausibility of using this algorithm
to tackle the problem of image colour quantisation.

2. THE ESOM ALGORITHM

Following the context of vector quantisation, our ap-
proach is to allow the feature map to be evolved quickly
and acquire topological representation in the mean-
time. The neighbourhood of neurons are not pre-defined,
but are dealt ’as-it-is’, i.e., according to their mutual
distances in the original space. Thus ESOM avoids the
time complexity of searching for neighbourhood rank-
ing as in the neural gas algorithm, and is free of the
constraint of a low dimensional map topology.

Activations on prototype nodes are first defined.
Given an input vector x, the activation on the i-th node
is defined as a matching score:

ai(x,wi) = e−2‖x−wi‖2/ε2 (4)

where ε is a radial. Nodes may be connected. If a
connection between node i and node k is to be set, the
connection strength is defined as

ci,k =
ε

ε+ ‖wi −wk‖
(5)

ESOM adopts a localised, soft-winning competitive
mechanism, in which the best winning unit and its

neighbours are updated. We define a cost function as
weighted quantisation error for the input vector:

E =
∫
dDx

N∑
i=1

P (x)ai(x,wi)‖x−wi‖2 (6)

Here ai(x,wi) acts as a weighting factor assigned to the
i-th prototype vector. So the prototype which matches
better should also contribute more to the matching er-
ror. The on-line stochastic approximation of Eq.(6)
gives:

Eapp = Σai‖x−wi‖2 (7)
By gradient descent we have the following weight up-
dating rule in a simplified form:

∆wi = γai(x−wi) i ∈ [1, N ] (8)

Here γ is a learning rate held as a small constant.
ESOM starts with a null network, and gradually

allocates new prototypes when new data samples can
not be matched well onto existing prototypes. Node
insertion is straight-forward. The new node is inserted
using exactly the poorly matched input vector. When
handling clustered data, this simple approach shows
advantage over the mid-point interpolation heuristics
used in GNG. Although direct allocation is sensitive to
noise and may introduce some artifacts in clustering,
this can be mitigated by automatic deletion of obsolete
nodes.

The ESOM algorithm is summarised as follows:

1. Input a new data vector x;

2. If there are no prototype nodes, go to Step 4;

3. Matching. Look for a prototype subset S consist-
ing of the best matching unit and its neighbours.

S = {wb} ∪ {wi|cb,i > 0, i = 1..N} (9)

Here wb is the best matching prototype. Calcu-
late activations on nodes in S using Eq.(4), go to
Step 5;

4. Insertion. Create a new node in the network rep-
resenting the input:

wN+1 = x, N ← N + 1 (10)

Connections are then made from the newly in-
serted node to the first two nearest neighbours.

5. Updating. Modify all prototypes in S with Eq.(8),
update the strength of connection to the winner.

6. Deletion. After every Tp steps of learning time,
prune the weakest connection. If isolated nodes
appear, prune them as well;

7. Go back to Step 1 (until no more data are avail-
able).



3. ESOM FOR ON-LINE COLOUR
QUANTISATION

We apply the ESOM algorithm in the problem of on-
line colour quantisation and compare the results with
those achieved by other methods including median-cut,
octree, and Wu’s method [10]. Three test images are
chosen: Pool Balls, Mandrill and Lenna, as shown in
Fig.1. The Pool Balls image is artificial and contains
smooth colour tones and shades. The Mandrill image is
of 262144 (512×512) pixels but has a very large number
of colours (230427). The Lenna image is widely used
image processing literature and contains both smooth
areas and fine details. With all these images very good
quantisation results are obtained with ESOM, shown
in Fig.2.

(a)

(b)

(c)

Fig. 1. The source images. (a) Pool Balls, (b) Mandrill.
(c) Lenna.

The RGB colour space is used directly in on-line
clustering. Here we denote the image as I, with a pixel

(a)

(b)

(c)

Fig. 2. Test images quantised to 256 colours. (a)Pool
Balls with ε = 18.6, (b)Mandrill, ε = 20.4, (c)Lenna,
ε = 31.9. Tp = 2000, γ = 0.05 in all three cases.

number of N . The input vector to the ESOM algorithm
is now a 3-dimensional one: Ii = (Ri, Gi, Bi). The on-
line clustering process of ESOM will construct a colour
map C = {cj |j = 1...256}. Each image pixel is then
quantised to the best-matching palette colour cm, a
process denoted as Q : Ii → cm. To speed up the
calculation process, the Lα norm [1] is adopted as an
approximation of the Euclidean metric used in ESOM.
It is defined as

‖x‖α = (1− α)
n∑
j=1

|xj |+ αmaxnj=1|xj | (11)

where the vector x ∈ Rn. We use α = 1/2.
The quantisation root mean square error (QRMSE)



is defined as

εI,Q =

[
1
N

N∑
i=1

d(Ii, cm)2

] 1
2

(12)

Apart from the quantisation error, quantisation error
variance is another factor which influences the visual
quality of the quantised image. The standard deviation
of error is defined as

σ =
[∑

i(‖Ii − cm‖ − εI,Q)2

N

] 1
2

(13)

Quantisation performance of different methods is
compared in Table 1.

Table 1. Quantisation performances: quantisation er-
ror / error deviation

Methods Pool Balls Mandrill Lenna
Median-cut 2.58 / 8.28 11.32 / 5.59 6.03 / 3.50

Octree 4.15 / 3.55 13.17 / 4.98 7.56 / 3.83
Wu’s 2.22 / 2.19 9.89 / 4.56 5.52 / 2.94

ESOM 2.43 / 2.56 9.47 / 3.86 5.28 / 2.36

Generally ESOM not only achieves a very small
value of average quantisation error, its error variance is
also the smallest. This explains why images quantised
by ESOM have better visual quality than those done by
other methods. On the other hand, ESOM works much
slower than the compared methods. With the 512×480
sized Lenna image, it takes 2 seconds to construct the
quantisation palette on a Pentium-II system running
Linux 2.2. Although by using an evolving model the
time searching for best matching colours is much less
than using a model with fixed number of prototypes,
the time consumed in searching needs to be further re-
duced. We intend to utilise tree structures to organise
the colour palette so that searching for best matching
colours can be more efficiently done. Besides, the merit
of using ESOM is that there is a potential of hardware
parallelism implementation, which will boost up the
speed greatly and we believe this will enable real-time
quantisation of video streams.

4. CONCLUSION

We propose to use an evolving localised learning model
ESOM for the problem of on-line colour quantisation.
Good results have been obtained with some bench-
mark colour images. Compared with other conven-
tional methods we achieved smaller quantisation error
and better visual quality in the quantised images. With

further improvement of the computational efficiency,
we will investigate in applying this approach to real
world applications such as progressive image display
and video display over the Internet.

5. ACKNOWLEDGEMENTS

This work is supported by the Foundation for Research,
Science and Technology (FRST), New Zealand, un-
der grant UOOX0016. The ESOM algorithm is im-
plemented as part of the project repository RICBIS,
URL http://divcom.otago.ac.nz/infosci/kel/RICBIS.

6. REFERENCES

[1] D. Chaudhuri, C.A. Murthy and B.B. Chaud-
huri:”, A modified metric to compute distance.
Pattern Recognition 7(25) (1992), 667-677.

[2] D. Deng and N. Kasabov: ESOM: An algorithm
to evolve self-organizing maps from on-line data
streams. Proc. of IJCNN’2000 VI, Como, Italy
(2000), 3-8.

[3] B. Fritzke: A growing neural gas network learns
topologies, in Advances in neural information pro-
cessing Systems, D. Touretzky and T.K. Keen
eds., Cambridge MA: MIT Press (1995), 625-632.

[4] T. Kohonen: Self-Organizing Maps, second edi-
tion, Springer (1997).

[5] P. Heckbert: Color image quantization for frame
buffer display. Computer Graphics (SIGGRAPH)
16(3) (1982) 297-307.

[6] M. Gervautz and W. Purgathofer: A simple
method for color quantization: octree quantiza-
tion. in Graphics Gems, A. Glassner, ed., Aca-
demic Press, New York (1990), 287-293.

[7] T.M. Martinetz, S.G. Berkovich and K.J. Schul-
ten: “Neural-Gas” network for vector quantization
and its application to time-series prediction. IEEE
Trans. on Neural Networks 4 (1993), 558-569.

[8] J. Puzicha, M. Held, J. Ketterer, et al.: On Spatial
Quantization of Color Images. Technical Report
IAI-TR-98-1, University of Bonn (1998).

[9] O. Verevka and J.W. Buchanan: Local K-means
Algorithm for color image quantization. Proc. of
GI’95 Quebec, Canada (1995).

[10] X. Wu: Color quantization by dynamic pro-
gramming and principal analysis. ACM Trans. on
Graphics 11(4) (1992) 348-372.


