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Abstract

Many real world data analysis and processing tasks
require systems with the ability of on-line, self-adaptive
learning. In this paper present some theoretical
background for the Evolving Self-Organising Map
(ESOM) model and further apply it in solving some
on-line pattern analysis problems. Results are compared
with some benchmarks.
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1. Introduction

On-line data analysis is catching more attention as
the volume of information in computer networks keep
on exploding. Despite of the rapid development in
the theories of computational intelligence, it remains
a challenging problem with a number of considerable
obstacles, such as in the cases when the statistical
models of data are unknown or time-dependent, and the
parameters of the learning system need to be updated
incrementally while only a partial glimpse of incoming
data is available.

In the context of data clustering and vector
quantisation, a straightforward approach is the well
known K-means algorithm [13], which calculates each
cluster centre as the mean of data vectors within the
cluster. Given an inputx, its on-line version is applied
without a priori knowledge of data distribution:

∆wj =
{
γ(x−wj), if j = i(x)
0, otherwise

(1)

where γ is the learning rate, andi(x) is the winner
among nodes. This learning rule is also referred as
‘local k-means algorithm’ [14]. It is of Winner-Takes-All
scheme and can operate in a dynamic environment
with continuously arriving data. One drawback is
that it can suffer from confinement to local minima
[15]. To avoid this some “soft” computing schemes
are proposed [16][14], in which not only the “winner”
prototype is modified, but all reference vectors are
adjusted depending on their proximity to the input vector.

Kohonen’s self-organizing map (SOM) [10] further
introduces topology preserving ability by means of
applying neighbourhood functions in feature map for

node modification. The map is typically organised on
a two dimensional lattice for visualisation purpose. The
learning rule of SOM is

∆wi = hi,b(x−wi) (2)

where wb denotes the winner node, andhi,b is a
neighbourhood usually defined as a Gaussian or a bubble
function of the node indexesi andb.

Such a learning rule is linked to an optimisation
process which targets on achieving both a minimum
representation error on the best matching prototype for
the input, and topological preserving of the reduced
prototype space.

In SOM the topology order of the prototype nodes,
indicated by the node indexes, are pre-determined and
the learning process is to move the initialised nodes
onto appropriate positions in the low dimensional feature
map. As the original input manifold can be complicated
with an inherent dimension larger than that of the feature
map (usually set as 2 or 3 for visualisation purpose),
the dimension reduction in SOM can be too drastic,
generating a folded feature map.

The topology constraint on the feature map with a low
dimension is removed in [15], where a neural-gas model
is proposed with a learning rule similar to that of SOM,
but the prototype vectors are organised in the original
manifold of the input space. The weight updating rule
is

∆wi = γhλ(ki(x,w)(x−wi) i = 1, ..., N. (3)

whereγ is the learning rate, andki is theneighbourhood
rank of the i-th prototype corresponding to the current
input. The neighborhood function is defined as

hλ(ki(x,w) = e−ki(x,w)/λ (4)

with λ > 0. Each time when the weights are updated
the neighbourhood rank, i.e. the matching rank of
prototypes, needs to be computed. This brings up the
time complexity for one adapting step of the algorithm
to the scale ofN logN in a serial implementation, while
searching for the best matching unit in K-means or SOM
scales only withN .

Fritzke [5] proposed the growing neural gas (GNG)
model, which allows the neural gas model to grow by
adding new nodes adaptively. Bruske and Sommer [2]
presented a similar model called dynamic cell structure



(DCS-GCS). Both GNG and DCS-GCS need to calculate
local resources for prototypes, which introduces extra
computational effort and reduces their efficiency.

The evolving self-organising map (ESOM) [3] model
was proposed in the light of the works mentioned above.
It is similar to GNG but does not require local resource
calculation. Its node insertion mechanism also allows the
prototypes evolve quicker than DCS and GNG. We have
applied the model in macro-economic data analysis and
some pattern recognition experiments. In the following
parts of this paper, we will first give a brief introduction
to the ESOM model and then present simulation results
done on some benchmark problems.

2. ESOM revisited

The ESOM network structure is similar to that
of GNG. The algorithm starts with a null network.
Nodes embedded in the original data space are created
incrementally. When new input is presented the
prototypes in the network compete with each other. The
winner node sets up connections with its first two nearest
neighbours.

Assume the current input isx, and the existing
prototype set isW = {w1,w2, ...,wN}. If

‖wi − x‖ > ε, ∀wi ∈ W (5)

where ε is a distance threshold, then a new node is
inserted as

wN+1 = x (6)

The new node is inserted representing exactly the
poorly matched input vector, resulting in a maximum
activation on the new node. This simple approach
brings advantages especially when handling clustered
data. Although direct allocation is sensitive to noise and
may introduce some artifacts in clustering, this can be
mitigated by automatic deletion of obsolete nodes.

If the new input matches well to some prototypes, the
activation on the prototype nodes is defined as

ai = e−2‖x−wi‖2/ε2 (7)

indicating the closeness of the current input to weight
vector i. To update the weight vectors of the matched
prototypes, we consider the following generalised
learning rule:

∆wi = γhi(x, b)(x−wi), i = 1, ..., N (8)

whereb is the index for the winner node,γ is the learning
rate. If we lethi(·) = hi,b, i.e., the neighbourhood
function in SOM, it gives the Kohonen rule. Defining
hi(·) = ki(x), i.e, the neighbourhood rank, then the
learning rule becomes that of neural gas.

To overcome the topological restriction of the SOM
model, and avoid the time-consuming sorting procedure

involved in neighbourhood ranking as in neural gas,
here we definehi(x) = ai(x)/

∑
k ak(x). Hence the

learning rule of ESOM is

∆wi = γ
ai∑

k ak(x)
(x−wi) (9)

On the other hand, it has been pointed out that such
a learning rule leads to a stochastic process to minimise
the Kullback discrepancy between the input data and the
internal representation of the network [1]. The Kullback
criterion can be written as:

G(µ, h) =
∫
µ(x) log

µ(x)
h(x)

dx (10)

whereµ is the probability density of the input data and
h is the internal representation presumed as a mixture of
Gaussians:

h(x) =
1

N(
√

2σ)d

N∑
i=1

exp(−‖x−wi‖2

2σ2
) (11)

whered is the dimension of the input space. By carrying
out a gradient descent onG(·,
cdot) the learning rule in Eq.(9) can be derived.

By removing geometric constraints in the SOM
model, ESOM allows for more flexibility in the prototype
space. This trait, however, becomes a disadvantage when
visualisation of the prototype nodes is required, as they
are now embedded in the original data space usually of a
high dimension. It needs to turn to dimension reduction
algorithms such as PCA and Sammon’s projection to
visualise thefeature map[3].

3. Simulations

Previous studies made on some benchmark data
sets have shown that ESOM works faster and more
effectively in classification tasks and macro-economic
data analysis [3]. In this paper we introduce more
simulations of pattern analysis tasks. We have also
strengthened the evaluation of classification results using
cross validation.

3.1. Colour image quantisation

Let us first consider colour image quantisation as
a problem of on-line data clustering. Colour image
quantisation is a process for reducing the number
of colours of a digital colour image. It is one
of the most frequently used operations in computer
graphics and image processing and is closely related to
image compression. There are two basic approaches:
pre-clustering (with methods such as median-cut[8] and
octree[7] etc.) and post-clustering (with methods such
as geometric clustering and neural network algorithms).
Although widely studied for many years, it remains a



time consuming task which is difficult to achieve an
efficient on-line implementation.

We apply the ESOM algorithm in colour image
quantisation and compare the results with those achieved
by other methods including median-cut, octree, Wu’s
method [19], and local K-means (LKM). Among these
methods, only ESOM and local K-means operate in
on-line mode, in which the image can be quantised
pixel-by-pixel. The others mostly need to manipulate
image colour histograms and have to be carried out in
a batch mode after all pixel data are made available.

Three 24-bit true-colour images are chosen for this
study: Pool Balls, Mandrill, and Lenna. The Pool Balls
image is artificial and contains smooth colour tones and
shades with a size of510 × 383. The Mandrill image is
of 262144 (512×512) pixels but has a very large number
of colours (230427). The Lenna image (size512× 480)
contains both smooth areas and fine details. All three
images are popularly used in image processing literature.

Images are all quantised in RGB space onto 256
colours except for ESOM, whose colour numbers are
slightly smaller. For fair comparison dithering process
is not introduced for all methods. We denote the
quantisation process as a mapping from the input colour
Ii = (ri, gi, bi), to the best-matching colourcm
in a reduced paletteC = {cj |j = 1, 2, ..., 256}.
The normalised root mean square error (NRMSE) of
quantisation is defined as

Eq =

√√√√ 1
N

M∑
i=1

‖Ii − cm‖2 (12)

M is the number of pixels in imageI. The variance
of quantisation error is another factor which influences
the visual quality of the quantised image. The standard
deviation of quantisation error is define as

σq =

√∑
i(‖Ii − cm‖ − Eq)2

M
(13)

Table 1: Quantisation performances:Eq / σq

Methods Images
Pool Balls Mandrill Lenna

Median-cut 2.6/8.3 11.3/5.6 6.0/3.5
Octree 4.2/3.6 13.2/5.0 7.6/3.8
Wu’s 2.2/2.2 9.9/4.6 5.5/2.9
LKM 3.5/2.8 11.5/5.4 6.7/2.8

ESOM 2.4/2.6 9.5/3.9 5.3/2.4

Performance of different methods are compared in
Table 1. From these results we can see that ESOM
achieved the best results for the natural images (Mandrill
and Lenna). For the artificial Pool Balls image its
performance is comparable with Wu’s method, the
best among the popular colour quantisation methods.

Generally ESOM not only achieves a very small value of
average quantisation error, but its error variance is also
the smallest. This is consistent with the observation that
images quantised by ESOM have better visual quality
than those done by other methods. To demonstrate
this the zoomed region of the quantised Lenna images
are compared in Fig.1. To evaluate the convergence
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Figure 2: Quantisation error versus number of pixels
learned in different orders.

of the algorithm, we compute on-line the NRMSE of
using the allocated colour maps to quantise the whole
image. As strong correlation typically exists among
image pixels, it is found that a small fraction of the
image data (less than 10%) can lead the quantisation
error quickly into convergence, as shown in Fig.2 for
the Lenna image. Instead of quantising image pixels in
sequential order, convergence is quicker by presenting
image pixels to the algorithm in random order. Judged
by visual quality, however, the network needs to learn
about 20% of the image data before generating a good
display. The simulation program of ESOM written in C
runs on an Intel Pentium II machine with Linux 2.2. To
get the final palette it takes 2 seconds to fully scan the
colour images.

The advantage of using an on-line algorithm in colour
quantisation is that a progressive display mode can be
enabled and enhance the quality of image and video
display on low-end computers connected to the Internet.
Although the algorithm running as a computer program
is not practical for this purpose because of the intensity
of computation, a hardware implementation could make
use of parallelism and therefore greatly speed up the
quantisation process for real time applications.

3.2. Pattern classification

ESOM is by nature an unsupervised learning
algorithm. But just like SOM and other clustering
methods, it can be applied to supervised classification
tasks. Here we adopt a plain 1-NN approach, i.e., the
prototypes keep their labels while being updated, and the
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Figure 1: Quantisation quality comparison: (a)The zoomed region of the original Lenna image, and those quantised
by (b)median cut, (c)octree, (d)Wu’s method, (e)local K-Means, and (f)ESOM.

class label of the winner is used for classification.
Two benchmark data sets are used in our experiments.

The Pima Indian diabetes data is from the University of
California Irvine UCI machine learning repository. The
data set has eight inputs, and a total of 768 examples in
two classes. The speaker independent vowel data set is
the CMU artificial intelligence repository. It consists of
990 frames of speech signals from four male and four
female speakers. A 10-fold cross validation process is
adopted to train and test the ESOM modules. For each
data set, different partition of the data is tried for 5 times
and the average performance is calculated.

For the diabetes data, all ESOM modules haveε =
0.4 and the average network size is of 97 nodes. Results
are listed in Table 2 in comparison with other studies
using the same experiment process. Results on k nearest
neighbourhood (k-NN), classification and regression
trees (CART), multi-layer perceptron (MLP), learning
vector quantization (LVQ) and linear discriminant
analysis (LDA) are from [18], and CART-DB from [17].

For the vowel recognition data, the same experiment
process is repeated. We setε = 1.2. The average
number of nodes in the network is 233. In Table.3,
the performance of ESOM is compared with those two
approaches in [17].

3.3. Predictive classification

Owing to the on-line learning ability of ESOM,
whenever a new example arrives the network can
classify it in advance using existing prototypes. If the
classification is correct compared with the class label

Table 2: Performance Comparison on the Diabetes
Problem.

Classifier % Correct (Average)
k-NN 71.9
CART 72.8
CART-DB 74.4
MLP 75.2
LVQ 75.8
LDA 77.5
ESOM 78.4± 1.6

Table 3: Performance Comparison on Vowel
Recognition using Cross Validation

Classifier % Correct (Average)
CART 78.2
CART-DB 90.0
ESOM 95.0± 0.5



carried by the new example, the network then adapts
itself to the new example. Otherwise a new node is
generated for the new example. In this way the network
continually improves its performance in an on-line mode.
We call such a process aspredictive classification.

Good results have obtained on both the vowel and
diabetes data sets, indicating the fast adaptive ability of
ESOM in on-line learning. The performance of on-line
predictive classification is shown in Fig. 3. Only 36
classification errors are made when the ESOM network
is evolved from the data set, i.e. with an overall error
rate of 3.4%. After exposure to the first 528 entries,
the ESOM module makes only 4 errors for the left 462
entries for predictive classification. Similar performance
is obtained for the diabetes data.
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Error occurrence in on-line classification
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Figure 3: On-line predictive classification error
occurrence over time for (a) the vowel data and (b) the
diabetes data.

These predictive classification simulations work
without node pruning and aggregation. In practice as
generally there will be a limit on number of nodes for
the network, node aggregation and pruning processes are
necessary and consequently introduce forgetting effects
and reduce the classification rate. We argue, however,
that this is not a bad thing at all when dealing with
dynamic data environments.

4. Discussion and conclusion

This paper tries to present the ideas of ESOM
algorithm with some historical background, and to
justify its application in on-line pattern analysis tasks
by carrying out a few benchmark studies. The results
have been promising. Nevertheless, there are a few
open-questions left untackled so far for the algorithm.

As ESOM is aimed at achieving “life-long” learning,
the learning rate should not drop to zero asymptotically,
otherwise it will fail to learn novel examples at later
stage, or to follow the possible fluctuation of statistical
properties of incoming data. We simply choose a small
constant value as the learning rate, which, as pointed out
by Heskes and Kappen [9] for a competitive learning
scenario, can achieve the trade-off of adaptability and
accuracy for the network.

Our algorithm can actually be categorised as an
on-line implementation of the leader-follower clustering
[4], where the adaptive resonance theory (ART) was
given as an instance. The distance threshold in ESOM
algorithm plays a similar role as the vigilance threshold
in the ART model, whose value determines implicitly the
number of clusters to be formed. With little information
about the data in an on-line mode, however, there is
no guideline in finding the right value for the threshold.
So far setting the threshold in leader-follower clustering
has been done through trial-and-error, until the ‘proper’
number of clusters are formed. Some future work may
be done in the effort to adaptively tune the threshold, and
find guidelines to split or merge clusters.

On the other hand, given the distance threshold
in different scales, it is easy to construct hierarchical
mappings with ESOM, with maps generated in a
multi-resolution mode. This may facilitate the
application of ESOM in information retrieval for
instance.

Last but not least, ESOM is proposed as a
computational model for on-line information processing
from an engineering point of view. Hence the biological
plausibility aspect of neural modeling is not considered.
Kohonen proclaims the biological plausibility in SOM
[11]. Some cognitive and psychological studies, for
example [12], also suggest that there is a semantic
dimension as low as 2 in human mind. The human
brain still remains fascinating yet mystic to us. From
an engineering point of view, however, number of
computational units can not be compared to that of
human brain and it is often required to keep a condensed
set of prototypes. Under such circumstance it makes
sense to explore artificial neural network models such as
ESOM etc. which may not fit in a biological background.
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