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Abstract. This paper introduces a new type of fuzzy
inference systems, denoted as DENFIS (dynamic
evolving neural-fuzzy system), for adaptive on-line
learning, and its application for dynamic time series
prediction. DENFIS evolve through incremental, hybrid
(supervised/unsupervised), learning and accommodate
new input data, including new features, new classes, etc.
through local element tuning. New fuzzy rules are created
and updated during the operation of the system. At each
time moment the output of DENFIS is calculated through
a fuzzy inference system based on m-most activated fuzzy
rules which are dynamically chosen from a fuzzy rule set.
An approach is proposed for a dynamic creation of a first-
order Takagi-Sugeno type fuzzy rule set for the DENFIS
model. The fuzzy rules can be inserted into DENFIS
before, or during its learning process, and the rules can
also be extracted from DENFIS during, or after its
learning process. An evolving clustering method (ECM),
which is employed in the DENFIS model, is also
introduced. It is demonstrated that DENFIS can
effectively learn complex temporal sequences in an
adaptive way and outperform some existing models.

1. Introduction

The complexity and dynamics of real-world problems,
especially in engineering and manufacturing, require
sophisticated methods and tools for building on-line,
adaptive intelligent systems. Such systems should be able
to grow as they operate, to update their knowledge and
refine the model through interaction with the
environment, that is the systems should have an ability of
on-line learning [1, 14, 11]. On-line learning is concerned
with learning data as the system operates (usually in a real
time) and the data might exist only for a short time.

Here we propose a model called dynamic evolving neural
fuzzy inference system (DENFIS). DENFIS is similar to
EFuNN (evolving fuzzy neural systems [12]) in some
principles. It inherits and develops EFuNN’s dynamic
features that makes DENFIS suitable for on-line adaptive
systems. The DENFIS model uses a local generalisation.
It was developed with the idea that, depending on the
position of the input vector in the input space, a fuzzy
inference system for calculating the output value is
formed dynamically bases on m fuzzy rules created after
the learning phase.
This paper is organised as follows: Section 2 gives a
description of the evolving clustering method (ECM)
which is used in the DENFIS model for partitioning the
input space. A comparison between ECM and some other
clustering methods, such as EFuNN [12], fuzzy C-means
[2], K-means [13] and subtractive clustering  method [4],
is also presented in this section. Section 3 introduces the
DENFIS model, and in section 4, DENFIS model is
applied to Mackay-Glass time series [3, 5] prediction
problem. Results are compared with the results obtained
with the use of resource-allocation network (RAN) [14],
evolving fuzzy-neural networks (EFuNNs), and evolving
self-organising maps (ESOM) [6]. Conclusions and
directions for further research are presented in the final
section.

The analysis of results indicates clearly the advantages of
DENFIS when used especially for on-line learning
applications. In addition to this, the evolving clustering
method, ECM, can perform well as an on-line, self-
organised generic clustering model. Rules can be inserted
or extracted from the model that makes it useful for many
knowledge engineering applications.



2. Evolving Cluster ing Method: ECM

Here, an evolving, on-line, maximum distance-based
clustering method, called evolving clustering method
(ECM), is proposed to implement a scatter partitioning of
the input space for the purpose of creating fuzzy inference
rules. This method is specially designed for DENFIS.

2.1 ECM: A Distance-based On-line Evolving
Cluster ing Method

Without any optimisation, ECM is a fast, one-pass
algorithm for a dynamic estimation of the number of
clusters in a set of data and for finding their current
centres in the input data space. It is a distance-based
clustering method. In this method, cluster centres are
represented as  the evolved rule nodes in an evolving
connectionist system [12]. In any cluster, the maximum
distance, MaxDist, between an example point and the
corresponding cluster centre, is less than a threshold
value, Dthr, that has been set as a clustering parameter
and would affect the number of clusters to be estimated.
In the clustering process, the data examples come from a
data stream and this process starts with an empty set of
clusters. When a new cluster is created, the cluster centre,
Cc, is defined and its cluster radius, Ru, is initially set to
zero. With more examples presented one after another,
some of the already created clusters may be updated
through changing their centres’  positions and increasing
their cluster radiuses. Which cluster will be updated for a
current input vector, and how much it will be changed,
depends on the position of the vector in the input space. A
cluster will not be updated any more when its cluster
radius, Ru, reaches the value that is equal to the threshold
value, Dthr.
Figure 2 shows a brief ECM clustering process in a 2-D
space. The  ECM algorithm is described below:

• Step 0: Create the first cluster C1 by simply taking
the position of the first example from the input data
stream as the first cluster centre Cc1, and setting a
value 0 for its cluster radius Ru1 (Figure1. a).

• Step 1: If all examples of the data stream have been
processed, the algorithm is finished. Else, the current
example, xi, is taken and the distances*, between this
example and all the n already created cluster centres
Ccj, Dij = || xi – Ccj ||,  j = 1, 2, … , n, are calculated.

• Step 2: If there is a cluster center (centers) Ccj, for j =
1, 2, … , n, so that the distance value, Dij = || xi – Ccj

|| is equal to, or less than, the radius Ruj, it is assumed
that the current example xi belongs to a cluster Cm

with the minimum of these distances:

Dim = || xi – Ccm ||  = min ( || xi – Ccj || ), where:

                Dij 
�

 Ruj, j = 1, 2, … , n,

In this case, neither a new cluster is created, nor any
existing cluster is updated (the cases of x4 and
x6 in Figure 1) and  the algorithm returns to Step 1,
else it goes  to the next step.

• Step 3: Find a cluster Ca (with a centre Cca and a
cluster radius Rua) from all n existing cluster centres
through calculating the values  Sij = Dij + Ruj, j = 1, 2,
… , n, and then select the cluster centre Cca with the
minimum value Sia:

Sia = Dia + Rua = min {  Sij } ,  j = 1, 2, …, n.

• Step 4: If Sia is greater than 2× Dthr, the example xi

does not belong to any existing clusters. A new
cluster is created in the same way as described in
Step 0 (the cases of x3 and x8 in Figure 1), and the
algorithm returns to Step 1.

• Step 5: If Sia is not greater than 2×Dthr, the cluster Ca

is updated by moving its centre, Cca, and increasing
the value of its radius, Rua. The updated radius Rua

new

is set to be equal to Sia / 2 and the new centre Cca
new

is located on the line connecting the new input vector
xi and the cluster centre Cca, so that the distance from
the new centre Cca

new to the point xi is equal to Rua
new

(the cases of x2,  x5,  x7 and x9 in Figure 1). The
algorithm returns to Step 1.

In this way, the maximum distance from any cluster
centre to the farthest example that belongs to this cluster,
is kept less than the threshold value, Dthr though the
algorithm does not keep any information of passed
examples.
*   In this paper, the distance, between vectors x and y, is
calculated as a normalised Euclidean distance, defined as
follows:

             q

|| x – y ||  =  ( ��� xi –  yi | 
2 ) ½ / q ½,  x, y  R q.  (1)

      i = 1



Figure 1.  A brief clustering process using ECM with
samples x1 to x9 in a 2-D space:

(a) The example x1 causes the ECM to create a new
cluster C1

0

(b) x2 :  update cluster C1
0 → C1

1

x3 :  create a new cluster C2
0

x4 :  do nothing
(c) x5 :  update cluster C1

1 → C1
2

x6 :  do nothing
x7 :  update cluster C2

0 → C2
1

x8 :  create a new cluster C3
0

(d) x9 :  update cluster C1
2 → C1

3

2.2.  Applying ECM on a bench mark data
set – on-line cluster ing of the gas-furnace
data

The gas-furnace time series is a well-known bench-mark
data set and has been frequently used by many researches
in the area of neural networks and fuzzy system for

control, prediction and adaptive learning [9]. It consists of
296 consecutive data pairs of methane at a time moment (t
– 4), and the carbon dioxide CO2 produced in a furnace at
a time moment (t – 1) as input variables, with the
produced CO2 at the moment (t) as an output variable. In
this case, the clustering simulation is implemented only
on the input space. For comparing the performance of
ECM and other traditional methods, the following five
clustering methods are applied to the same data set :

(a) ECM, evolving clustering method (on-line, one-pass)
(b) EFuNN [12], evolving fuzzy-neural network

clustering (on-line, one pass)
(c) SC [4], subtractive clustering (off-line, one pass)
(d) FCMC [2], fuzzy C-means clustering (off-line,

multiple iterations)
(e) KMC [14], K-means clustering (off-line, multiple

iterations)

Each of these methods partitions the data to a predefined
number of clusters NoC = 15. The maximum distance,
MaxD, between an example point and the corresponding
cluster centre, and the value of the objection function J
defined by Equation (2), are measured for comparison as
shown in Table 1.

         15

J  =   �����	� � xk – Ccj || ) ,  k = 1, 2, … 296.         (2)
      j = 1   k, xk Cj

We can see that the evolving clustering methods ECM
obtains the minimum value of MaxD, that indicates that
this method partitions the data set more uniformly than
the other methods. Looking at the results from a different
point of view, we can state that if all these clustering
methods obtain the same value of MaxD, ECM wpould
results in a less number of partitions. Considering that the
ECM clustering is a ‘one-pass’  on-line process, the
objection value J for the ECM simulation is acceptable as
it is comparable with the J value for the other methods.

Table 1. Clustering results of the Gas-Furnace data set
clustered into 15 clusters with the use of 5 different

methods

Methods MaxD Objective value: J

ECM (on-line, one-pass) 0.1 12.9

EFuNN (on-line, onepass) 0.11 13.3

SC (off-line, one-pass) 0.15 11.5

FCM (off-line learning) 0.14 12.4

KM (off-line learning) 0.12 11.8

3. DENFIS: A Dynamic Evolving
Neural-Fuzzy Inference System
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3.1 General pr inciples

The dynamic evolving neural-fuzzy inference system,
DENFIS, uses Takagi-Sugeno type of fuzzy inference
engine [15]. The inference engine in DENFIS is
composed of m fuzzy rules indicated as follows:

if x1 is Rm1 and x2 is Rm2 and … and xq is Rmq,
then y is fm(x1, x2, …, xq)

where “xj is Rij” , i = 1, 2, … m; j = 1, 2, … q, are m × q
fuzzy propositions as m antecedents for m fuzzy rules
respectively; xj, j = 1, 2, …, q, are antecedent variables
defined over universes of discourse Xj, j = 1, 2, …, q, and
Rij, i = 1, 2, … m; j = 1, 2, …, q, are fuzzy sets defined by
their fuzzy membership functions 
 Ai j: Xj → [0, 1], i = 1,
2, … m; j = 1, 2, …, q. In the consequent parts, y is a
consequent variable, and crisp linear functions fi, i = 1, 2,
… m, are employed.

In the DENFIS model, all fuzzy membership functions
are triangular type functions defined by three parameters
as given by the following equation:
�
x) = mf(x, a, b, c) =

max(min((x-a)/(b-a),(c-x)/c-b)),0).         (3)

where b is the value of the cluster centre on the x
dimension, a = b – d × Dthr, and c = b + d × Dthr, d =
1.2 ~ 2. The threshold value, Dthr, is a clustering
parameter.

For an input vector x0 = [x1
0 x2

0 … xq
0], the result of

inference, y0 (the output of the system) is calculated as the
weighted average of each rule’s output:

3.2. Learning in DENFIS

In DENFIS, the first-order Takagi-Sugeno  fuzzy rules are
employed. The linear functions in the consequence parts
are created and updated by linear least-square estimator
(LSE) [10] on the learning data. We can express the
function y as: y = 0 + 1x1 + 2x1 + … + qxq.

The following weighted least-square estimator formula

b  = (AT W A)-1 AT W y             (4)

is used to obtain b = [b0  b1  b2 … bq] 
T . The least-square

estimator (LSE) of   = [ 0  1  2 … q] 
T  is calculated

with on a learning data set that is composed of p data
pairs { ([xi1, xi2, …, xiq], yi), i = 1, 2, …, p} . Here W is the
weight matrix and its element, wjj,  are defined by 1–dj (dj

is the distance between the j-th example and the
corresponding cluster centre), j = 1, 2, … p.

We can rewrite equations (4) with the use of a recursive
LSE formula [8] as follows:

P  = (AT  A)-1,

b  = P AT W y,              (5)

In DENFIS, we use a weighted recursive LSE with a
forgetting factor defined as follows. Let the k-th row
vector of a matrix A is denoted as ak

T and the k-th element
of y is denoted as yk . Then b can be calculated iteratively
as follows:

      bk+1   =  bk + wk+1 Pk+1 ak+1 (yk+1 – ak+1
T bk ),

      Pk+1  =           Pk –                                         ;         (6)

where k = n, n+1, … p – 1; wk+1 is the weight of k+1-th
example defined by 1 – dk+1 (dk+1 is the distance between
the k+1-th example and the corresponding cluster centre);�  � � ����� � � � � � � �  ��� � � � � ����� � � ���  ! � � � " # � " $ ��� ��% � � ��� � 
0.8 and 1. The initial values of Pn and bn are calculated
using equation (5).

In  DENFIS, the rules are created and updated within the
input space partitioning obtained with the use of the
evolving clustering method (ECM) and equations (3) and
(6). If no rule insertion is applied as an initialisation
procedure, the following steps are used for creating the
first m fuzzy rules and calculating their function initial
values of P and b:

(1) Take the first n learning data pairs from the learning
data set.

(2) Apply on-line clustering using ECM to obtain m
cluster centres.

(3) For every cluster centre Ci, find m data points pi, i =
1, 2, … , m, which positions in the input space are the
closest to the centre

(4) To obtain a fuzzy rule that corresponds to a cluster,
create the antecedent of the fuzzy rule with the
position of the cluster centre and equation (3). Use
equation (5) to obtain the values of P and b from the
pi data pairs and create the function y as the
consequence of the fuzzy rule. The distances between

 . , 2, 1,   ;  2, 1,  ;)(R,where
1

0 qjmixw
q

j

jiji …=…== ∏
=

wk+1 Pk ak+1 ak+1
T Pk

––––––––––––––––&
ak+1

T Pk ak+1

 1
—



pi data points and the cluster centre are taken as the
weights in equation (5).

In the above steps, m, n and p are parameters of DENFIS
on-line learning process, and the value of p should be
greater than the number of input elements q, i.e. p > q.

With new data pairs entered into the system, new fuzzy
rules may be created and some existing rules may be
updated. A new fuzzy rule is created when a new cluster
centre is created by the ECM algorithm. The antecedent
of the new fuzzy rule is formed with the use of equation
(3). Alternatively, for a new data pair, existing fuzzy rules
are updated by using equation (6) if the distances from the
rule nodes that represent the rule antecedents and the
input vector in the input space are not greater than 2 ×
Dthr (the threshold value, which is a clustering
parameter). The distances between these rule nodes and
the data point in the input space are taken as the weights
in equation (6). Antecedents of fuzzy rules may be
changed by the ECM algorithm. A fuzzy rule then will
have a new antecedent calculated with the use of equation
(3).

Figure 2.  Two fuzzy rule groups depending on two input
vectors x1 and x2 in the 2D space

3.3 Dynamic Takagi-Sugeno Fuzzy Inference
in DENFIS

The DENFIS model uses a dynamic Takagi-Sugeno fuzzy
inference system. In addition to dynamically creating and
updating fuzzy rules during the learning process, the
fuzzy rules that participate in the inference for each new
input vector are dynamically chosen from the existing
fuzzy rule set depending on the position of the current
input vector in the input space. Figure 2 illustrates the
cases of input vectors x1 and x2 in a 2-D space. For x1,
fuzzy rules A, B and C are chosen to form an inference
system, while for input vector x2, fuzzy rules C, D and E
are chosen.

4 Time Ser ies Modelling and
Prediction with the DENFIS Model

In this section the DENFIS model is applied to model and
predict future values of a chaotic time series - the
Mackey-Glass (MG) data set [3, 5]. This set has been
used as a bench-mark in the areas of neural networks,
fuzzy systems and hybrid systems. The time series is
created with the use of the MG time-delay differential
equation defined  below:

  d x(t)           0.2 x(t – τ)
 –––––  =    –––––––––––   –  0.1x(t)    (7)
  d t              1 + x10(t –τ)

To obtain this time series values at integer points, the
fourth-order Runge-Kutta method was used to find the
numerical solution to the above MG equation. Here we
assume that the time step is 0.1, x(0) = 1.2, τ = 17 and x(t)
= 0 for t < 0. The task is to predict the value x(t + 85)
from the input vector [x(t – 18)  x(t – 12)  x(t – 6)  x(t)].
For the purpose of comparative analysis, we also applied
some existing on-line learning models on the same task.
These models are Neural gas [7], resource-allocating
network (RAN) [14], evolving self-organising maps
(ESOM) [6] and evolving fuzzy-neural network (EFuNN)
[12]. Here, we take the non-dimensional error index
(NDEI) [5], which is defined as the root mean square
error (RMSE) divided by the standard deviation of the
target series. The following experiments were conducted:
3000 data points, from t = 201 to 3200, are used as
learning data, and 500 data points, from t = 5001 to 5500,
are used as testing data. For each of the mentioned above
on-line models, the learning data is used in the learning
phase, and then testing data is used in the recall processes.
Table 2 lists the prediction results (NDEI for the recall
processes on testing data after on-line learning) and the
number of rules or units created (evolved) in each model.
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Table 2. Prediction results for several on-line learning
models on Mackey Glass test data after on-line learning

Fuzzy rules (DENFIS)

Methods Rule nodes (EFuNN) NDEI for

Units (others) testing data

Neural gas [7] 1000 0.062

RAN [14] 113 0.373

RAN [14] 24 0.17

ESOM [6] 114 0.32

ESOM [6] 1000 0.044

EfuNN[12] 193 0.401

EfuNN[12] 1125 0.094

DENFIS 58 0.276

DENFIS 883 0.042

DENFIS 883 0.033
with rule insertion

Depending on the parameter values different DENFIS
models can be obtained. A trade off between the number
of rules (rule nodes, data clusters) needs to be found for
any particular application. The same is valid for the
EFuNN and for the other models.
The property of DENFIS for rule insertion and rule
extraction is used in the last experiment as shown in table
2.  We first obtained a group of fuzzy rules using an off-
line method, which is similar to the way initial fuzzy rules
are obtained in section 3.1, with the use of the first half of
learning data (1500 examples). Then we inserted these
rules into a DENFIS model and trained it continuously in
an on-line mode on next half of the learning data (1500
examples). Then, we used the test data set in a recall
mode. The rule insertion procedure when used as an
initialisation improves the generalisation (e.g. reduces the
test error).

5 .  Conclusions and directions for
fur ther  research

This paper presents the principles of a new fuzzy
inference system, DENFIS for on-line knowledge-based,
adaptive learning systems. The DENFIS model is based
on  Takagi-Sugeno fuzzy rules and fuzzy inference. It
uses m highly activated fuzzy rules to dynamically
compose an inference system for calculating the output
values. The proposed method and system demonstrate
their superiority when compared with other on-line
learning models, such as Neural gas, RAN, EFuNN and

ESOM. DENFIS utilises a local generalisation method,
similar to EFuNN and CMAC neural network [1]. In
order to obtain good generalisation results it requires
more training data than the models which are based on
global generalisation. During its learning, the DENFIS
model forms areas in the input space with partitioned
regions. If there are not sufficient data examples received,
these areas may not cover the whole input space. In the
recall process DENFIS would produce a satisfactory
result if the new examples (test data) fall inside these
areas.

Further directions for research include: improvement of
the DENFIS on-line learning method; applying DENFIS
to real problems of adaptive process control, mobile robot
navigation, and adaptive classification
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