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1.  Introduction

Speech recognition field is one of the most challenging fields that have faced the

scientists from long time.  The complete solution is still far from reach. The efforts are

concentrated with huge funds from the companies to different related and supportive

approaches to reach the final goal. Then, apply it to the enormous applications who are

still waiting for the successful speech recognisers that are free from the  constraints of

speakers, vocabularies and environment. This task is not an easy one due to the

interdisciplinary  nature of the problem and as it requires speech perception to be implied

in the recogniser (Speech Understanding Systems) which in turn  strongly pointing to the

use of intelligence within the systems.

The bare techniques of recognisers (without intelligence) are following wide varieties of

approaches with  different claims of success by each group of authors who put their faith

in their favourite way. However, the sole technique that gain the acceptance of the

researchers to be the state of the art is Hidden Markov Model (HMM) technique.   HMM

is agreed to be the most promising one. It might be used successfully with other

techniques to improve the performance, such as hybridising the HMM with Artificial

Neural Networks (ANN) algorithms. This doesn’ t mean that the HMM is pure from

approximations that are far from reality,  such as the successive observation

independence,  but the results and the potential of this algorithm is reliable. The

modifications on HMM take the burden of releasing it from these poorly representative

approximations hopping for better results.
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In this report we are going to describe the back bone of the HMM technique with the

main outlines for successful  implementation. The representation and implementation of

HMM varies in one way or another but the main idea is the same as well as the results

and computation costs, it is a matter of preferences to choose one. Our preference here is

the one adopted by Ferguson [1] and Rabiner et al. [2]-[5].

In this report we will describe the Markov Chain, and then investigating a very popular

model in speech recognition field (the Left-Right HMM Topology). The mathematical

formulation needed to be implemented will be fully explained as they are crucial in

building the HMM. The prominent factors in the design will also be discussed. Finally we

conclude this report by some experimental results to see the practical outcomes of the

implemented model.

2. Markov Chains

The HMM algorithms are basically inspired from the more than 90 years old

mathematical model known as Markov Chain. To understand the behaviour of the

Markov Chain it is advisable to start with a simple real life example.

Let us consider a simple weather forecast problem and try to emulate a model that can

predict tomorrow's weather based on today’s condition.  In this example we have three

stationary all day weather, which could be sunny (S), cloudy (C), or Rainy (R). From the

history of the weather of the town under investigation we have the following table

(Table-1) of probabilities of having certain state of tomorrow's weather and being in

certain condition  today:

Tomorrow

Sunny(S) Cloudy(C) Rainy(R)

Sunny(S) .7 .2 .1

Cloudy(C) .05 .8 .15

Rainy(R) .15 .25 .6

Table-1  Weather expectation probabilities.

T
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In this case what we are looking for is the weather conditional probability

P(Tomorrow/Today). We realise that tomorrow's weather depends on today’s condition

as well as the previous several days, but we accept the assumption of tomorrow’s weather

depends only on today’s condition as it is in consistency with the first order Markov

chain. This assumption is greatly simplifying the problem of formulating the model even

in the actual speech recognition case and we will use it when we come to tackle the real

problem.

We refer to the weather conditions by  state q that are sampled at instant t  and  the

problem is to find  the probability of weather condition of tomorrow given today's

condition P(qt+1 /qt).

An acceptable approximation for n  instants history is :

 P(qt+1/qt , qt-1 , qt-2 , ….. , qt-n ) ≈ P(qt+1 /qt).

This is the first order Markov chain as the history is considered to be one instant only.

The finite state diagram of the weather probabilistic table is shown in Fig(1).

Let us now ask this question: Given today as  sunny (S) what is the probability that the

next following five days are  S , C , C , R  and  S, having the above model?

The answer resides in the following formula using first order Markov chain:

P(q1 = S, q2=S, q3=C, q4=C, q5=R, q6=S) =

          P(S).P(q2=S/q1=S). P(q3=C/q2=S). P(q4=C/q3=C). P(q5=R/q4=C). P(q6=S/q5=R)

      = 1 x 0.7 x 0.2 x 0.8 x 0.15 x 0.15

      =  0.00252

The initial probability P(S) = 1, as it is  assumed that today is sunny.

Fig. (1) Finite state representation of weather forecast problem.
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3.  Hidden Markov Model (HMM)
The particular problem presented in the previous section, the states were observable and

they represented the weather conditions (S, C,R).  They also represented the observation

sequence. This kind of model formulation is very limited  due to the need of observable

state sequence which is unknown in most problem. The more general case is by

considering the state sequence to be  hidden (unobservable) and the observations are

probabilistic functions of the state. This notion implies the double stochastic process.

More precisely, the  HMM is a probabilistic pattern matching technique in which the

observations are considered to be the output of stochastic process and consists of an

underlying Markov chain. It has two components: a finite state Markov chain and a finite

set of output probability distribution. The first fruitful investigation of HMM was done by

Baum et al. [6]-[8] in the late 60s and early 70s. The technique was applied to the speech

recognition field by Baker [9].

To understand the HMM we prefer to start with a simple example inspired from that

given by Rabiner et. al. [3]. Assume that we have two persons, one doing an experiment

and the other is an outside observer. Let us consider that we have N urns (states)

numbered from S1 to SN and in each urn there are M coloured balls (observations)

distributed in different proportions. Also we have a black bag belongs to each urn, each

bag contains 100 counters numbered by three numbers. These numbers are the current

urn number Si and the following two urns numbers Si+1 and Si+2 in probability proportions

of .8, .15, and .05 respectively. The counters of the bag belonging to the urn just before

the last  are carrying one of two numbers only; SN-1 and SN in probabilities of .9 and .1

respectively. We assume that the starting urn (state) is always urn1 (S1) and we end up in

urnN (SN). The last urn need no bag as we suggest to stay their when we reach it till the

end of the experiment.  We start the experiment at time t =1 by drawing a ball from urn1

and register the colour then return it back to the urn. Then draw a counter from the

corresponding urn bag. The expected possible numbers on the counters are: 1 (stay in

urn1), or 2 (move to the next urn), or 3 (jump to the third urn). We continue with the

same procedure of drawing a counter then a ball from the corresponding urn and

registering the ball colours till we reach state N and stay there till the end of the

experiment at instant  T.
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The outcome of this experiment is a series of coloured balls (observations) which could

be considered as a sequence of events governed by the probability distribution of  the

balls inside each urn and by the counters existing in each bag. The outside observer has

no idea about which urn a ball at any instant has drawn from (hidden states), what he

knows is only the observation sequence of the coloured balls(observations).

Several things could be concluded from this experiment :

1 – The starting urn is always urn1 (S1).

2 – The urn which has  been left can not be visited again (i.e. moving from left to right

direction).

3 – Movements are  either by one or two urns to the right.

4 – The last urn visited is always urnN (SN).

A chain of 5 urns (states)  is shown in Fig.( 2 ).

              π = {  1                   0                     0                   0                   0}

Fig.( 2)  States chain of the urn experiment using 5 urns.

Each numbered circle represents a state and the arrows shows

the states’  flow during the whole process.

1 2 3 4 5

a12 a23 a34 a45

a13 a24 a35

b1(y)
b1(r)
b1(g)
......
b1(b)

b2(y)
b2(r)
b2(g)
......
b2(b)

b3(y)
b3(r)
b3(g)
......
b3(b)

b4(y)
b4(r)
b4(g)
......
b4(b)

b5(y)
b5(r)
b5(g)
......
b5(b)

a11 a22 a33 a44 a55
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Fig.(2) shows the notations which we intent to use for the rest of the report and they are

defined as follows:

 aij  represents the probability of state transition (probability of being in state Sj

given state Si )

aij = P(qt+1=Sj / qt=Si)      ..................(1)

 bj(wk)   is the wk symbol (ball colour)  probability distribution in a state Sj

 w is the alphabet and  k  is the number of symbols in this alphabet.

π = { 1  0  0  0  0  }  is the  initial state probability distribution.

In this special case of states’ chain topology  { 1i for              1

Ni1 for              01 )(
=

≤<
=== ii SqPπ

The model is completely defined by these three sets of parameters a, b, and π and the

model of N states and M observations can be referred to by  :

λ = (A , B , π ) ..................(2)

where A = { aij} , B = { bj(wk)}    1 ≤ i , j ≤N      and  1≤ k ≤ M.

The model that we have been described is a special type of HMM which is normally used

in speech recognition. It is called  Left-Right  HMM as derived from its way of behaviour

and its topology (moving from left to right during state transition). The reason for using

the L-R  topology of HMM is due to its inherent structure  which can   model the

temporal flow of speech signal over time.

It might be not very obvious how the HMM related to the speech signal modelling[10].

This could be envisaged by looking at the speech production mechanism. Speech is

produced by the slow movements of the articulatory organ. The speech articulators taking

up a sequence of different positions and consequently producing the stream of sounds that

form the speech signal. Each articulatory position could be represented by a state of

different and varying duration. Accordingly, the transition between different articulatory

positions (states) can be represented by A = { aij} . The observations in this case are the

sounds produced in each position and due to the variations in the evolution of each sound

this can be also represented by a probabilistic function B = { bj(wk)} .

The correspondence between the model parameters and what they represent in the speech

signal is not unique and could be viewed differently. The important thing is to envisage

the physical meanings of the states and observations in each view.
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4.  HMM Constraints for Speech Recognition Systems
HMM could have different constraints depending on the nature of the problem that

wanted to be modelled. The main constraints needed in the implementation of speech

recognisers can be summarised in the following assumptions[11]:

1 –   First order Markov chain :

In this assumption the probability of transition to a state depends only on the current state

P(qt+1=Sj/qt=Si , qt-1=Sk , qt-2=Sw , ….. , qt-n=Sz ) ≈ P(qt+1=Sj /qt=Si)    ..................(3)

2 – Stationary states’  transition

This assumption  testifies that the states transition are time independent, and accordingly

we will have:

 aij = P(qt+1=Sj / qt=Si)   for all  t                                                ..................(4)

3 – Observations independence:

This assumption presumes that the observations come out within certain state depend

only on the underlying Markov chain of the states, without considering the effect of the

occurrence of the other  observations. Although this assumption is a poor one and diviates

from reality but it works fine in modelling speech signal.

This assumption implies that:

P(Ot/Ot-1, Ot-2, .....,Ot-p , qt , qt-1 , qt-2 ,.... qt-p ) = P(Ot/ qt , qt-1 , qt-2 ,.... qt-p)  ........(5)

where p represents the considered history of the observation sequence.

Then we will have :

bj(Ot) = P(Ot/qt=j)    ..................(6)

4 – Left-Right topology constraint:

aij  =  0   for all   j > i+2  and  j  < i                     ..................(7)

{ 1i for              1

Ni1 for              01 )(
=

≤<
=== ii SqPπ                     ..................(8)

( i.e. π =  { 1  0  ..........  0  } )
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5 –  Probability constraints:

Our problem is dealing with probabilities then we have the following extra constraints:

∫

∑

∑
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If the observations are discrete then the last integration will be a summation.

5.  The principal  cases of HMM
There are three main cases to be dealt with  to formulate a successful HMM. These are:

Case 1: Evaluation
Given:

�
 a model λ = (A , B , π ) ready to be used.

�
 testing observation sequence O = O1 , O2 , O3 ,.........., OT-1 , OT .

Action:
�

 compute P(O/λ) ; the probability of  the observation sequence given the model.

Case 2: Decoding

Given:
�

 a model λ = (A , B , π ) ready to be used.
�

 testing or training observation sequence O = O1 , O2 , O3 ,.........., OT-1 , OT .

Action:
�

 track the optimum state sequence Q = q1 , q2 , q3 ,........., qT-1 , qT that most likely

produce the given observations, using the given model.

Case 3: Training

Given :
�

 a model λ = (A , B , π ) ready to be used.
�

 training observation sequence Ok = O1
k
 , O2

k
 , O3

k
 ,.........., OT-1

k
 , OT

k

      where k is the number of examples for training the model.

Action:
�

 Tune the model parameters to maximise P(O/ λ).
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Case 1 is an evaluation procedure as we are seeking to find the probability of producing

given observation O by a given model λ. This could be used to find out  the best model

among many who  produces the given observation.

Case 2 is a decoding procedure to detect or unhide the state sequence of a given

observation. The observations could be training  examples if we want to study the

behaviour of each state from different aspects, such as states’  duration or spectral

characteristics of each state. Some techniques utilise the state duration in their  evaluation

procedure and in this case the observation will be the test example to detect the states’

duration.

Case 3 is the training procedure to optimise the model parameters to obtain the best

model that represent certain set of observations belonging to one spoken entity.

The way is paved now to tackle an important goal of our task, namely derivation of the

mathematical formulas to the three previous cases.

5–1.  Case 1 Formulation

Let us take a simple case then generalise to the complete one. Consider that we have 3

states and 5 observations in a process and we want to find P(O/λ). To explain the whole

flow of the process the trellis diagram  of Fig.(3) is of big help. The state at each instant is

represented by a  small circle, and the arrows represent the state transitions.

1 2

Observations Instants

3 4 5

State- 3

State- 2

State- 1

States’ Transitions

Fig.(3) Trellis Diagram of 3 States, and 5 Instants L-R Model
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From Fig(3) we can see all the possibilities that the events might take during the whole

process. The dotted lines show one possibility in which  P(O1/Q1,λ) is computed by:

4a)........(1..........                 .........)/,(

4)........(1..........                             )/(),/()/,(

3a)........(1..........  .....)/(
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This procedure has to be done for all possible states’  sequences (paths). The superscripts

of O and Q indicate the possibility number. Then the probabilities of all the paths has to

be summed to get the overall probability of how likely the model produces the given

observation sequence.
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∑
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where p is the number of possible paths.

The total number of possibilities increases exponentially with the increasing number of

states and observation instances. The Left-Right topology is substantially reducing the

number of possible paths over the full connection topology (ergodic models in which

every state could be reached from any other state at any instant).

Further reduction in the computational cost can be achieved by the Forward-Backward

Procedure[12]. This technique greatly reduces the computational cost with simple

iterative mathematical formulas. Actually it is a compound procedure composed of

forward procedure and backward procedure. In the evaluation case we only need one of

them  and  the forward procedure will be our preference.
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5-1.1 Forward   Procedure
Initially consider a new forward probability variable  αt(i), at instant t and state i ,  has the

following formula:

)/,,.......,,,()( 321 λα ittt SqOOOOPi ==      .............(16)

 This probability function could be solved for N states and T observations iteratively:

1 – Initialisation

NiObi ii ≤≤= 1)(.)( 11 πα          ..................(17)

2 – Induction

Nj

TtObaij tj

N

i
ijtt

≤≤

−≤≤



= +

=
+ ∑

1

11)()()( 1
1

1 αα
..........(18)

Fig.(4) shows the induction step graphically. It is clear from this figure how state Sj at

instant t+1  reached from N possible states at instant t.

3 – Termination

)()/(
1

iOP
N

i
T∑

=

= αλ      ..................(19)

This stage is just a sum of all the values of the probability function αT(i) over all the

states at instant T. This sum will represent the probability of the given observations to be

driven from the given model. That is how likely the given model produces the given

observations. The proof of the termination formula will be given later on.



13

5-1.2  Backward Procedure
This procedure is similar to the forward procedure but it takes into consideration the state

flow as if in backward direction from the last observation entity, instant T, till the first

one, instant 1. That means that the access to any state will be from the states that are

coming just after that state in time and as shown in Fig.(5).

To formulate this approach let us consider the backward probability function βt(i)  which

can be defined  as:

.),/..,,.........,()( 21 λβ itTttt SqOOOPi = = ++         ..................(20)

In analogy to the forward procedure we can solve for βt(i) in the following two steps:

1 -  Initialisation:

     .1,1)( NiiT ≤≤ = β            ..................(21)

These initial values for β’ s of all states at instant  T  is arbitrarily selected.

Sj

S1

S2

S3

SN

t+1t

)(itα )(1 jt+α

Fig.(4) Forward Probability Function
Rpresentation

a1j

a2j

a3j

aNj
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2 – Induction

      NiTTtjObai
N

j
ttjijt ≤≤−−== ∑

=
++ 1,1,......,2,1,)().(.)(

1
11 ββ   ...........(22)

Equation (22) can be well understood with help of Fig.(5). We are still looking from left

to right in calculating the partial probability function β (from t to T)

Fig.(5) shows this behaviour clearly. Even we are still looking from left to right in

calculating the partial probability function (from t to T). However, at each instant we

consider that we have β at t+1 and we need to calculate it at time t;  as if we are moving

backward in time.

5-1.3 Computing P(O/λ) from Forward and Backward Probability Functions
The probability function of the model P(O/λ) can be computed from both α and β

functions. Fig.(6) demonstrates this computation graphically. At instant  t,  the event of

a i1

a
i3

a i2

a
iN

Si

S1

S2

S3

SN

t t+1

)(itβ )(1 jt+β

Fig.(5) Backward Probability Function
Rpresentation
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being in state qi and moving to state qj at instant  t+1  is calculated by  αt(i) which

accounts for the path termination in state qi. The transition to state qj is weighted by the

product  aij . bj(Ot+1). At instant  t+1  the event of observation sequence to the instant T

starting from state Sj, while being  at state Si during  instant t,  is represented by the

backward probability function βt+1(j).

Then  P(O/λ) is directly concluded to be :

....(23)....................  )().(.).()/(
1 1

11∑∑
= =

++=
N

i

N

j
ttjijt jObaiOP βαλ

Substitute (22) in (23) to get:

..(23a)....................                               )()()|(
1

∑
=

=
N

i
tt iiOP βαλ

Sj

)(1 jt+β

Fig.(6) Forward - Backward Probability Functions
to find P(O/  )

aj1

aj2

aj3

ajN

λ

Si

S1

S2

S3

SN

t

)(itα

a1i

a2i

a3i

aNi

S1

S2

S3

SN

aij.bj(Ot+1)

t+1t-1 t+2
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5-1.4 Proof of Termination Formula in Forward Probability Function
From (18) we have :

Nj

TtObaij tj

N

i
ijtt

≤≤

−≤≤



= +

=
+ ∑

1

11)()()( 1
1

1 αα
..........(18)

 Let    t = T-1 and substitute it in (18) to get:

)18...(....................       )(.).()(

)18...(....................    )(.).()(

1
1

1
1

bObaij

aObaij

Tj

N

i
ijTT

Tj

N

i
ijTT

∑

∑

=
−

=
−

=





=

αα

αα

From (23) we have:

....(23)....................  )().(.).()/(
1 1

11∑∑
= =

++=
N

i

N

j
ttjijt jObaiOP βαλ

Let   t = T-1 in  (23) to get:

....(23a)....................  )().(.).()/(
1 1

1∑∑
= =

−=
N

i

N

j
TTjijT jObaiOP βαλ

From (21) we have:

 .1,1)( NiiT ≤≤ = β

Substitute for βT(i) in (23a) and rearrange the equation to get:

The term inside the square brackets is the same as that in (18b), substitute it and you will

get the final needed formula:

)()/(
1

iOP
N

i
T∑

=

= αλ ........................(19)

....(24)....................  )(.).()/(
1 1

1∑ ∑
= =

− 



=

N

j

N

i
TjijT ObaiOP αλ
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5-2. Case 2 Formulation

This case deals with the uncovering the hidden states of the model given the observation

sequence and the model. This means that we have to find the optimal state sequence

Q= ( q1 , q2 , q3 ,....., qT-1 , qT )  associated with the given observation sequence

O = (O1 , O2 , O3 ,........., OT-1 , OT )  presented to the model   λ = (A , B , π ). The criteria

of optimality her is to search for a single best state sequence through modified dynamic

programming technique called Viterbi Algorithm[13]. We need to maximise P(Q/O,λ) to

detect the best state sequence. This could be achieved via maximising the joint

probability function P(Q,O/λ) using to the Baysian Rule which states that:

(25)....................  
)/(

)/,(
),/(

λ
λλ

OP

OQP
OQP =

The denominator has nothing to share in maximising P(Q/O,λ) as it doesn’ t include the

state sequence factor Q. To go through the Viterbi Algorithm method let us define the

probability  quantity δt(i) which represents the maximum probability along the best

probable state sequence path of a given observation sequence after  t instants and being in

state i. This quantity can be defined mathematically  by:

)26.(..........]/........,,.......[max)( 21121
,......,, 121

λδ titt
qqq

t OOOSqqqqPi
t

== −
−

The best state sequence is backtracked by another function  ψt(j). The complete algorithm

can be described by the following steps:

Step 1: Initialisation

.(28)....................                                                     0)(

27).........(.......... ..         Ni1                ,  )()(

1

11

=
≤≤=

i

Obi ii

ψ
πδ

Step 2: Recursion

......(30)..........    Nj1   ,  Tt2     ,       ])([max arg)(

.....(29)..........    Nj1   ,  Tt2     ,  )(])([max)(

1
1

1
1

≤≤≤≤=

≤≤≤≤=

−≤≤

−≤≤

ijt
Ni

t

tjijt
Ni

t

aij

Obaij

δψ

δδ
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Step 3: Termination

( )
( )32......................                                      )]([max arg

31......................                                           )]([max

T
Ni1

*

1

*

iq

iP

T

T
Ni

δ

δ

≤≤

≤≤

=

=

Step 4: Backtracking

1t 1-T   ,  )( *
11

* ≥≥= ++ ttt qq ψ

It is clear that (29) of Viterbi recursion is similar to (18) of forward induction, except

the interchange of summation by maximisation. One thing could be noted here is that

Viterbi Algorithm can also be used to calculate the P(O/λ) approximately by

considering the use of  P* instead. This is acceptable as it gives comparable results and

can be justified through the modified equation (15) to do the summation on the most

probable state sequence, which has the major weight among all the possible states’

paths.

5-3.  Case 3 Formulation

This case is dealing with the training issue which is the most difficult one in all the three

cases. The task of this case is to adjust the model parameters, (A ,B,π), according to a

certain optimality criteria. There are many techniques to achieve the task of this case

and we will describe here the well known Baum-Welch Algorithm, called also Forward

–Backward Algorithm. It is an iterative method to reach the local maximas of the

probability function P(O/λ). Each time the model parameters are adjusted to get a new

model which is proved by Baum et. al. that the new model is either better or reach a

critical condition at which the iteration has to be stopped as the local minima has

reached. The model is always converge but the global maximisation can not be assured.

Fig.(7) shows the non-linear optimisation of this problem and how the global optimality

seeking is difficult to locate and greatly depending on the initial point of search.
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To go through the training procedure let us first define  a posteriori  probability function

γt(i) , the probability of being in state i at instant t, given the observation sequence O and

the model λ.  as:
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Let us define another probability function ξt(i,j) , the probability of being in state i at

instant  t  and going to state j at instant  t+1, given the model λ and the observation

sequence  O.

ξt(i,j) can be mathematically defined as:
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The right hand side of (40) can be represented by the forward  α  and backward β

functions , with the help of Fig.(6), as follows: 
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Now, if γt(i) is summed over all instants (excluding instant T) we get the expected

number of times that state Si has left, or the  number of times this state has been visited

over all instants. On the other hand if we sum ξt(i,j) over all instants (excluding T) we

will get the expected number of  transitions that have been made from i to j.

From the behaviour of γt(i) and  ξt(i,j) the following re-estimations of the model

parameters could be deduced:
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After the re-estimation of the model parameters we will have another model 
^

λ  which is

more likely, than model λ, producing observation sequence O. This means that
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This process of re-estimation can be continued till no improvement in P(O/λ) is

reached, that is we reach local maxima.
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6.  Discrete Hidden Markov Model (DHMM)
HMM modelling methods applied so far are for process that has discrete observation

sequence.  These observations could be the outcome indices of Vector Quantization

technique (VQ) [14],[15]. VQ is a technique of clustering time series signal, in our case

speech signal,  into certain number of bins (clusters). Each bin  represents the data

belong to a certain population with similar (or minimum difference) spectral

characteristics. The centre of gravity of each bin is assigned to a certain index and

considered as the representative of the cluster population in any process on the signal.

The long sequence of speech samples will be represented by stream of indices

representing frames of different window lengths. Hence, VQ is considered as a process

of redundancy removal, which minimises the number of bits required to identify each

frame of speech signal. VQ was initially used successfully with Dynamic Time Warping

(DTW) to recognise spoken words, and then proved to be successful with HMM as well.

The role of VQ in HMM is to prepare discrete symbols from a finite alphabet. Each

speech input will be quantized by the VQ reference bins. Each quantized input will be

then considered as an observation. There are many other methods to represent the

observations which are not  belong to the task of this report, but a very good reference

to recommend is [16].

The type of HMM that models speech signals based on  VQ technique to produce the

observations is called Discrete Hidden Markov Model (DHMM). It is efficient and

reliable technique  which has comparable results to the more computational DTW

technique. In addition the phones, phonemes, and subwords could be modelled easily

with DHMM while it is very difficult with DTW as the later needs to detect the

segments boundary for comparison. However, VQ is responsible for loosing some

information from the speech signal even when we try to increase the codewords. This

lose is due to the quantization error (distortion). This distortion can be reduced by

increasing the number of codewords in the codbook but cannot be eliminated.
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7.   Continuous Hidden Markov Model (CHMM)
It is a more sophisticated methodology to develop an improved HMM model of the

speech signal. This method, even it needs more memory than DHMM to represent the

model parameters but it is not suffering from the distortion problem. On the other hand

it needs more deliberate techniques to initialise the model as it might diverge easily with

randomly selected initial parameters.

In CHMM the model parameters are also π, A, and B, but they are represented

differently. The probability density function (pdf) of certain observations O being in a

state is considered to be of Gaussian Distribution (other distributions also valid).   Let us

consider it to be bi(O)  and has the following general form:
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where:

cjm : is the m-th mixture gain coefficient in state i.

ℵ  : is the pdf distribution which is considered to be Gaussian in our case.

 µim : is the mean of the m-th mixture in state i.

Uim : is the covariance of the m-th mixture in state i.

O    :  is the observation sequence of the feature vectors of dimension d.

M   : is the number of mixtures used.

N    : is the number of states.

The following constraints has to be fulfilled to insure the consistency of the model

parameters estimation.
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 The pdf  of the observations will be of the form:
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where  prime ( ’ ) superscript here is referring to the transpose of matrix.

The covariance matrix in (51) could be simplified by using diagonal matrix with

elements representing the variance of each mixture. This approximation greatly reduces

the computational cost in spite of the necessity to increase the number of mixtures to

make it work better.

The reestimation formulas in multimixture continuous density HMM will be as follows:
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where γt(i,m)  is the probability of being in state  i  with m-th mixture at instant t. It is

the same as  γt(i) when m=1.
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The following equation represents the modified version of (38) to make it suitable for

multimixture case:

For the initial state and the state transition probability distributions they are the same as

for DHMM as in (45) and (46).

8.   Mixture Density Components Estimation using Maximum
Likelihood (ML):
The ML estimation is an optimisation technique that can be used efficiently in

estimating the different component of multimixture models. We are not going through

the mathematical derivations of the ML but we only describe the method to be used in

our task.

Let us first make some definitions:

bi(Ot)  : probability of being in state i given observation sequence Ot.

cim       : probability of being in state i with mixture m (gain coefficient).

bim(Ot) : probability of being in state i with mixture m and given  Ot.

Φ(wim|Ot) : probability function of being in a mixture class wim given Ot in state i.

Ti    : is the toatal number of observations in state i .

Tim  : is the number of observations in state i with mixture m.

N     : number of states.

M    : number of mixtures in each state.
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Now we  are ready to implement the algorithm through applying the following steps:

1 – Take   several versions of observations of certain word say digit zero spoken several

times by many speakers.

2 – Apply Veterbi algorithm to detect the states of each version of the spoken word.

3 – Put the whole observations belonging to each state from all the versions of the

spoken word into  separate cells. Now we have N cells and each one represents the

population of certain state derived from several observation sequences of the same

word.

4 – Apply vector quantization technique to split the population of each cell into M

mixtures and getting wM classes within each state.

5 – Using the well known statistical methods to find the mean µim and the covariance

Uim of each class. The gain factor cim can be calculated by:

6 –  Calculate Φ(wim|Ot) from the following formula:
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8 – Compute the next estimate of  using the formula:
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      ELSE    Make the new value of Φ(wim|Ot) equal the newly predicted one.
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where  ε is a very small threshold value.

9.  Implementation Factors
There are several factors that may have in one way or another effects on the

implemented model. We are going to describe the more important factors and how to

reduce their effects.

9-1.  Scaling Factor:

The scaling factor is a major issue in implementing the HMM because of  the underflow

that may easily occur when calculating the probability function P(O/λ). This is due to

the long sequence of multiplications of less than one values probability functions. For

instance in using the forward procedure to calculate αi(t) in (18) we can see easily how

many multiplication of probability functions we have to make to calculate any spoken

entities.

The straight forward technique of scaling is started by defining the scaling coefficient

c(t)[2]:
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Now let us compute αi(t) from (18) and then multiply it by c(t). This will lead to :
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Same thing can be done with βt(i) to form the product  c(t) βt(i). The re-estimation

formula of  (46) can be rewritten again to include the scaling to become:
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which can be factored out and retain the original equation of (46). This scaling

technique can also be applied successfully to (47).

The scaling coefficients can be used to find   log P(O/λ) by the following method:

Consider that we have   ct for  t=1,2,3,.......,T and we obtained CT from (68), then from

(65) we will get:
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Equation (72) shows that log(P(O|λ) can be computed but not P(O|λ as the later will be

out of the dynamic range of the computer.

Viterbi Algorithm also shows itself her again to be successful technique in calculating

log(P(O|λ)  even without bothering about scaling problem.

To follow Viterbi Algorithm let us assume that:
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9-2.  Multiple Observation Sequence factor [2]

The main disadvantage of Left-Right topology of HMM is that the observations can not

be concatenated into one string and submitted to the model for training. This is due to

the one direction left-right move and once a state left we can not go back to it.

Accordingly the model will stuck in the last state after passing the first observation

sequence and no modelling possible for the other sequences.
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The model has to be modified to accept multiple sequence submission to allow the

model to be trained by many versions of the same spoken entity.

Let us define the set of observations of the k  multiples of observations of a spoken

entity by:
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The goal of HMM is to maximise  P(O/λ) by adjusting the parameters of λ. In multiple

observations P(O/λ) is defined by:
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The multiple observation sequence implication can be done by normalising the

numerators and denominators (46) and (47) by Pk to get:
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The same procedure of normalisation could be used in the case of continuous density

distribution to find the  parameters of the model.
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9-3.  Initial Model Parameters Estimate factor:

When we initially try to build an HMM model we normally have nothing but streams of

observations. If we are fortunate then we have parameters from old models, which is not

normally the case. To put the initial model parameters, we have to be careful as one

might easily slip into divergence  with bad model initialisation. The problem with

discrete observations HMM is less effective as we can initialise the model parameters

with random values, but taking into consideration the constraints in  (9),(10), and (11).

In continuous density HMM (CHMM) the problem is more serious and the parameters

should be judiciously selected to get rid of the divergence fate. Let us take the problem

in Left-Right HMM Topology and suggest a safe way to follow.

The parameters that constitute any model λ are π, A, and B.  For π it is straight forward

and known to be always  ........0] 0  0  0  0  1[=π , of course this is with Left-Right

topology models. For the states’  transition parameters A=[aij] the choice is also flexible

and if we have the topology of Fig(2) then A will be the following matrix for seven

states model:
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The values of aij  can be selected as :

aii = 0.94 ,  ai,i+1 = 0.04,  and ai,i+2 = 0.02    for  51 ≤≤ i

aii = 0.97 ,  ai,i+1 = 0.03 for    i = 6

aii = 1 for    i = 7

These values deduced from the fact that the observations tends to stay in their current

state and have less tendency to move to the next state and more less tendency to jump

the next state. After optimisation we can see that the observations wanted to stay in their
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current state is true, this imply that aii  >  ai,i+1 and aii  >  ai,i+2. However, the observations

might prefer to stay in the next state or jump it, i.e. ai,i+1  >  ai,i+2  or ai,i+1  <  ai,i+2.

A more precise way is by using initial uniform segmentation of each utterance into the

proposed number of states and apply the following algorithm[11]:

The suitable  aij (in programming we use the notation a(i,j)) initialisation is found to be

dependant on states’  duration. In this case the average duration D of each state is

estimated by :
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where K is the number of versions of an utterances in the training set.

 N is the number of states

|Xn | is the length of the n_th  utterance in the training observations.

Then, the transition matrix elements a(i,j) are estimated  by:
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The formula is inferred from the fact that if there are K elements of duration D in each

state then there will be only one transition to the next state.

What is left now is the most problematic parameters  B = { bi(Ot)} , they have to be very

well initialised. In our case we suggest the following steps:
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1 - Uniformly segment the utterances of each spoken entity by N states.

2 - Take the mean and the covariance of each segment.

3 – Consider the observations follow Gaussian density probability distribution.

After the previous suggestions for initialising the model parameters we can apply

Viterbi Algorithm to extract the optimum parameters.

The technique described in this section is for  unimodal (single mixture) distribution. To

extend it to multimodal (multimixture) distribution the followings are suggested:

1 – Apply the same procedures for π, A, B used in unimodal distribution.

2 – After uncovering the real state sequence from Viterbi Algorithm, aggregate the

observations, of all the versions of the spoken entity, belonging to each state in separate

cells. 

3 – Use Vector quantization technique to cluster each cell into several mixtures.

4 – Optimise the clustering by any known statistical technique; such as maximum

likelihood and  expectation maximisation.

5 – Find the mean and the covariance of each cluster (mixture)

The model is now complete.

9-4.  Number of States Factor

One thing left which has to be decided from the initial instant of designing the model. It

is the optimum number of states needed to model the problem. There is no straight

forward answer to this requirement. The number of states is decided empirically

depending on the nature of the problem. Some times previous experience about the

problem is necessary or one has to suggest different number of states then select the

one who gives the best results. Also, if we could define the physical meaning of the

states we can limit the number of states. In isolated words recogniser the number of

states are suggested to be between 4 and 12. This is justified by assuming that the states

are representing the phonemes or the phones of the utterances. In phonemes modelling

the number of states are mostly assumed to be 3, as the phonemes could be segmented

into initial, stable, and final states.
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9-5. State Duration Incorporation:

The basic HMM does not take into consideration the state duration factor in its

modelling procedure. This is considered as major weakness in the model since the

duration carry important information about the temporal structure of the speech signal.

Our duty now is to find some useful way to include the duration within the conventional

model. Let us first ask this question:

What is the probability of being in a state for τ instants?

The answer resides in finding the probability density function pi(τ) which has the

definition of :

 pi(τ) = P(q1=Si, q2=Si, q3=Si,.............., qτ=Si, qτ+1=Sj, .......)   ..............(81)

         =πi (aii)
τ-1(1-aii)   ..............(81a)

Now we can calculate the expected duration in state i by the following equation:
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Now, if we return to our first example about weather forecast and ask the question:

What is the average consecutive sunny, cloudy, and rainy days?

The answer is by applying (83) using the values of  aii from Table-1 to get :
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Unfortunately this duration distribution is meaningless when we try to apply it to speech

recognition problems. Therefore, another way to incorporate the duration has to be

considered. One option is to include the state duration in the model formulas, this needs

reformulating the whole model parameters[4]. The model works perfectly in this case

but the problem now is with the vast increase in computational cost that makes the use

of this new model impractical.

The other option is to use heuristic technique to include the duration to obtain

comparable performance as the correct theoretical duration inclusion with very low

computational and storage costs. The state duration probability function pj(τ) is

estimated during the model training case and may be defined as:

pj(τ) : is the probability of being in state j for τ  duration.

The duration probability density function is considered to be Gaussian with 3 to 5

mixtures.

During recognition  the state duration are calculated from the backtracking procedure in

Viterbi Algorithm. Then, the log likelihood value is incremented by the log of the

duration probability value as below:

 ( )84......................       )](log[)]|,(log[)]|,(ˆlog[
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 where  η is a scaling factor.

τj  is the normalised duration of being in state  j,  as detected by Viterbi

Algorithm.
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9-6.  Data Representation Factor:

The training and testing  speech data  are taken from the:

http://Kel.otago.ac.nz/hyspeech/corpus

The initial sets of data are digits 0-9 spoken by 21 speakers (11 males and 10 females)

and each digit is spoken three times by each speaker. Among those words 42 uttered

digits used for training and 15 for testing. The speech data in Otago Speech Corpus are

sampled at 22050 Hz with short silence before and after each utterance.

The next step is to transform the time signal into Mel scale coefficients. The number of

coefficient  are selected to be 26  ( 12 mels and 12 delta mels with one power and its

delta). Also experiments have been done on 13 coefficients without considering the

dynamic behaviour of the signal.  The Mel scale coefficients as extracted features are

selected because they imitate into some extent the feature selection in human ears. The

Mel scale method considers the spectrum are linearly distributed below 1000Hz and

logarithmically above that. This makes the filter banks moving on linear centres below

1000Hz (i.e. 100, 200, 300, ...., 1000) and on logarithmic centres over that  (i.e. 1149,

1320,1516,....).  The very good characteristics of the Mel scale coefficients is that they

allow the use of Euclidean distance measure in finding the distance between two

examples. This is greatly reduces the computational cost of procedures that depend on

distance measure like those  in VQ.

10.  Results and Conclusions
In this section we are going to show some experimental results and discuss some useful

conclusions.

10-1.  The first experiment dealt with the segmentation of  spoken words into states.

Fig.(8) shows different versions of the spoken word zero by three different speakers. We

can see clearly how the time signal varied even for the same word. The states are found

by Viterbi Algorithm and assigned clearly to their corresponding segments. Also we can

see that the observations are not always passing through all the states that the model has

been designed on. In this case state 5 was jumped by digit zero observations when they

were submitted to digit zero model.
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10-2.   The second experiment dealt with   Mel scales coefficients distribution.

Fig.(9) Shows some distributions of Mel scale coefficients and their deltas of state one

in spoken digit zero. The power of the signal and its delta are represented by mel 0 and

delta mel 0. The Mel coefficients capture the stable signal characteristics, while the

deltas capture the dynamic characteristics. Also, we can see from this figure the best fit

probability distribution function (pdf) for each coefficient. It is clear that some

coefficients like mel 0 , mel 1 and their deltas are far from being represented by single

pdf. This consolidates the need of multimodal (multimixture) representation of the

coefficients. In our model we approximate the Mel scale coefficients distribution by 5 to

9 mixtures.

Fig.( 9 ) Mel Scale Coefficients Distribution
The histogram and the best fit normal pdf of mel0,mel1, and mel2 with their deltas.

mel 0 delta
mel 0

mel 1

mel 2

delta
mel 1

delta
mel 2

best
pdf
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10-3.  The third experiment was carried out to show the correspondence between the

speech signal, states, and the spectra. This relation gave us more understanding and

confidence on the behaviour of the observation vectors within each state. Fig.(10) shows

this clearly and we can notice the difference in spectral behaviour of different states.

State-1 State-2 State-3 State-4 State-6 State-7

Fig.(10) Shows the correspondence between the time signal samples, states, and spectrum of spoken digit zero.
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10-4.  The fourth experiment was about the representation of the state duration

distribution using multimodal (multimixture) probability distribution. Fig.(11) shows

the normalised duration probability distribution for unimodal and multimodal (with 3

mixtures) representation. The multimodal pdf shows superiority in representing the

distribution.

Fig.(11) Multimodal  Representation of States’  Duration.
The unimodal is poorly representing the states duration, while the multimodal is smoothly
follow up the duration distribution even with only three mixtures used.

mulimodal

unimodal
actual
distribution

State 4

State 5
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