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Abstract 
The paper presents an integrated approach to building 
evolving artificial intelligent systems in terms of 
evolving connectionist systems (ECOS) that capture 
principles from neural networks, gene interaction 
networks and evolutionary systems. The ECOS can be 
used to solve complex problems from computational 
biology that is illustrated on a simplified gene 
regulatory network modeling problem. The paper first 
presents some principles of real neural networks, gene 
regulatory networks and evolutionary systems before it 
presents ECOS and their applications. 
   Keywords: adaptive systems, neural networks, 
evolving systems, gene regulatory networks.  
 

1. Introduction 
 
In living systems dynamic, adaptive, evolving processes 
are observed at different levels (Tabl.1). At a molecular 
level and a cell level the DNA, the RNA and the protein 
molecules evolve and interact in a continuous way.  The 
genes form dynamic gene regulatory networks that 
define the complexity of the living organism. It is not 
just the number of the genes in a genome, but the 
interaction between the genes that makes one organism 
more complex than another (e.g. humans versus mice).  
     Many functions are associated with a neuronal cell 
and a neural network level. An ensemble of cells 
(neurons) operates in a concert defining the function of 
the network, e.g. perception of a sound.   
     At the level of the human brain, a complex dynamic 
interaction is observed and certain cognitive functions 
are performed, e.g. speech and language learning, 
visual pattern recognition.    
     Many processes of perception and cognition are 
multi-modal, involving auditory-, visual-, tactile-, and 
other type of information processing. All these 
processes are extremely difficult to model without 
having a flexible, multi-modular evolving system in 
place. Some of these modalities are smoothly added at a 

later stage of the development of a system without the 
need to “reset” the whole system.   
 
Table 1. Four levels of evolving processes in living 

organisms1 
     A biological system evolves its structure and 
functionality through both, life-long learning of an 
individual, and evolution of populations of many such 
individuals, i.e. an individual is part of a population and 
is a result of evolution of many generations of 
populations, as well as a result of its own 
developmental life-long learning process. 
     The paper first presents some principles of adaptive 
biological systems. Then it presents some principles of 
artificial evolving connectionist systems (ECOS)1 and 
illustrates their applicability on a small scale gene 
regulatory network modeling problem. The discussion 
section outlines some future directions.  
 

2. Adaptive Biological Gene 
Networks, Neural Networks, and 
Evolutionary Systems 
 
2.1. Gene Regulatory Networks     
     In a single cell, the DNA, the RNA and the protein 
molecules interact in a continuous way during the 
process of the RNA transcription from DNA 
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(genotype), and the subsequent RNA to protein 
(phenotype) translation2,3. A single gene interacts with 
many other genes in this process, inhibiting, directly or 
indirectly, the expression of some of them, and 
promoting others at the same time. This interaction can 
be represented as a gene regulatory network (GRN). 
GRN dynamically evolve and change their structure 
based on DNA and environmental information. 
Modelling GRN is an extremely difficult task that 
requires a large amount of data and sophisticated 
information methods. A large amount of data on gene 
interactions for specific genomes, as well as on partial 
models, is available from public domain databases such 
as NCBI (http://www.ncbi.nlm.nih.gov/), KEGG 
(http://www.genome.ad.jp/kegg/), Stanford Microarray 
Database, and many more4 . Collecting both static and 
time course gene expression data from up to 30,000 
genes is now a common practice in many biological, 
medical and pharmaceutical laboratories in the world 
through the introduction of microarray technologies 
(see for example (www.ebi.ac.uk/microarray).   
  
2.2. Adaptive Neural Networks: Gene Networks 
within Neural Networks 
     The brain consists of many interrelated neural 
networks (NN). Each of them is a tremendously 
complex adaptive information system characterised by 
learning, generalisation, and development. Every 
neuron contains the whole genome of the organism and 
therefore its functions are defined by both the 
environment it learns from and by the GRN that is 
activated in this neuron. Adaptation of the GRN now 
take place along with the adaptation process of the NN 
that makes the modelling of real NN a complex task.  
 
2.3. Adaptive Evolutionary Systems:  Gene 
Networks, within Neural Networks, within 
Evolutionary Population Systems, within …  
     Evolutionary processes take place over generations 
of populations of individual systems; each individual 
system represented as adaptive neural networks. The 
evolutionary process affects the DNA and the genes 
that result in a modified GRN, thus affecting the 
learning processes of t6he neural networks. This is a 
very complex interaction that can’t be modelled in its 
entirety, but a part of it, e.g. modelling of GRN can be 
attempted with the use of methods based principles of 
adaptive neural learning, gene interaction and gene 
evolution.  Such methods are the evolving connectionist 
systems (ECOS) methods1 as discussed below.   
  

3. ECOS  
 
3.1. Main principles of ECOS 
The main principles of evolving connectionist systems 
(ECOS) and some of their models are presented in 1,5,6. 

ECOS are connectionist structures that evolve their 
composite nodes (neurons) and connections through 
both supervised and unsupervised incremental learning 
from data. One of the ECOS models is shown as a 
simple implementation in fig.1. It consists of five layers 
of neurons (nodes) to represent respectively: input 
variables; fuzzy representation interval for each input 
variable, such as Small, Medium and High; rule nodes, 
that represent cluster centers of data vectors in the 
problem space; output fuzzy representation nodes; 
outputs. The ECOS may include a feedback layer as a 
short-term memory that links rule nodes, highly 
activated at consecutive time moments. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. A simple version of an ECOS 1 

 
ECOS learn input streams of data starting with no rule 
nodes, or with a few pre-initialized nodes based on 
existing knowledge. ECOS grow through the creation 
of new rule nodes, allocated at cluster centers in the 
input space, and through learning a local output 
function for each cluster. In the first year of the project 
the information theoretic framework of ECOS will be 
developed (the general goal) that will include the 
methods described below. 
     ECOS automatically create (learn) local models 
from data through clustering of the data and associating 
a local output function to each cluster. Rule nodes 
evolve from the input data stream to cluster the data, so 
that the first layer W1 of connection weights of these 
nodes represent the co-ordinates of the nodes in the 
input space (see fig.1). The second layer W2 represents 
the local models (functions) allocated to each of the 
clusters.    
 

3.2. EFuNN and DENFIS 
      Clusters of data are created based on similarity 
measured either in the input space (this is the case in 
some of the ECOS models, e.g. the dynamic neuro-
fuzzy inference system DENFIS6) or in both the input 
space and the output space (this is the case in the 
evolving fuzzy neural networks EfuNN5 – fig.1]). 
Samples that have a distance to an existing cluster 
center (rule node) N of less than a threshold Rmax (the 
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EfuNN models it is also needed that the output vectors 
of these samples are different from the output value of 
this cluster center in not more than an error tolerance E) 
are allocated to the same cluster Nc. Samples that do not 
fit into existing clusters, form new clusters over time. 
Cluster centers are continuously adjusted according to 
new data samples, or new clusters are created 
incrementally.  
     The similarity between samples can be measured in 
different ways, the most popular of them being the 
normalized Euclidean distance.  In a partial case of 
missing values for some variables in the input vectors, a 
partial normalized Euclidean distance can be used, i.e. 
only the existing variables in a current sample S = (x,y) 
are used for the similarity measure between this sample 
and an existing rule node N = (W1N,W2N):   
        d(S,N)=[Σ(i=1,..,n)(xi–W1N(i))2]/ne,                     (1) 
for all input variables xi having a defined value in the 
sample S and an already established  connection W1N(i) 
to the cluster node N,  ne being the number of such 
variables in the sample S. In a partial Euclidean space, 
cluster centers can be defined based on a different 
number of variables.  
     ECOS learn from data to automatically create a local 
output function for each cluster, the function being 
represented in the W2 connection weights, thus creating 
local models. Each model is represented as a local rule 
with an antecedent – the cluster area, and a consequent 
– the output function applied to data in this cluster, e.g.: 
    IF [data is in cluster Ncj, defined by its cluster center 
Nj, the cluster radius Rj and the number of examples Njex 
in this cluster] THEN [the output function is fc]                                      
     In case of DENFIS, first order local fuzzy rule 
models are derived incrementally from data, for 
example: IF [the value of x1 is in the area defined by a 
triangular membership function with a center at 0.7, left 
point of 0.4 and right point at 0.83) AND (the value of 
x2 is in the area defined a triangular function 
(0.1,0.3,0.6) respectively] THEN [the output value y is 
calculated with the use of the formula  y= 3.7 + 0.5x1 - 
4.2 x2] 
      In case of EfuNNs, local simple fuzzy rule models 
are derived, for example: IF [x1 is High (0.7) and x2 is 
Low (0.9)] THEN y is High (0.8) [radius of the input 
cluster 0.3, number of examples in the cluster 13], 
where: High and Low are fuzzy membership functions 
defined on the range of the variables. The number and 
the type of the membership functions can either be 
deduced from the data through learning algorithms, or it 
can be predefined based on human knowledge. 
 
3.3. ECOS optimization through evolutionary 
computation 
    The ECOS parameters, such as learning rate, cluster 
radius, error threshold, membership functions can be 
interpreted as the genes of the evolving NN. They need 

to be self-optimized during the incremental, continuous 
learning of ECOS in order for the ECOS system to be 
autonomous.  This is achieved with the use of several 
methods for on-line and off-line parameter self-
optimization as presented in 7,8.  
  

4. ECOS for Adaptive Learning of 
Simple GRN- A Case Study 

   
 4.1. The Problem of GRN Modelling 
 Several generic information methods for modelling and 
for the discovery of variable interaction networks from 
time course data have been proposed and used in the 
domain of GRN modelling. Among them are: statistical 
methods9; neural networks10,11; evolutionary 
computation 4,12,13; directed graphs; Petri nets; ordinary 
and partial differential equations14.  Each of these 
methods lacks at least several of the following 
characteristics: (i) dealing with a large number of 
variables of different types and with imprecise data; (ii) 
adaptive incremental learning in a changing 
environment; (iii) dealing with missing values and 
adding new variables “on the fly”; (iv) continuous 
model parameter optimization.  
 
4.2. ECOS for GRN Modelling 

The suitability of ECOS for modeling GRNs was 
first demonstrated on a small data set15 in 16. Here the 
main principles of applying ECOS for the GRN 
modeling are presented. 

An ECOS is incrementally evolved from incoming 
data X(t0), X(t1), X(t2), …, representing the values of 
all, or some of the variables or their clusters. 
Consecutive vectors X(t) and X(t+k) are used as input 
and output vectors respectively in an ECOS model, as 
shown in fig.2a. After training of an ECOS, e.g. 
EfuNN, on data, rules are extracted through IF-THEN 
representation of the rule nodes, e.g.: IF x1(t) is High 
(0.87)  and x2(t) is Low (0.9) THEN x3 (t+k) is High 
(0.6) and x5(t+k) is Low (see fig.1). Each rule  
represents a transition between a current and a next 
state of the variables as shown in fig.2b, where each 
rule is shown as an arrow.  

X(t)                              X(t+k)                                                                                                  
x1                                       x1                                                                                                                                          

            
  x2                                      x2 
                                                                 
               
                                                         

                                                                                                                                                
xn                                      xn                                                    

                                                                                   
Fig.2a. A hypothetical ECOS for GRN modeling 
All rules together form a representation of the GRN. 

Fig.2b shows two trajectories, N1 and N2 that represent 



two VRNs, derived under different conditions, in the 
2D PCA (principal component analysis) coordinate 
space of all n variables.   

  
 
 
 
 
 
 
 
 
(b)                                       (c) 
Fig.2.b, c: (b) State transitions (rules, represented as 
arrows) in the two PCA dimensional space of the n 
variables; (c) Part of a GRN extracted from an 
ECOS model.  

 
Using the DENFIS6 ECOS model, other types of 
variable relationship rules can be extracted, e.g.: IF 
x1(t)  is (0.63 0.70 0.76) and  x2(t) is (0.71 0.77 0.84)  
and x3(t) is (0.71 0.77 0.84) and x4(t)  is (0.59  0.66  
0.72)  THEN x5(t+k)  = 1.84 -1.26x1(t) -  1.22x2(t) +  
0.58x3(t) -  0.3 x4(t), where the cluster for which the 
value of x5 is defined in the rule above, is a fuzzy 
cluster represented through triangular membership 
functions defined as triplets of values for the left-, 
centre-, and right points of the triangle on a 
normalisation range of [0,1].  
  

5. Evolving Intelligence – Real and 
Artificial 
The availability of DNA data, brain development data 
and evolutionary development data now makes it 
possible for the creation of artificial intelligent systems 
that evolve and learn in a similar way as biological 
systems do.  Good candidates for such systems are  
ECOS1 that evolve their neural network structure in an 
incremental way and optimize their parameters (genes) 
through methods of evolutionary computation.  
     Future research includes: 

- A further development of the ECOS methods with 
the inclusion of statistical methods, such as 
Bayesian networks, Hidden Markov Models, and 
others; 

- the application of ECOS to modeling large GRN; 
- the application of ECOS to the problem of 

modeling brain functions and their related gene 
networks; 

- the application of ECOS for the development of 
intelligent decision support systems for biological 
data analysis and knowledge discovery. 
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