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Abstract

This paper introduces an extension of the existing theory of the Evolving Fuzzy Neural Network (EFuNN)
to also be a multi-module classifier. We call this proposed architecture multiEFuNN. The incorporation of
the Evolving Clustering Method (ECM) is used to partition the input space of the dataset and also determine
how many EFUNNs are to be used to classify it. The main advantages of this mult-module classifier is in
the area of on-line learning and recall of data where there are a growing number of classes with more data
coming. Preliminary results from experiments conducted using this architecture are compared to the existing
single EFuNN classifier and reported.

1.Introduction
1.1.The deficiencies of an individual EFuNN for classification problems

Although the EFuNN works well in on-line learning and recall environments [7, 9], some disadvantages have
been identified in its architecture and operation:

e When the number of classes are large and the vector sizes are large, the training time is dramatically in-
creased apraching the time of an off-line learning system.

e The accuracy of the EFuNN is significantly reduced under validation of the training dataset and recall with
the test dataset.

e The fuzzy rules that are extracted are much larger than and therefore it makes it difficult to interpret them.
Although rule aggregation methods can be applied [11], whilst the size of the input vectors remains the
same, the smaller the size of a rule is, the easier it is to interpret.

1.2.Neural Network Ensembles

When these problems have existed within the context of the traditional neural network models such as the Multi
Layer Perceptron (MLP), several solutions have been proposed using neural network ensembles [15, 13, 1]. These
solutions normally take the form of a collection of single neural networks connected in some fashion that work
together to produce more robust classifiers. To generate a single output class, another layer of the classification
system is added that finds a consensus between the individual neural networks.

However there are many different approaches that have been used to find consensus between these collective
neural networks. They are normally related back to the distribution and nature of the dataset used to train and
test the proposed architecture. Furthermore, selection of the number of individual neural networks to model the
problem is based on either an arbitrary number or derived from a statistical analysis of the dataset.

The knowledge built up over time using the on-line learning method of the EFuNN is governed by what data
has already been supplied to it from the environment. Therefore a statistical analysis of the dynamic data source
to derive a number of EFuNNs to model the problem does not comfortably fit into the Evolving Connectionist
System (ECOS) paradigm [4].

The paper suggests architecture for a multi-module classifier constructed from one or more EFuNNs that
addresses these issues. The Evolving Clustering Method (ECM) is used to dynamically select the number of
EFuNNs over time. These two methods are combined to form multi-module architecture that is dynamically
constructed as data is fed into it. We illustrate this approach on two case studies using horticulture datasets.



2.Evolving Fuzzy Neural Networks EFuNNs
2.1.A general description

EFuNNs are structures that evolve according to the ECOS principles [3]. The architecture is depicted in
Figure 1. EFuNNs adopt some known techniques from [2, 12, 14] and from other known NN techniques, but
here all nodes in an EFuNN are created during (possibly one-pass) learning. The nodes representing MF (fuzzy
label neurons) can be modified during learning. Each input variable is represented here by a group of spatially
arranged neurons to represent a fuzzy quantisation of this variable. For example, two neurons can be used to
represent “small” and “large” fuzzy values of a variable. Different membership functions (MF) can be attached
to these neurons (triangular, Gaussian, etc.). New neurons can evolve in this layer if, for a given input vector, the
corresponding variable value does not belong to any of the existing MF to a degree greater than a membership
threshold. A new fuzzy input neuron, or an input neuron, can be created during the adaptation phase of an EFuNN.
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Fi gure 1: A EFuNN structure of 2 inputs (input variables), 2 fuzzy linguistic terms for each variable (2 membership functions). The number
of the rule (case) nodes can vary. Two output membership functions are used for the output variable.

The EFuNN algorithm, for evolving EFuNNSs, has been first presented in [4]. A new rule node rn is created
and its input and output connection weights are set as follows: Wi(rn)=EX; W2(rn) = TE, where TE is the fuzzy
output vector for the current fuzzy input vector EX. In “one-of-n” EFuNNs, the maximum activation of a rule
node is propagated to the next level. Saturated linear functions are used as activation functions of the fuzzy output
neurons. In case of “many-of-n” mode, all the activation values of rule (case) nodes, that are above an activation
threshold of Athr, are propagated further in the connectionist structure.

2.2.The EFuNN learning algorithm

The EFuNN evolving algorithm is given as a procedure of consecutive steps [3, 4, 5, 6, 8]:

1. Initialise an EFuNN structure with a maximum number of neurons and zero-value connections. Initial
connections may be set through inserting fuzzy rules. If initially there are no rule (case) nodes connected
to the fuzzy input and fuzzy output neurons with non-zero connections, then connect the first node rn=1
to represent the first example EX=x/ and set its input Wl(rn) and output W2(rn) connection weights as
follows: <Connect a new rule node rn to represent an example EX >: Wi(rn)=EX;W2(rn) = TE, where TE
is the fuzzy output vector for the (fuzzy) example it EX.

2. WHILE <there are examples> DO
Enter the current example z; , EX being the fuzzy input vector (the vector of the degrees to which the input
values belong to the input membership functions). If there are new variables that appear in this example and
have not been used in previous examples, create new input and/or output nodes with their corresponding
membership functions as explained in [§]

3. Find the normalized fuzzy similarity between the new example EX (fuzzy input vector) and the already
stored patterns in the case nodes j=1,2..rn: Dj = sum (abs (EX - WI(j) )/ sum (WI1(j)) + sum (EX).

4. Find the activation of the rule (case) nodes j, j=1..rn. Here radial basis activation function, or a saturated
linear one, can be used on the Dj input values i.e. Al(j) = radbas(Dj), or Al(j) = satlin(1 - Dj). Previous
activation at the same layer can be taken into account [8]

5. Update the local parameters defined for the rule nodes, e.g. Short-Term Memory (STM), age, average
activation as pre-defined.



6. Find all case nodes j with an activation value Al(j) above a sensitivity threshold Sthr.

7. If there is no such case node, then <Connect a new rule node> using the procedure from step 1.
ELSE
Find the rule node indal that has the maximum activation value. (maxal).

(a) in case of “one-of-n”” EFuNNs, propagate the activation maxal of the rule node indal to the fuzzy
output neurons. Saturated linear functions are used as activation functions of the fuzzy output neurons:
A2 = satlin (Al(indal) * W2).

(b) in case of “many-of-n mode”, only the activation values of case nodes that are above an activation
threshold of Athr are propagated to the next neuronal layer.

8. Find the winning fuzzy output neuron inda2 and its activation maxa2.

9. Find the desired winning fuzzy output neuron indt2 and its value maxt2.
10. Calculate the fuzzy output error vector: Err = A2 - TE.
11. IF (inda?2 is different from indt2) or (abs(Err (inda2)) > Errthr) then <Connect/create a rule node>
12. Update: (a) the input, and (b) the output connections of rule node k=indal as follows:

(a) Dist = EX-WI(k); Wi(k) = WI(k) + Irl*Dist, where Ir] is the learning rate for the first layer;

(b) W2(k) = W2 (k) + Ir2*Err*maxal, where Ir2 is the learning rate for the second layer. If STM is used
update the feedback connections in the rule layer.

13. Prune rule nodes j and their connections that satisfy the following fuzzy pruning rule to a pre-defined level:
IF (node (j) is OLD) and (average activation Alav(j) is LOW) and (the density of the neighbouring area of
neurons is HIGH or MODERATE) and (the sum of the incoming or outgoing connection weights is LOW)
and (the neuron is NOT associated with the corresponding “yes” class output nodes (for classification
tasks only) THEN the probability of pruning node (j) is HIGH.

The above pruning rule is fuzzy and it requires that all fuzzy concepts such as OLD, HIGH, etc.,
are defined in advance. As a partial case, a fixed value can be used, e.g. a node is old if it has existed during
the evolving of a FuNN from more than 60 examples.

14. Aggregate rule nodes into layer clusters (prototype) nodes (see [12])
15. END of the WHILE loop and the algorithm

16. Repeat steps 2-15 for a second presentation of the same input data or for ECO training if needed.

2.3.The Evolving Clustering Method (ECM)

The ECM is an on-line, maximum distance-based clustering method that has been proposed to implement a
scatter partitioning of the input space for the purpose of creating fuzzy inference rules. This method has success-
fully been applied as a component of the Dynamic Evolving Neural Fuzzy Inference System (DENFIS) model.
This method is a fast, one-pass algorithm for a dynamic estimation of the number of clusters in a set of data and
for finding their current centre in the input data space. With this method, cluster centres are represented by the
evolved rule nodes. Refer to [17, 16] for a complete description of the algorithm

We can employ the ECM method not only select the number of clusters within our multi-module classifier but
also seed each individual EFuNN with the rules derived using this method.

3.Creating a multi-module classification architecture from the EFuNNs

3.1.Training the multiEFuNN

1. For each input vector z:
2. Apply the input vector 2 to the ECM method to determine the cluster to which the vector belongs to.

3. For each cluster do:



e Create an EFuNN and add the cluster centre as the first rule node.

e Train incementally the EFuNN on the data from the input dataset that are associated with the cluster
centre.

This procedure can be applied in an on-line or in an off-line mode.

3.2.Testing the multiEFuNN

1. For each instance of the test set do:

e Present the instance to each individual EFuNN in the mutiEFuNN.

e Select the output class that the majority of the EFuNNSs had a consensus on. The current method used
is to count the number of EFuNNSs that selected a particular output class and select the output class
that had the most number of EFuNNss select it.

4.Case studies using the mutltiEFuNN approach

The first case study is of a classification problem with image data. The second case study is of a classification
problem illustrated on a dataset of Near Infrared Spectrometer readings of clones of tree of the variety pinus
radiata.

4.1.Image data of damage to apples by pests in an orchard

96 full colour images of pest damage to apples were selected. Each image was processed using a wavelet
transform as described in [18, 10] and a 768 wavelet data vector produced. There were three types of pests that
could have caused damage to the apple in the image namely 1) Codling Moth, 2) Leafroller, and 3) Appleleaf
Curling Midge. 70 images were used as the training data set and 26 images used as the test data set.

The ECM processing found three distinct clusters in the dataset . Training the multiEFuNN using rule aggre-
gation, created a structure with a total of 52 rule nodes. On testing the multiEFuNN 20 examples were correctly
classified with 6 incorrectly classified producing a 77% accuracy. Results of the confusion matrix are shown in in
Table 1.

Testing Data | | | | | | | | |
12 EFuMMs: Parameters - 2 MFs, Er=0.1, Mo Pruning, Aggregation on, Radius=0.5, Normalisation and Fuzzification an.

Ch=Codling Moth, LR = Leafroller, ALM = Appleleaf Curling Midge

CM LR ALM Sum Percent
CM 1] 1 1 2 1]
LR 1 9 3 13 [5e]
ALM 1] a 11 11 100

20

Sum 1 100 15 26
Percent 1] a0 73 ¥

Table 1: multiEFuNN tested on image data

On testing the single EFuNN 10 images were correctly classified and 16 incorrectly classified producing an
accuracy of 38% as shown in Table 2.



Testing Data | | | | | | | | |
Single EFUNN: Parameters - 2 MFs, Er=0.1, Mo Pruning, Aggregation on, Radius=0.5 Marmalisation and Fuzzification on,

Chi=Codling Moth, LR = Leafraller, ALM = Appleleaf Curling Midge
CM LR ALM Sum Percent
CM 0 1 1 2 a
LR 4 5 3 13 35
ALM ] = 5 11 45
10
Sum 4 12 9 26
Percent ] 42 =] 38

Table 2: single EFuNN tested on image data

4.2.Pine wax data set

This dataset has been constructed from clones of pinus radiata needles. Initially waxes were solvent extracted
from each sample and analysed in a Fourier Transform Infrared Spectrometer. Each spectra was applied to a
wavelet transform producing a vector of 307 coefficients. There are twenty different clones with 50 samples of
each clone combining to form a dataset of 1000 samples. 800 samples were used for training and 200 samples
were used for testing.

The ECM method found thirteen distinct clusters. Training the multiEFuNN using rule aggregation created
a structure of 336 rules nodes. One testing the multiEFuNN 113 examples were correctly classified with 87
examples incorrectly classified producing an accuracy of 56%. Again results of the confusion matrix are shown
in Table 3. We compared this to a single EFuNN structure which created 42 rule nodes.

TestngData | | | | | | [ | | | | [ | [ [ | [ | [ | |
13 EFulMs . Parameters - 2 MFs, En=0.1, No Pruning, Aggregation on, Radius=0.5, Mormalisation and Fuzzification on.
I
Cl| 2|3 G| G5 |CRC7 G| COjCINC11] C12|C13| C14 | C15] C16 | C17] C18] C19 | C20 Sum |Percent
C1 5 1 2 g 53
2 6 3 d g7
C3 5 1 b g3
C4 2 4 3 ) 44
Ch 2 7 2 2 13 54
Ch 5 2 il 71
orj 5 1 5 g3
&} 2 2 5 2 11 45
9 2 pl 1 g B3
Cc10 7 211 1 2 13 54
C11 1 7 1 ) 75
C12 3 3 7 2 15 47
C13 2 2 5 213 1 15 33
C14 112 6 21 2 13 46
C15 1 212 6 2 13 46
C16 6 2 g 75
C17 1 1 [} 2 10 g0
C18 2 2 6 10 50
Cc19 1 5 5 g3
Cc20 111 1 112 5 11 45
113

Sum 10]10f1o0)10f 10 j1oj1op1ojtoj1oj10joj1ojmojioj10j1oj1of 10 |10 200
Percent] 50 |60 | 50 | 40 | 70 |s0f=0)s0]50)70) 70 70 | S0 60 | 60| BO | EOf 6O 50 | 50 a7

Table 3: multiEFuNN tested on pine data

On testing the single EFuNN 23 samples were correctly classified and 177 incorrectly classified producing an
accuracy of 11.5% as shown in Table 4.



TestingData | | [ | [ | | | | [ [ 1 1 1 [ [ [ | [ | [
Single EFUMM : Parameters - 2 MFs, En=0.1, Mo Pruning, Aggre ation on, Radiug=0.5, Naormalisation and Fuzzification on.
ci]cz]ca] cd] o5 |celce] ca] calciocit] c1z|ci3] 14| Cra] c16|caz| C18] c19] Cz0 Sum |Percent
C1 1 1 2 4 25
2 1 1 311111 1 1 1 1 12 8
3 1 1 1 1 1 1 1 7 14
C4 2 1 3 1 1 1 1 1 1 12 8
Ch 2 1 2 2 1 1 1 1 1 12 g
Ch 111 1 2 1 1 1 1 1 1 11 9
C7 1 1 1 111 1 1 1 g 13
C8 211 2 1 211 1 1 1 12 8
[ 111 211]2 111]1 1 1 1 1 1 15 7
C10 1 1 211 1 1 1 2 10 10
C11 1 1 111 1 1 1 7 14
C12 113 1 3 1 2 1 1 13 g
C13 1 1 2 21111 1 21 3 1 15 7
C14 1 11]1 1 1 2 2 9 11
C15 111 1 1 212 1 2 1 12 8
C16 1 1 1 1 2 5] 17
C17 1 11111 1 1 1 1 2 10 10
C18 2 1 1 2 112 9 22
C19 1 1 1 2 |3 40
C20 111 1 1 1 1 1 2 2 11 13
23
Sum 10101010 | 10 [1oj10j1op1op1o)0 10 f1of 1010101 10) 10 | 10 200
Percent] 10 | 10| 10| 10 | 10 [10]10j10p10p10j 1010 j10p 101010 ]10)20] 20 | 20 12

Table 4: single EFuNN tested on pine data

5.Conclusion

This paper suggests a novel architecture for an ensemble of EFuNNs consisting of a combination of the ECM
algorithm and the EFuNN. This architecture has been developed to address identified deficiences in the EFuNN
learning algorithm when it is attempting to classify datasets with a large number of classes. The results from the
initial experiments are encouraging and warrant further investigation into this architecture.

6.Conclusion

This paper suggests a novel architecture for an ensemble of EFuNNs consisting of a combination of the ECM
algorithm and the EFuNN. This architecture has been developed to address identified deficiences in the EFuNN
learning algorithm when it is attempting to classify datasets with a large number of classes. The results from the
initial experiments are encouraging and warrant further investigation into this architecture.
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