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Abstract

The application of multi-layer perceptrons to the
protein synthesis termination signal efficiency prob-
lem from molecular biology is presented. It is shown
that by observing and analysing the performance of
ANNs over this problem, useful insights into the bi-
ological processes involved can be gained.

1 Introduction

The protein synthesis termination signal effi-
ciency problem can be stated as follows: given a
specific termination codon in a messenger RNA
strand, how is the efficiency of the termination
codon modified by the three bases that follow it?

The answers to that question can be determined
experimentally, and the biological background of
this problem is described in Sections 2 and 3. The
biological mechanisms involved, however, are some-
what harder to determine. It is in an attempt to
determine the nature of these mechanisms that ar-
tificial neural networks (ANN) may be applied to
this problem. This paper describes a preliminary
study of this application.

The first question that arises, is can an ANN
even model this problem? That question is ad-
dressed in Section 5, along with questions about the
scheme by which RNA bases are represented within
the network. This is followed by an investigation of
the importance of various bases to one specific stop
codon, the UGA codon, in Section 6. Further com-
parisons between the three codons investigated are
presented in Section 7. Some directions for future
research are discussed in Section 8, and the con-
clusions drawn from the research are presented in
Section 9.

2 Biological background

Genetic information is stored in the nucleotide,
or base, sequence of DNA. There are four DNA
bases, adenine (A), thymine (T), cytosine (C) and
guanine(G). In the double stranded DNA molecule
A and T form base pairs, as do C and G. When the
bases of two regions of nucleic acid have sequences

which can form base pairs they are described as be-
ing complementary. From DNA a complementary
strand of RNA can be transcribed, containing the
RNA bases A, C, G and uracil (U). The mRNA are
then translated into proteins.

Proteins are chains of amino acids linked by pep-
tide bonds. Protein synthesis occurs on highly
specialised macromolecules called ribosomes. The
translation of mRNA into proteins requires recog-
nition of triplets of mRNA bases (called codons) by
complementary sequences in the anticodon loop of
tRNA molecules which have specific amino acids at-
tached to one end of their RNA. When two tRNA
molecules have bound to adjacent mRNA codons
on the ribosome the amino acid from one tRNA is
transferred (covalently bound) to the amino acid on
the other tRNA in a peptidyl transferase reaction
catalysed by the ribosome. The protein is elongated
in an iterative process.

With the four different bases in mRNA being
read as triplet codons there are 43, or 64 pos-
sible triplet combinations. In the redundant ge-
netic code sixty-one of the triplet codons code for
twenty amino acids, the remaining three codons
(UAA, UAG and UGA) are termination or stop
codons which signal the end of protein synthesis
from that mRNA. The specificity of the genetic
code comes from the specific recognition of codons
by the tRNA molecules, and the tRNA molecules
are each charged with a specific amino acid.

The three termination codons are recognised by
decoding release factors. The decoding release fac-
tors are proteins which cause the ribosome to catal-
yse peptidyl hydrolysis instead of peptidyl trans-
ferase, hence releasing the newly synthesised pro-
tein from the ribosome. In Escherichia coli (E.
coli, the model organism used in this study) there
are two decoding release factors, RF1 and RF2.
RF1 terminates protein synthesis at UAA and UAG
stop codons and RF2 terminates protein synthesis
at UAA and UGA stop codons.



3 Effect of stop codon context on
termination efficiency

The sequence immediately after stop codons
affects how efficiently the stop codon is decoded by
release factors [3, 1]. The efficiency of termination
of protein synthesis, at stop codons with different
downstream sequences, was measured in vivo in
E. coli. In the experimental system termination
was measured in competition with frameshifting
(where instead of reading triplet code as 123 123
123, one base is missed out, so the same sequence
is read as 123 231 23, which will encode different
amino acids). The likelihood of frameshifting
occurring depends on the speed with which the
termination codon is decoded. If the termination
signal is ‘strong’ very little frameshifting product
is produced, while if the stop signal is ‘slow’, very
little termination product is produced. Termina-
tion produced a shorter protein than frameshifting.
The amount of each of these two proteins could
be measured, and the termination percentage
efficiency was calculated as per Equation 1:

_ termination product
° = Yermination + frameshi ft products

100
(1)

The identity of the three bases after stop codons
(referred to as +4 to +6) does affect the efficiency
of termination, and the decoding release factor is
in close physical proximity with the stop codon and
positions +4 to +6 of the mRNA [2]. This suggests
that the identity of bases in positions +4 to +6
may directly affect release factor recognition. Three
series of experiments were carried out to test:

1. what effect do different sequences at positions
+4 to +6 have on termination efficiency at RF1
decoded UAG stop codons?

2. what effect do different sequences at positions
+4 to 46 have on termination efficiency at RF2
decoded UGA stop codons?

3. do nucleotides at positions +7 to +9 have any
effect on termination efficiency?

The sequences investigated were all 64 possible
combination of UAG NNN (where N is any nu-
cleotide), 47 of the 64 possible UGA NNN com-
binations and 42 UGA CUU NNN constructs. The
termination efficiency of each construct was deter-
mined at least four times.

4 Experimental Data
Experiments were designed for each of the ex-
perimentally derived data sets described above.
The data for each termination codon was divided
into a training and testing data set, in a ratio of 3:1.
The number of examples in each set were as in Table
1. Statistical parameters of the efficiencies in each

set are in Table 2. The division of the data sets
was done so that the statistical parameters of the
training and test set for each group were as similiar
as possible.

Codon Training | Test
UAG 48 16
UGA 36 11

UGACUU 32 10

Table 1: Training and Testing examples available
per codon

Data Set Max | Min | Mean o
UAG train 74 | 34.1 | 50.4 9.6
UAG test 69.8 | 35.6 | 51.2 9.8
UGA train 66.1 | 10.8 | 43.5 1.4
UGA test 61.6 | 18.6 44 1.25
UGACUU train | 52.9 | 15.5 32 7.3
UGACUU test | 38.8 | 22 32.1 5.4

Table 2: Data set statistical parameters

Two different encoding schemes were initially
tested. The first represented each base according
to their chemical structure, as either a purine (A
and G) or a pyrimidine (U and C). Two bits were
thus required for this scheme. The second repre-
sents each base separately, and thus used four bits.
Two different encoding schemes were investigated
in an attempt to answer the following question: is
the termination efficiency affected by the family of
the bases present (i.e. purine versus pyrimidine) or
by the individual bases themselves?

5 Initial Experiments

Three neuron layer multi-layer perceptron
(MLP) networks were trained for each of the ter-
mination codons and for both two-bit and four-bit
representations. Performance over the training and
testing data sets was evaluated using the R? mea-
sure (Equation 2).

DO S

R? =~
Ei P?

(2)

where:

p; is the predicted value of element 4

t; is the target value of element 4

n is the number of elements in the target set

After some experimentation, the optimal num-
ber of hidden neurons used in the networks, for the
four bit representation, were two for UAG and UGA
codons, and one for UGACUU. For the two bit rep-
resentation, one hidden neuron was found to be op-
timal. Standard backpropagation with momentum



training was used, with the parameters as in Table

3.
Epochs 1000
Learning rate | 0.5
Momentum 0.5

Table 3: Training parameters

5.1 Results

The R? values across the testing data sets are
displayed in Tables 4 and 5 for two and four bit
representations, respectively. Plots of the network
testing performance are shown in Figures 1, 2 and
3, where the target values are represented by “o0”,
the output values of the two bit networks by “x”
and the output values of the four bit network by
“+77 N

Inspection of the tables and plots shows that for
the UAG and UGA codons, the four bit represen-
tation gave superior results. While the R? value for
UGACUU codon was high for the two bit represen-
tation, the plot indicates that it is a poor performer.
Four bit representations were therefore used in the
later experiments.

These results allowed us to infer that the four
bit representation is superior to the two bit repre-
sentation. This indicated that the identity of the
nucleotides was important in determining termina-
tion efficiency rather than the base structures. The
results also raise a question: are the inferior results
for the UGACUU complex due to the fewer exam-
ples available for that codon, or due to the different
biological processes involved? This question is ad-
dressed in Section 7.

Table 4: Test R? values per codon for 2-bit repre-

sentation

Table 5: Test R? values per codon for 4-bit repre-

sentation

Codon R?
UAG 0.973
UGA 0.909

UGACUU | 0.964

Codon R?
UAG 0.995
UGA 0.981

UGACUU | 0.956

6 Sensitivity Analysis

The goal of this research is to gain a better un-
derstanding of the problem. Of interest, therefore,
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Figure 1: Initial accuracy of UAG networks
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Figure 2: Initial accuracy of UGA networks

is the contribution each input feature (base) makes
to the accuracy of the networks. This can be deter-
mined by measuring the sensitivity of each input,
that is, how much the error of the network is af-
fected by each input feature.

The sensitivity S; of the network to input feature
7 is given by Equation 3.

s, = >i B(zi) — E@i;) 3)

n

where:

E(x;) is the network error over example x;

E(%;,;) is the network error over example x; where
feature j is set to the mean value of j across all
examples

n is the number of examples

The results of this formula are positive if the
input is not significant to the network, and negative
if it is. The sensitivity of each feature for each
network is listed in Table 6.

Each of the features for the UAG and UGACUU
networks had negative sensitivities, and thus were
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Figure 3: Initial accuracy of UGACUU networks

Input | Base | UAG UGA UGACUU
1 U |-0.0137 0.0036 -0.0166
2 C |-0.0103 | 0.00187 -0.0166
3 G -0.016 | -0.00236 -0.0162
4 A |-0.0112 | 5.65x10°® | -0.0165
5 U -0.017 | -0.000372 -0.0166
6 C [ -0.0148 | -0.00166 -0.0164
7 G [ -0.0135 | -0.000706 -0.0164
8 A [-0.0133 | 0.00113 -0.0165
9 U -0.013 0.00466 -0.0166
10 C | -0.0145 [ 0.000349 -0.0165
11 G -0.015 -0.0049 -0.0164
12 A [-0.0122 | 0.000766 -0.0165

Table 6: Sensitivities

considered important to the network. Five of the
features for the UGA network had positive features,
which indicated that they are of less importance
than the others. Plotting the sensitivity measures
on the column graph in Figure 4 showed that the
two highest measurements are for the first and third
uracil base in the codon.

If these two features are indeed unimportant to
the network, then removing them either individu-
ally or together should not affect the accuracy of the
resulting network. Firstly, the first uracil (U1) was
removed from the training and test data sets and
a network trained and evaluated. Another network
was evaluated with the third uracil (U3) removed,
while a third had both Ul and U3 removed from
the training and test data sets.

The R? values for these three networks across
their respective test data sets are displayed
in Table 7.

Plots of the performance of each network, where
“0” is the target output value and “x” is the actual
output value, are displayed in Figures 5, 6 and 7.

Inspection of the R? values and plots showed
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Figure 4: UGA Network Feature Sensitivity

Removed Base | R?
U1 0.982
U3 0.986

Ul & U3 0.97

Table 7: R? values for UGA networks with removed
input features

that the network performance was not decreased by
the removal of either the first or third uracil from
the data sets, and was only slightly decreased by
removal of both. This strongly indicates that the
presence or absence of either of these bases is not a
major determinant for the ANN model of the UGA
stop codons efficiency.
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Figure 5: UGA network with base Ul removed

This finding, however, directly contradicts the
biological evidence, which strongly suggests that
the presence of uracil in the first position consis-
tently leads to a higher termination efficiency.

Modifying the formula used to measure the sen-
sitivity of each feature (Equation 3) to that shown
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Figure 6: UGA network with base U3 removed
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Figure 7: UGA network with both Ul and U3 bases
removed

in Equation 4, and reevaluating the sensitivity of
each feature of the UGA network, yielded the re-
sults shown in Figure 8. It can be seen that the
sensitivity measure for the first uracil is higher than
that for the other features. At first glance, this
would seem to contradict both the sensitivity mea-
sures previously determined and the experimental
evidence that shows the removal of this feature does
not adversely affect the accuracy of the network. A
more likely explanation, however, is that the pres-
ence or absence of uracil in the first position does
not act as a discriminator for termination efficiency.

This interpretation does not contradict the bio-
logical data, nor does it contradict the experimental
evidence presented here.

0.025 —

Sensitivity
o
o
2
&

0.011

0.005 -

Feature

Figure 8: UGA Network Feature Sensitivity

7 Experiments with Reduced Data
Sets

As discussed in Section 5, the performance of the
networks trained for the UGACUU complex was
inferior to that of both UAG and UGA codons.

One of the possible reasons for this performance
gap is the smaller number of examples in the
UGACUU data sets. To test if this was the case,
the training and recall data sets for the UAG and
UGA codons had examples removed so that each
was the same size as those for UGACUU. Training
these networks as before yielded the results in Table
8 and Figures 9 and 10. In these plots, the target
values are indicated by “0” and the actual output
values by “x”.

If the lesser performance of the UGACUU net-
work had been due to the lesser number of exam-
ples, then it would be expected that the networks
for UAG and UGA would also suffer a drop in
performance when the size of their data sets was
reduced. Comparison of the R? values and plots
for the reduced data set UGA and UAG networks
with the four bit UGACUU network from Section
5 shows that this is not the case: even with the
smaller data sets, the UAG and UGA codon net-
works perform much better than the UGACUU net-
work. Unless the examples removed from the UAG
and UGA data sets were coincidentally (and im-
probably) examples that are not of great signif-
icance to the problem, this result indicates that
there truly are different biological processes at work
for UGACUTU.

Codon | RZ?
UAG | 0.996
UGA | 0.986

Table 8: Test R? values per codon for reduced data
sets
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Figure 9: accuracy of UAG network for reduced
data sets
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8 Future Work

There are several further avenues of research that
may be pursued in future. Firstly, a more com-
plete examination of the affects of each input fea-
ture is possible. The small size of the networks, and
the relatively small number of input features sug-
gests that an exhaustive investigation is possible for
each of the codons. As more data becomes avail-
able, it will also be possible to carry out further
experiments. The question tentatively answered in
Section 7 can be more definitively answered when
the complete data set is available for the UGACUU
codon. Application of one of the several methods
of rule extraction from ANN available may also be
informative, as it could yield rules that more clearly
articulate the functionality of the extended termi-
nation signals. Of particular interest is a compari-
son of the performance of UAG and UGA networks
over data for the UAA codon. Since both the RF1
and RF2 proteins decode the UAA codon, it will

be interesting to see, when data for UAA becomes
available, how accurately the UAG and UGA net-
works can generalise to it. If the same biological
functions underlie the action of RF1 and RF2 for
both codons they are keyed to, then the UAG and
UGA networks could be expected to generalise to
the UAA data as well.

9 Conclusion

It has been shown in Section 5 that MLP are
able to successfully model the underlying functions
in this problem domain. The superior performance
of the four bit representation scheme as opposed to
the two bit scheme also evaluated, indicates that
the identity of individual bases is of greater impor-
tance than their family. The sensitivity analysis
performed in Section 6 indicates that for the codon
UGA, the presence or absence of uracil in the first
position of the trailing codon is not significant as
a discriminator between low and high termination
efficiencies. The presence of uracil in the third po-
sition has been shown to be not significant. Finally,
the work performed in Section 7 leads to a tentative
conclusion that different biological mechanisms are
at work for the second triplet downstream from the
stop.
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