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  Abstract – In many applications of speech
processing the noise reveals some specific features.
Although the noise could be quite broadband, there
are a limited number  of dominant frequencies,
which car ry the most of its energy. This fact
implies the usage of nar row-band notch filters that
must be adaptive in order  to track the changes in
noise character istics. In present contr ibution, a
method and a system for  noise suppression are
developed. The method uses adaptive notch filters
based on second-order  Gray-Markel lattice
structure. The main advantages of the proposed
system are that it has very low computational
complexity, is stable in the process of adaptation,
and has a shor t time of adaptation. Under
comparable SNR improvement, the proposed
method adjusts only 3 coefficients against 250-450
for  the conventional adaptive noise cancellation
systems. A framework for  a speech recognition
system that uses the proposed method is suggested.

I. INTRODUCTION

   The noise existence is inevitable in real applications
of speech processing. It is well known that the
additive noise affects negatively the performance of
the speech codecs designed to work with noise-free
speech [1],[2],[3], especially codecs based on linear
prediction coefficients (LPC). Another application
strongly influenced by noise is related to the hands-
free phones where the background noise reduces the
signal to noise ratio (S/N) and the speech intelligibility
[4],[5]. Last but not least, is the problem of speech
recognition in a noisy environment. A system that
works well in noise-free conditions, usually shows
considerable degradation in performance when
background noise is present [6].
   It is clear that a strong demand for reliable noise
cancellation methods exists that efficiently separate
the noise from speech signal. The endeavors in
designing of such systems can be followed some 20
years ago [7].
   The core of the problem is that in most situations the
characteristics of the noise are not known a priori and
moreover they may change in time. This implies the
use of adaptive systems capable of identifying and
tracking the noise characteristics. This is why the
application of adaptive filtering for noise cancellation
is widely used [7],[8],[9],[10].

   The classical systems for noise suppression rely on
the usage of adaptive linear filtering and the
application of digital filters with finite impulse
response (FIR). The strong points of this approach are
the simple analysis of the linear systems in the process
of adaptation and the guaranteed stability of FIR
structures. It is worth mentioning the existence of
relatively simple and well investigated adaptive
algorithms for such kind of systems as least mean
squares (LMS) and recursive least squares (RLS)
algorithms [7],[10].
   The investigations in the area of noise cancellation
reveal that in some applications the nonlinear filters
outperform their linear counterparts. That fact is a
good motivation for a shift towards the usage of
nonlinear systems in noise reduction [11],[12],[13].
   Another approach is based on a microphone array
instead of the two microphones, reference and
primary, that are used in the classical noise
cancellation scheme [6].
   A brief analysis of all mentioned approaches leads
to the conclusion that they try to model the noise path
either by a linear or by a nonlinear system. Each of
these methods has its strengths and weaknesses. For
example, for the classical noise cancellation [1] with
two microphones this is the need of reference signal;
for the neural filters - the fact that as a rule they are
slower than classic adaptive filters and they are
efficient only for noise suppression on relatively short
data sequences [14], which is not true for speech
processing and finally for microphone arrays - the
need of precise space alignment [6].
   In present contribution the approach is slightly
different. The basic idea is that in many applications,
for instance, hands-free cellular phones in car
environment [4], howling control in hands-free
phones, noise reduction in an office environment, the
noise reveals specific features that can be exploited. In
most instances although the noise might be quite
wide-band, there are always, as a rule, no more than
two or three regions of its frequency spectrum that
carry most of the noise energy and the removal of
these dominant frequencies results in a considerable
improvement of S/N ratio. This brings the idea to use
notch adaptive filters capable of tracking the noise
characteristics. In this paper a modification of all-pass
structures is used [15]. They are recursive, and at the
same time, are stable during the adaptive process. The
approach is called “blind”  because there is no need of
a reference signal.



II. CLASSICAL ADAPTIVE NOISE
CANCELLATION

   One of the most wide spread applications of
adaptive filtering is adaptive noise cancellation. Fig. 1
shows the popular scheme for adaptive noise
cancellation using digital FIR filter.
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                                       wi(n)
              hi(n)
                        n1(n)

        s(n)               xp(n)                              e(n)

Fig. 1. Adaptive noise cancellation.

   The basic prerequisite for this realization is the
availability of the two inputs called primary and
reference. The primary signal consists of speech s(n)
plus noise n1(n) while the reference signal consists of
noise n(n) alone. The two noise signals n1(n) and n(n)
are correlated and hi(n) is the impulse response of the
noise path from the noise source to the primary
microphone. Assuming that the signals are discrete-
time and the sampling period is T=1, the primary input
can be written as

xp(n) = s(n) +n1(n)                         (1)

where speech signal s(n) and noise signal n1(n) must
be uncorrelated.
   Going trough the scheme of Fig. 1 and all mentioned
above it is clear that here noise cancellation is simply
the joint process estimation problem. The system is to
reduce the effect of the noise in the primary input
using the correlation between the two noise signals
n(n) and n1(n). This can be implemented by
minimizing the mean-square error E[e2(n)] where

e(n) = xp(n) – y(n).                        (2)

   In (2) y(n) is the  output  signal  of the adaptive filter

∑=
=

N

0i
ri )n(x)n(w)n(y                      (3)

where N is the filter order and wi(n) is the ith
coefficient of the adaptive filter.
   Having in mind that

E[e2(n)] = E[s2(n)] + E[n1(n) – y(n)]2          (4)

the minimization of E[e2(n)] is equivalent to the
minimization of the difference between the signal on
the adaptive filter output y(n) and the noise signal
n1(n) present on the primary input. Obviously the
better replica of n1(n) y(n) is, that is, the better the

adaptive filter is modeling the impulse response hi(n)
of the noise path, the smaller the difference.
   The minimization of E[e2(n)] can be achieved by
updating of the adaptive filter coefficients. Most often
the LMS and NLMS algorithms are used, the latter
having the advantage that the step size is relatively
independent of the amplitude of the input signal.
According to the scheme in Fig. 1 the updating
equations for LMS and NLMS algorithms are given
by
LMS:

wi(n+1) = wi(n) + µe(n)xr(n)                (5)
NLMS:

wi(n+1) = wi(n) + µ
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0≤i≤N
where µ is a step size.

III. ADAPTIVE BLIND NOISE SUPPRESSION
(ABNS) SCHEME

   As mentioned in the introduction, the specific
features of the noise in some speech processing
applications suggest the usage of narrow-band notch
filters. They have to meet the following requirements:
• to adapt as fast as possible to the changes in the

noise which might be quite rapid, for example car
engine noise;

• the cancelled portions of the spectrum should be
as narrow as possible in order to prevent speech
signal distortions.

   Both requirements could be met much easier using
IIR adaptive filters instead of FIR adaptive filters. IIR
filters are usually avoided because they create a lot of
stability problems. To overcome this problem we use
a realization based on second order Gray-Markel
lattice circuit [15] - Fig.2. Using this circuit it
becomes possible to implement a second order
notch/bandpass section [16] - Fig. 3.
   What are the advantages of such a realization? First,
it has extremely low pass band sensitivity that means
resistance to quantization effects. Second, it is very
convenient for realization of adaptive notch filters
because it is possible to control independently the
notch frequency and the bandwidth.

                    k2                                      k1

input

                             z-1                                       z-1

output

Fig. 2. Second order lattice Gray-Markel circuit
realizing all-pass function A(z).



   Thus if the all-pass function A(z) is
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then k1 controls the notch frequency ω0 while k2 is
related to the bandwidth BW via

k1 = -cos ω0                               (8)
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                                                      0.5
                                                                     Bandpass

Fig. 3. Second order notch/bandpass section.

   But, on the other hand, BW is directly connected to
the distance from the pole to the unity-circle. So if we
use the structure of Fig. 3 as an adaptive filter we may
fix BW and thus fixing k2 we make constant the
distance from the pole to the unity-circle which means
that with this constraint we obtain an adaptive IIR
filter free of stability problems. Adapting k1 we may
shift the notch frequency around the unity-circle.
   Using the basic structure of Fig. 3 and the constraint
mentioned above, the final arrangement of our system
is shown in Fig. 4. The system will work in the
following manner: each section will remove one of the
dominant frequencies using an appropriate adaptive
algorithm. As shown in Fig. 4 we propose to update
only the coefficients k11, k12,…, k1M, while k2 is a
priori determined from equation (9). Thus we can
reduce considerably the number of computations and
can guarantee the stability of the adaptive structure.
The number of sections is determined by the
application. Here we introduce the NLMS algorithm
for adjusting the filter coefficients as

ei(n) = 0.5[ei-1(n) + yi(n)]                 (10)

for i = 1 to M and e0(n) = x(n)
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where M is the number of sections, ei(n) is the error
signal, µ is the step size and )n(y i

′  is the derivative

of yi(n) with respect to the coefficient subject of
adaptation.
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Fig. 4. Adaptive system for noise suppression.

IV. TEST RESULTS

   The performance of the ABNS method for noise
suppression is assessed by computer simulations. Fig.
5 shows the original speech. The speech is corrupted
with noise from computer cooling fan that is most
often encountered in office environment and the
resultant signal is depicted in Fig. 6. The process of
noise suppression is shown in Fig .7. Here the system
is composed of 3 sections each of them adapting its
coefficient to one of the dominant frequencies in the
noise spectrum. Fig.8 presents the trajectories of the
filter coefficients. In this experiment the capability of
the system to track the changes in noise signal is
tested as the dominant frequencies shift from 0.1, 0.2
and 0.4 at the beginning, to 0.14, 0.23 and 0.36. Here
the system does not have information about the
dominant frequencies and adjusts its coefficients to
them, as it works.



Fig. 5a. Original speech - the word “home” .

Fig. 5b. Spectrogram - the word “home” .

Fig. 6. Noise-contaminated speech.

Fig. 7. Speech after noise suppression.

Fig. 8. Trajectories of the filter coefficients.

   Table 1 shows the improvement in SNR as a result
of the application of the proposed system. The
obtained results are comparable to these of the
conventional adaptive noise canceller (ANC), for
example these reported in [1]. The proposed system is
much faster and simpler to implement.

Table 1. SNR before and after noise suppression.
ABNS Before After SNR Gain

SNR (dB) 0 11.9 11.9
SNR (dB) 3.5 14.3 10.8

ANC Before After SNR Gain
SNR (dB) 0 10 10

V. A FRAMEWORK FOR A SPEECH
RECOGNITION SYSTEM USING ABNS

   A block diagram of a speech recognition system is
given in Fig. 9. It consists of the following modules:
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adaptive blind noise suppression (ABNS), endpoint
detection (EPD), acoustic feature extraction (AFE),
feature normalization (FN) and speech recognition
module (SRM).

MIC
            ABNS        EPD         AFE        FN       SRM

Fig. 9. Block diagram of a speech recognition system
using ABNS.

   Short-time energy and zero-crossing rate are
combined to detect the speech utterance boundaries.
Acoustic features of the input speech are extracted
over 20 ms frames. Hamming windows having an
overlap of 10 ms are used to calculate Mel Frequency
Scale Cepstral Coefficients and log-energy. Here the
speech recognizer can be implemented on the base of
adaptive evolving fuzzy neural networks (EFuNNs)
[17]. Since the input layer of the networks has fixed
size, while the segments (words) are made up of a
variable number of frames, a technique for
normalization is needed. A discrete cosine transform
(DCT) is applied to the whole segment, retaining as
many parameters as it is necessary. Several
application-oriented systems for automatic dialing and
robot control are under development.

VI. CONCLUSIONS

   A very efficient adaptive system based on IIR
structures for noise suppression is proposed in this
contribution. The main advantages of the present
realization are:
• the adaptive system has a short time of adaptation

- about 100 iterations;
• the system is very simple and flexible, for

comparison, here we adjust only 3 coefficients
against 250-450 for conventional adaptive noise
cancellation system;

• the second-order lattice structures are stable
during the adaptation that defines the high
stability of the whole system.

   The proposed system for noise suppression may be
applied in many situations where the noise reveals the
specific features mentioned in the previous sections
and the application of this system could considerably
improve the speech intelligibility.
   A demonstration program is available on the WWW
from:
“http://divcom.otago.ac.nz/infosci/KEL/CBIIS.html” .
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