
Intelligent Control of Sequencing Batch Reactors (SBRs)
for Biological Nitrogen Removal

D. Hegg 1, T. Cohen 1, Q. Song 2, N. Kasabov 2
1 Waste Solutions Ltd, PO Box 997, Dunedin, New Zealand

danilo_hegg@hotmail.com, tcohen@wasoln.co.nz
2 Department of Information Science, University of Otago, PO Box 56,Dunedin, New Zealand

qsong@infoscience.otago.ac.nz, nkasabov@infoscience.otago.ac.nz

Abstract

This paper shows the application of several kinds
of artificial intelligence techniques in the
development of a control system for a biochemical
process. A wastewater treatment process for
nitrogen removal in a sequencing batch reactor
(SBR) is presented first; two different approaches
to identify the endpoint of the biological reactions
are introduced. The paper compares and analyzes
the results for this task by using different AI
techniques based on several kinds of neural
networks and fuzzy neural networks.
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Reactor (SBR), nitrification, denitrification,
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1. Description of the task

Water is needed for a lot of different human
activities; after being used, it is discharged as
wastewater of different kinds: municipal, industrial,
agricultural… Wastewater has to be treated before
it is returned to the environment, removing
polluting chemical compounds (e.g. organic
carbon, nitrogen and phosphorus) and pathogenic
forms of life such as bacteria, viruses, amoebas and
larvae of parasites.
Biological processes are usually employed for the
removal of organic carbon and nitrogen from
wastewater. Bacteria that agglomerate in flocs of
activated sludge convert the harmful compounds
into harmless matter such as water, carbon dioxide
and nitrogen gas.
The flocs of activated sludge are mixed with the
wastewater in a biological reactor; as their density
is slightly higher than 1 kg/l, stirring is necessary to
keep the flocs in suspension.
Biological wastewater treatment involves several
different biological reactions: organic carbon
(BOD) is oxidised to water and CO2, with
consumption of oxygen; ammonia is oxidised to
nitrate (nitrification), again with consumption of
oxygen, and nitrate is further reduced to nitrogen
gas (denitrification). The last reaction is inhibited if
dissolved oxygen is contained in the water.

BOD oxidation:
Organic Carbon + O2 → H2O + CO2

Nitrification/Denitrification:
Ammonia+O2 → Nitrates → Nitrogen gas (N2)

Some biological reactions require that oxygen is
supplied into the reactor (aerobic reactions), while
other reactions are inhibited by oxygen (anoxic
reactions).
Biological wastewater treatment therefore requires
several different stages. A typical biological
process involves the following sequence of phases:
1. Fill stage: the wastewater is fed into the

biological reactor
2. Anoxic phase: nitrates are converted into

nitrogen gas. No oxygen has to be supplied.
3. Aerobic phase: organic carbon and ammonia

are oxidised. Oxygen has to be supplied.
4. Decant: Stirring is turned off, allowing the

activated sludge flocs to settle.
5. Discharge: the clean effluent flows out of the

biological reactor.
The different phases can be separated in space
(continuous flow activated sludge systems) or in
time (Sequencing Batch Reactors).
Unlike the traditional continuous flow activated
sludge processes, where different reactions are
carried out in separated tanks, SBRs allow the use
of a single tank for the whole process.

Figure 1. Sequencing Batch Reactor (SBR) Process



The term "Sequencing" means that different
reactions are performed in time sequence: one
phase starts after the previous one is finished.
"Batch" refers to the operation mode of the reactor:
during the biological reactions the reactor is closed;
there is no influent fed and no effluent discharged.
The concentration of a pollutant decreases steadily
during the reacting phase; a biological reaction is
completed when the concentration of the pollutant
drops to zero.
One of the main advantages of the SBR technology
is the flexibility, which derives from the possibility
of adjusting the duration of the different phases.
Real-time control of the process uses this
advantage; a possible control strategy is based on
the identification of the endpoint of a biological
reaction. Switching to the next phase short after the
detection of the reaction endpoint provides an
optimum solution for both the process performance
and the economics of the plant. In fact, if the
duration of a phase is too short, the removal of the
pollutants is not complete and the quality of the
effluent will not meet the limits imposed by the
law. On the other hand, cycles which are longer
than necessary decrease the capacity of the plant
(volume of wastewater treated per day); an aerobic
phase which is too long would also mean wasting
energy for aeration.
A cost-effective and reliable way to identify the
endpoint of a biological reaction is by on-line
monitoring of chemical parameters such as pH (a
measure of the acidity of a solution), ORP
(Oxidation-Reduction Potential) and DO
(Dissolved Oxygen). During a biological reaction a
pollutant is converted into harmless compounds,
with simultaneous consumption or production of
oxygen or acidity. This causes a continuous
variation of chemical parameters such as DO, pH
and ORP. It can be therefore expected that the
endpoint of a biological reaction can be recognised
as a discontinuity (a "breakpoint") in the profile of
one of these chemical parameters. With the term
"profile" we mean a graph where the time is on the
x-axes and the measured chemical parameter is on
the y-axes.
The reactions in a SBR and their effect on the
chemical parameters are shown in Table 1 and
Figure 2.

Figure 2. Removal of polluting matter in a SBR.

Table 1. Biological reactions in SBR

Aerobic phase Effect on:
BOD + O2 → Water + CO2 1 DO
Ammonia + O2

→ Nitrates + Water + Acidity
2 DO, pH

Anoxic phase
Nitrates + Acidity + BOD
→ N2 + Water + CO2

3 ORP, pH

This paper deals with the identification of the
reaction endpoints in the DO profile.
Some authors remarked that the endpoint of
nitrification in a SBR can be identified as a
breakpoint in the DO-profile [1, 2, 3]. Wouters-
Wasiak and co-workers [4] remarked that stopping
the aeration shortly after its detection would be a
good control strategy. A similar procedure was
proposed by Koh and co-workers [5] who
recognised a breakpoint in the DO-profile at the
end of the oxidation of methanol in a
pharmaceutical wastewater. Paul and co-workers
[6] developed a control-system (INFLEX) for
alternated aerobic-anoxic continuous flow activated
sludge systems based on ORP- and DO- breakpoint
detection.
Ip and co-workers [7] studied an alternating
aerobic/anaerobic completely mixed activated
sludge system. They recognised the DO-breakpoint
at the end of BOD and ammonium removal, and
had a further look into its signification. Liao & Lee
[8] simulated some DO-profiles in a SBR, but they
made no effort to identify the endpoints of the
biological reactions.
It was demonstrated mathematically [9] that the
endpoint of an aerobic reaction in a SBR can be
identified as a bending point in the DO-profile, and
as a maximum in the first derivative of the DO-
profile (see Fig. 3).

Figure 3. Dissolved Oxygen and ammonia concentration
measured in a SBR during the aerobic phase

Automatic on-line detection of this breakpoint
allows an efficient control of an SBR-reactor. A
control model aiming to achieve this task has to
deal with the following problems:
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1. Because of the noise in measured DO-data, it
is not possible to identify the exact time
corresponding to the maximum in the first
derivative of the DO-profile, but only a time
interval in which this maximum is more likely
to be found.

2. Noise in measured DO-data is responsible for
false peaks in the first derivative of the DO-
profile. These false peaks can be mistaken for
breakpoints.

3. When there are two or more aerobic reactions
going on at the same time, a breakpoint in the
DO-profile will be found at the end of each of
them. This is usually the case, as oxygen is
used for BOD oxidation and nitrification. The
control system has to be able to recognize
which breakpoint corresponds to the end of
which reaction.

4. The shape of a peak in the first derivative of
the DO-profile changes for different conditions
in the reactor. It is  particularly affected by
different values of temperature (Fig. 4), by the
intensity of the aeration, and by the activity of
the bacteria. The system has to be able to
recognize the endpoint of the reaction
independently from the values of these
parameters.

Figure 4. Effect of temperature on the shape of the peak
in the first derivative of the dissolved oxygen at the end
of nitrification  (mathematical model).

This paper presents the partial results of a research
project aiming to develop a control system for
SBRs based on automatic on-line detection of
breakpoints in DO- and ORP-profiles. Traditional
mathematical approaches and filters are used to
deal with the first two problems. Several
breakpoints are identified in every DO-profile, and
they have to be assigned to one of the following
categories: endpoint of BOD oxidation, endpoint of
nitrification, noise. This is a problem of
classification, and it can be solved by employing
connectionist software techniques such as neural
networks and fuzzy neural networks. As it was
mentioned above in point 4, the shape of the
breakpoints is subject to a high degree of

variability. The shape of the DO-profiles can vary
depending on biological factors (characteristics of
the bacteria), on environmental factors (including
the weather), on the hydraulics of the reactor and
on the noise. Still, the control system has to be able
to classify the breakpoints correctly in a possibly
very wide range of different conditions.

2. Methods

The DO data are measured in a 15l lab-scale SBR,
which is run in the lab of Waste Solutions Ltd. in
Invermay (Mosgiel, Otago). A DO probe is
plunged into the reactor; the DO-data are collected
at regular intervals (15 or 30 seconds) by a data-
logger and are further transmitted to a PC, where
they are saved on file.
Two filters in series are applied to remove the noise
from the raw data. The first one is a differentiator,
giving as an output the first derivative of the
dissolved oxygen versus time.
All the peaks in the first derivative are detected by
calculating the point in time where the second
derivative switches from a positive value to a
negative value.
The breakpoints that are detected this way include
endpoints of BOD removal, endpoints of
nitrification and "false breakpoints" due to the
noise. In order to be able to classify them into one
of these three categories, some features have to be
selected, which allow to characterize and to
distinguish them.
Two different approaches have been tried:
1. Five geometrical features were selected that

characterize the peak in the first derivative of
the dissolved oxygen:  the height, the width,
the maximum value, the area, and the
curvature radius at the top (Fig. 5).
The main advantage of this approach is that all
the information is condensed into a very
limited number of features. The main
disadvantage is that the absolute values of the
DO have to be used; this can cause problems if
the DO-probe is not calibrated properly.

Figure 5. Characterisation of a breakpoint in the DO
profile through five geometrical features: Area (A),
height (h), maximum value (dDOmax), width (b),
curvature radius at the top (r).
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2. The time between the beginning of the aerated
phase and the breakpoint is divided into N
equal intervals; different values of N have been
tried (N=20, 25, 50). The average value of the
dissolved oxygen in each time interval is
considered; the values are normalized between
0 and 1 by dividing them with the largest of
the N DO values. See Fig. 6.
The absolute values of the dissolved oxygen in
this case are irrelevant, but a neural network
with a large number of inputs has to be trained.

Figure 6. Subdivision of the DO profile into N equal
intervals.

The 5 geometrical features or the N normalized DO
values can be used as inputs for a neural network
with 3 outputs: endpoint of BOD removal, endpoint
of nitrification and noise. Each of the 3 outputs can
have two values: 0 (False) or 1 (True).

3. Analysis of the results

A dataset of 439 input and output patterns was
created after analyzing 201 DO profiles. The
dataset was divided into a training set of a 352
patterns and a testing set of 87 patterns to train and
test a neural network.
The following AI programs have been used:
• AINET: it is not a neural network, but a NN-

like software. It requires no training; the whole
dataset is used for verification, one pattern at
the time, using all the other patterns as input.

• Qnet97: a very flexible software that allows to
create, train and test MLPs with up to 5 hidden
layers, and 4 different activation functions. A
random subset of data for testing is
automatically extracted from the complete

dataset. There is therefore no need to split the
dataset into different sets for training and
testing.

• Qwiknet32: a software that allows to create,
train and test MLPs. The trial version was
used, with the number of hidden layers limited
to one. The training algorithm is extremely
fast.

• Matlab: a hybrid neuro-fuzzy system was
created, trained and tested using the function
"Anfis". As Anfis allows one output only, 3
separated systems had to be created and trained
for each output.

• FuzzyCope3: a hybrid system [12] and the
software created in the Knowledge
Engineering Laboratory (KEL), Information
Science Department of the Otago University.
FuzzyCope3 has several neural network
simulators that include a MLP and a fuzzy-
neural network, FuNN [12]. It is available free
from: http://kel.otago.ac.nz/.

• EFuNN: an evolving fuzzy-neural network
method [10] and the software created in  the
KEL, Information Science Department of the
Otago University. A comprehensive
description to the  methodology for  applying
EFuNNs to biological data modeling is
presented in [11].

Linear separation of the clusters in a two-
dimensional dataset, just by drawing the border
lines between the three classes on a graph,  gave
quite good results, too (See Figure 7). This method
though is limited by the number of inputs, not more
than two, while AI systems can deal with a larger
number of inputs.
The results are reported in Table1.

Figure 7. Linear separation of the clusters
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Table 1. Results of the classification of breakpoints in the DO-profiles using different methods and different AI
programs.

I. Input data: (dDO/dt)max, A, b, h, log(rho)
1. Linear separation of the clusters (manually)

#errors correct wrong

26 94.08% 5.92% (dDO/dt)max and Ap

2. AINET
#errors correct wrong

54 87.70% 12.30% (best result, after trying all the possible combinations of the 5
parameters)

3. Multi Layer Perceptron
#errors correct wrong

train 11 96.85% 3.15%

test 8 91.11% 8.89%

(QNet97, 1 Hidden Layer: 10 Neurons, sigmoid transfer function)

train 8 97.71% 2.29%

test 6 93.33% 6.67%

(QNet97, 2 Hidden Layers: 6-6 Neurons, sigmoid transfer
function)

train 14 95.99% 4.01%

test 5 94.44% 5.56%

(QNet97,  3 Hidden Layers: 6-6-5 Neurons, sigmoid transfer
function)

train 12 96.59% 3.41%
test 3 96.55% 3.45%

(QwikNet32, 1 Hidden Layer: 10 Neurons, sigmoid transfer
function)

train 10 97.16% 2.84% (FuzzyCope3, MLP: 1 Layer, 10 Nodes)

test 3 96.55% 3.45%

4. Fuzzy Neural Networks
#errors correct wrong

train 11 96.88% 3.13% (Anfis, Matlab, trained with 24 epochs)

test 6 93.10% 6.90%

train 4 98.86% 1.14% (FuzzyCope3, FuNN: 5 Members, 2 Actions, 20 Rules)
test 4 95.40% 4.60%

5. Evolving Fuzzy Neural Networks

#errors correct wrong

train 0 100.00% 0.00%

test 5 94.25% 5.75%

(EfuNN, 2 epochs, 296 nodes)

II. Input data: DO profile divided into N points
6. Multi Layer Perceptron

#errors correct wrong

train 0 100.00% 0.00%

test 5 94.44% 5.56%

(Qnet97, N = 50 points, 2 Hidden Layers: 12-12 Neurons, sigmoid
transfer function)

train 5 98.57% 1.43%
test 4 95.56% 4.44%

(Qnet97, N = 25 points, 2 Hidden Layers: 12-12 Neurons, sigmoid
transfer function)

train 0 100.00% 0.00%

test 10 88.89% 11.11%

(Qnet97, N = 20 points, 2 Hidden Layers: 12-12 Neurons, sigmoid
transfer function)

7. Fuzzy Neural Networks
#errors correct wrong

train 3 99.15% 0.85%

test 4 95.40% 4.60%

(FuzzyCope3, N = 25 Points, FuNN: 5 Members, 2 Actions, 25
Rules)

III. Combination of I and II
8. Multi Layer Perceptron

#errors correct wrong

train 2 99.43% 0.57%
test 5 94.44% 5.56%

(Qnet97, N = 25 points+5, 2 Hidden Layers: 10-10 Neurons,
sigmoid-gaussian-sigmoid transfer function)

9. Fuzzy Neural Networks
#errors correct wrong

train 5 98.58% 1.42%
test 3 96.55% 3.45%

(FuzzyCope3, N = 25 Points+5, FuNN: 5 Members, 2 Actions, 30
Rules)



The two different approaches to characterize the
breakpoints seem to lead to similar results. The first
approach has the obvious advantage that only 5
inputs are given for a neural network; the training
is much faster.
The results obtained using different programs are
quite similar, too. With the algorithm of FuNN,
FuzzyCope3 is probably the program that gives the
best results (in terms of samples that are classified
correctly).
AINET did not perform as well as neural networks
or fuzzy neural networks; even linear separation of
the clusters achieved better results. It is the feeling
of the authors that AINET is not the proper tool for
this task.
Anfis performed better than AINET and than linear
separation of the clusters, but not quite as well as
the other programs.
All the other programs perform very well, and the
choice of the one rather than the other depends on
different aspects.
QNet and QwickNet are MLPs. Their training is
very fast, but the trained networks are black box
models, with no possibility of extracting rules, and
they cannot adapt to new conditions or new training
samples. Their use is probably the best option if the
second approach is chosen, where training speed is
important because of the large number of inputs,
and where extracting rules does not make any
sense.
FuzzyCope achieves the highest percentage of
correctly classified samples in both the training and
the test set; it proves therefore to be a good tool. It
also allows extracting rules; particularly in the case
where the first approach is chosen, this can help to
understand how the classification is done.
EFuNN is an evolving fuzzy neural-network: the
weights and the number of nodes can be modified
automatically during its use, learning from new
examples and forgetting old examples. This can be
very interesting for an on-line control system,
where new data are continuously measured and
new samples are created. Unsupervised acquisition
of new samples seems to be a major problem
though: correctly classified breakpoints could be
used for further training and evolving of the
network, but how to make sure that their
classification is indeed correct?
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