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Abstract 
The paper introduces a method for adaptive, dynamic 
modeling of perceptual states of the human brain based 
on EEG. The method allows for the development of 
individual models of person’s perception and for the 
incremental model adaptation on new data. The method 
is illustrated on a case study of classification of 
cognitive states of a person based on EEG signals, 
when auditory, visual and mixed stimuli are presented. 
For the modeling task, evolving connectionist systems 
(ECOS) are used. The experiments show that ECOS are 
appropriate techniques for the creation of evolving 
models of the human perception.        
Keywords: adaptive systems, EEG, auditory system, 
visual system, multimodal processing, neural networks    
 

1. Introduction 
Being able to recognize perception states of the human 
brain from measured EEG signals, can be used to create 
general and individual perceptual models that can be 
adapted with the presentation of new stimuli. This can 
help to develop new means for an improved human-
computer interaction and learning.   
     Main research questions in this paper are: 

- Can an adaptive model of a person’s perception be 
build, so that it can recognize the state of this person 
on the same stimuli but in a different session or in a 
different environment? 
- Can one person’s model be used for another person 
state recognition? 

     The following research questions will be also 
attempted along with the main ones: 
 - What are the dynamics of the perception of auditory, 
visual and combined stimuli (denoted as A/V/AV) for 
an individual? 
- What are the common patterns of activity across 
humans for A, V and AV stimuli? 
- What are the differences between individuals under 
same A/V/AV stimuli? 
- Can an evolving connectionist system (ECOS) be 
used to create individual and general perception model? 
 

2. An EEG experiment design, data 
collection and pre-processing 

    In the experiment here, four  ccllaasssseess  ooff  bbrraaiinn  ssttaatteess  
aarree  uusseedd  wwii tthh  3377  ssiinnggllee  ttrriiaallss  eeaacchh  ooff  tthheemm  iinncclluuddiinngg  tthhee  
ffooll lloowwiinngg  ssttiimmuull ii     [[22]] ::  Class1 -  Auditory Stimulus; 
Class2 - Visual  Stimulus; Class3 - Mixed Auditory and 
visual stimuli; CCllaassss  44  --  NNoo  ssttiimmuulluuss..  
          The EEG data was collected in an experiment that 
used four stimulus conditions [2]. In the auditory 
stimulus case, a 1Khz tone of 50 mSec in duration was 
presented to the subject in one-second intervals. The 
visual stimulus had the same duration and interval of 
the auditory stimulus and consisted of a white circle on 
a black background.  The mixed auditory and visual 
stimulus combined the two stimuli already described, 
with the auditory stimulus presented first and then the 
visual stimulus presented to 100 mSec later.  The fourth 
case is when no stimulus was presented.  The EEG data 
were acquired using a standard 64 electrode EEG 
system (fig.1). Data was filtered using a 0.05Hz to 500 
Hz band- pass filter and sampled at 2Khz. 
      For each of the two 2 subjects, stimuli were 
presented and raw EEG data were recorded. There were 
1676 samples recorded for person A and 1556 for 
person B. An ECOS model was trained on-line on 
current data and tested on new data. Analysis of single 
trial EEG is an extremely difficult problem. These 
applications will require on-line, real-time analysis of 
EEG data.  These data are likely to be very non-
stationary and the analytical techniques used will have 
to be capable of adapting to the changing nature of the 
data.  Because of their ability to adapt to new data, 
ECOS [1] will be explored here on this task. 

  
Fig.1. The location of the 64 EEG electrodes 



3. ECOS for dynamic modeling and 
classification 
Here we use one of the ECOS models called Evolving 
Classifier Function (ECF) [1]. The ECF algorithm, 
outlined below, classifies a data set into a number of 
classes and finds their class centres in the n-
dimensional input space by “placing”  a rule node. Each 
rule node is associated with class and with an influence 
(receptive) field representing a part of the n-
dimensional space around the rule node. Usually, such 
an influence field in the n-dimensional space is a hyper-
sphere.  

There are two distinct phases of the ECF 
operation. During the learning phase, data vectors are 
fed into the system one by one with their known 
classes. The learning sequence of each iteration is 
described as the following steps:  
1) If all vectors have been inputted, finish the current 
iteration; otherwise, input a vector from the data set and 
calculate the distances between the vector and all rule 
nodes already created;  
2) If all distances are greater than a max-radius 
parameter, a new rule node is created. The position of 
the new rule node is the same as the current vector in 
the input data space and its radius is set to the min-
radius parameter, and then go to step 1; otherwise: 
3) If there is a rule node with a distance to the current 
input vector less then or equal to its radius and its class 
is the same as the class of the new vector, nothing will 
be changed and go to step 1; otherwise:  
4) If there is a rule node with a distance to the input 
vector less then or equal to its radius and its class is 
different from those of the input vector, its influence 
field should be reduced. The radius of the new field is 
set to the larger value from the distance minus the min-
radius, and the min-radius. 
5) If there is a rule node with a distance to the input 
vector less then or equal to the max-radius, and its class 
is the same to the vector’s, enlarge the influence field 
by taking the distance as the new radius if only such 
enlarged field does not cover any other rule node which 
has the different class; otherwise, create a new rule 
node the same way as in step 2, and go to step 1. 
      The recall (classification phase of new input 
vectors) is performed in the following way: 
1) if the new input vector lies within the field of one or 
more rule nodes associated with one class, the vector 
belongs to this class; 
2) if the input vector lies within the fields of two or 
more rule nodes associated with different classes, the 
vector will belong to the class corresponding the closest 
rule node. 
3) if the input vector does not lie within any field, then 
there are two cases:  (a) one-of-n mode: the vector will 
belong to the class corresponding the closest rule node; 
(b) m-of-n mode: take m highest activated by the new 
vector rule nodes, and calculate the average distances 

from the vector to the nodes with the same class; the 
vector will belong to the class corresponding the 
smallest average distance. 
 

4. ECOS modeling of auditory, visual 
and combined stimuli perception   
To answer the question whether one person’s model can 
be used on another person’s data, an ECF model was 
evolved on person A’s data and tested on person B’s 
data and vice versa. Table 1a,b presents the confusion 
tables for the two cases and the overall accuracy. The 
results suggest that it is not appropriate to use one 
person’s model on another person’s data. 
      Table 1a. The correctly recognized data samples by 
in an ECF model trained on all person’s A data and 
tested on person’s B data – 65 variables used (64 EEG 
channels and time) 

Stimulus A V AV No Accuracy 
A 22 98 57 203 5.8% 
V 24 30 108 208 8.1% 
AV 26 46 59 257 15.2% 

     Table 1b. The correctly recognized data samples by 
in an ECF model trained on all person’s B data and 
tested on all person’s A data – 65 variables 

Stimulus A V AV No Accuracy 

A 185 57 96 80 44.2% 

V 165 76 81 118 17.2% 

AV 128 84 75 113 18.5% 

     In the following experiment an ECF model was 
developed for person A (the first 10 data records) and 
tested on the same person’s data to answer the question 
if it is possible to evolve an individual person 
perception model. First, the whole data was shuffled 
and then 80% of the data (1341 samples) were chosen 
randomly to create the training dataset. The rest 20% of 
the whole data (335 samples) made the test dataset. 
Since the training dataset was chosen randomly, the 
same experiment was repeated 10 times. Table 2 shows 
the average test results of those 10 experiments.  
     Table 2. The correctly recognized data samples by 
an ECF model trained on 80% and tested on 20%  of a 
single person’s data (person A) – 65 variables   

Stimulus A V AV No Accuracy 

A 81.2 1.3 0.1 0.2 98% 

V 1.1 82.4 2.9 1.8 93.4% 

AV 0.6 3.3 75 1.4 93.4% 

No 0.4 1.5 1.3 80.5 96.2% 
The one person model seems to be generalizing well on 
this person’s new data. For a more precise testing of the 
single person model, the leave-one-out cross validation 
method was used, when one sample was taken out from 
the data set and an ECF model was evolved on the rest 
of the data samples. This model was then tested on the 
left-out example, which procedure was repeated for 
every sample from the data set.  The results, shown in 
Table 3 confirmed that a single person model can be 



successfully evolved with the use of the ECOS ECF 
method. 
      Table 3. The correctly recognized data samples by 
an ECF model trained and tested in a leave-one-out 
cross validation mode on a single person’s data  
(person A)  

Stimulus A V AV No Accuracy 
A 409 7 0 2 97.8% 
V 7 421 9 3 95.7% 
AV 1 9 386 4 96.5% 
No 0 7 5 406 97.2% 

 
5. Feature reduction through 
evolutionary optimization and 
adaptive learning in ECF models  
In the experiments above there were 65 variables used 
(64 EEG channels and time). In order to find out which 
channels are important, genetic algorithm (GA) [3] was 
applied to the EEG data in the way described in [4]. 
The GA used a population of 10 ECF networks evolved 
for 10 generations using roulette wheel selection. 
Mutation was employed such that it occurred, on 
average, once per each new solution and crossover was 
applied twice per each sexual reproduction. As a result, 
only 37 EEG channels were selected and no time 
variable. The numbers of the selected by the GA 
optimal channels were: 1,4,5,6,8,9,12,13,14,15,16,18, 
19,21,22,24,25,26,27,29,31,32,35,36,40,42,43,45,50,51,
52, 53,54,56,59,63,64.  
     The experiment from Table 1 was repeated, this time 
with only 37 variables and the results are shown in 
Table 4 and fig.2. 
   
Table 4. The correctly recognized data samples by an 
ECF model trained on 80% and tested on 20% of a 
single person’s data (person A) – a reduced set of 37 
variables is used   
 Stimulus A V AV No Accuracy 
A 81.6 0.5 0.1 0.6 98.6% 
V 0.8 84.2 2.3 0.9 95.5% 
AV 0.3 2.4 76.4 1.2 95.1% 
No 0.2 0.8 0.8 81.9 97.8% 

     The table above shows that the accuracy slightly 
improved when 37 variables were used in the ECF 
model when compared with 65 variables.     
       Further reduction of the features were achieved 
through correlation analysis between each channel and 
each class as shown in fig.3. For a correlation threshold 
of 0.1 only 34 out of 37 features were selected as 
follows: Class1: 1,4,5,8,13,14,18,19,25,27,35, 40,43,53, 
54,63;Class2:1,5,9,12,18,19,21,24,26,27,32,36,40,45,50
,53,54,56;Class3:1,4,5,6,8,13,18,19,21,24,25,29,35,42,5
1,52,53,56,59,63;Class4:1,4,5,6,9,12,13,14,16,18,19,21, 
24,25,26,27,29,31,32,35,36,40,42,43,45,50,51,53,54,59,
63. 
 

 
 
Fig. 2. The rule nodes of an evolved ECF from data of 
one person, 37 channels only, are plotted in the 3D 
PCA space. The circles represent rule nodes allocated 
for class 1, asterisks –class 2, squares - class 3 and 
triangles – class 4. It can be seen that rule nodes 
allocated to one stimulus are close in the space, which 
means that their input vectors are similar. 
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Fig.3. Correlation between the 37 channels and 
the classes from 1 to 4 (from top to bottom 
respectively          

     
 
 



The allocation of the above selected channels for each 
stimulus is shown in fig. 4 (see also fig.1). 
 

 
 
Fig.4. The location of the selected electrodes for each 
of the stimuli of classes from 1 to 4 (from left to right 
respectively) 
 
     Using the 34 channels, the same experiment as for 
channels 65 and 37 was repeated and results presented 
in table 5.  
 
     Table 5. The correctly recognized data samples by 
an ECF model trained on 80% and tested on 20% of a 
single person’s data (person A) – a reduced set of 34 
variables is used   

A V AV No Accuracy 
A 81.4 0.6 0.1 0.7 98.3% 
V 0.9 84 2.5 0.8 95.2% 
AV 0.4 2.4 76.2 1.3 94.9% 
No 0.3 1.1 0.6 81.7 97.6% 

 
     The results are slightly worse than the results when 
37 variables were used. That suggests that the 
correlation analysis may not be a very appropriate 
technique for feature reduction and is inferior to the GA 
feature optimization  technique. 
     ECOS allow for a model to be further trained 
(evolved) on new data, so that the model is 
incrementally trained and adjusted to new data for the 
same person. An ECF model was initially trained on  
samples taken from 10 time intervals and tested on new 
samples taken from 5  time intervals (Table 6a). Then 
the ECF was further trained on samples taken at 5 
additional time intervals (fig.5) and tested on the same 
samples of new 5 time intervals as above (Table 6b). 
The results show improvement due to the on-line 
adaptation of the ECF model on new data.  
 
 Table 6a. The correctly recognized data samples by an 
ECF model trained on the first 10 time intervals data 
and  tested on future 5 time intervals data of  a single 
person (person A) –  37 variables used   

A V AV No Accuracy 
A 110 41 9 52 51.89% 
V 29 107 46 27 51.2% 
AV 8 65 98 28 49.2% 
No 12 49 41 104 50.5% 

  
 Table 6b. The correctly recognized data samples by an 
ECF model trained on the first 10 time intervals data, 
then trained additionally on another 5 time intervals 

data and then tested on future 5 time intervals data (as 
above) of a single person   

A V AV No Accuracy 
A 139 31 8 34 65.6% 
V 20 137 34 18 65.6% 
AV 6 48 123 22 61.8% 
No 9 33 36 128 62.1% 

          
Fig.5. The evolved rule nodes in an ECF model, before 
(left) and after (right) adaptation for class 1, plotted in 
the 2D PCA space of the 37 channels.     
      
Through ECF ECOS modeling, changes over time can 
be traced in the perception model . 
 

7. Summary and Conclusions 
 
This research demonstrates that it is possible to 
incrementally build a perceptual model of an individual. 
Evolving connectionist systems (ECOS) allow for on-
line learning and model modification based on a 
continuous stream of input data. This feature can be 
utilized for an on-line creation and on-line modification 
of models of brain functions based on continuous EEG 
streams of data. Models that allow for a fusion of 
different sources of information (e.g. EEG, fMRI, gene 
data) will be explored in the future.  
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