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Abstract
This paper reports an application of evolving fuzzy
neural network (EFuNN) as a module in a system for
MPEG compressed video parsing. EFuNN learns
from pre-classified examples in the form of motion
vector patterns in order to distinguish between six
classes: static, panning, zooming, object motion,
tracking and dissolve. The performance of EFuNN is
compared with LVQ and the results are discussed. In
addition, the impact of the number of membership
functions and the contribution of the rule node
aggregation are analyzed.
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1. Introduction
Video parsing is the first step towards automatic
annotation of digital video sequences. Its goal is to
divide the video stream into a set of meaningful and
manageable segments that are used as basic elements
for indexing. Typically video is segmented into shots,
shot transitions and camera operations within shots.
Each shot is then represented by key frames and
indexed by extracting spatial and temporal features.

Since video is increasingly stored in compressed
format (e.g. MPEG), several parsing approaches that
operate directly on the compressed video were
proposed [7,8,9,10,12]. Their main disadvantages are
summarized in [5,6] and a hybrid rule-based/neural
system was proposed as an alternative. It is based
only on the information available in the MPEG-2
stream, namely the motion vectors (MV) and
macroblock (MB) coding mode in B and P frames.
The system follows a two-pass scheme. A rough scan
over the P frames locates the potential shot
boundaries and the solution is then refined by a
precise scan over the B frames of the respective
neighborhoods. The “simpler”  boundaries are
recognized by the rule-based module, while the
decisions for the “complex”  ones are refined by the
neural part. To do this, the neural module learns from
pre-classified examples in the form of MV patterns
and is trained to distinguish between six classes:
static, panning, zooming, object motion, tracking and
dissolve.

The goal of this paper is to study the potential of
evolving fuzzy neural networks (EFuNNs) as a neural

module in a system for video parsing. EfuNNs are
novel and promising neural model that offers one-
pass training and good generalization.

2. Evolving Fuzzy Neural Networks
EFuNNs are fuzzy neural networks for prediction and
classification introduced by Kasabov [2,3]. They have
a five-layer structure, see Figure 1.
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Figure 1. EFuNN's architecture

The input layer represents input variables. The second
layer of nodes (fuzzy input neurons) represent fuzzy
quantification of each input variable space using
membership functions. The third layer contains rule
nodes that evolve through learning according to the
ECOS principles [2]. The rule nodes represents
prototypes of data mapping between the fuzzy input
and fuzzy output spaces. Each rule node is defined by
two vectors of connection weights: W1 and W2. The
former is adjusted via unsupervised learning based on
the similarity between the fuzzy input vector and the
prototypes already stored. W2 is updated applying
LMS algorithm to minimize the output fuzzy error.
Neurons in the fourth layer are called fuzzy output
neurons and represent the fuzzy quantization for the
output variables. Finally, the fifth layer contains
output nodes that represent the real values for the
output variables.

There are several options for growing of the EFuNN
architecture [4]. We used the 1-of-n EFuNN
algorithm that is summarized below.



2.1 Overview of the EFuNN algorithm

Data preprocessing:  

1. Normalize input vectors (training examples) iinp

in [0,1], where i=1..N and N is the number of training
examples.

2. Fuzzify training examples using mf triangular
membership functions:

)( ii inpfuzzifyinpF = , i=1..N

Hence, if X denotes the number of input vector
features (i.e., the dimension of iinp ), the fuzzy input

vector iinpF will contain mfX ⋅ elements.

3. Set the defuzzifying weights W3 between the fuzzy
outputs and real outputs as follows:
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where yW3  is the W3 vector for the class y, y=1..Y,

Y is the number of classes.

Hence, the dimension of the fuzzy output vector will
be mfY ⋅ .

Training of the network:  

1. Create the first rule node 1r  to represent the first

example:

111 targetW2,InpFW1 == 1

2. While (i<N) (i.e. there are training examples):

i=i+1;

For the ith fuzzy training example )( ii ,targetInpF :

a) calculate the normalized fuzzy local distance D
between the fuzzy input vector iInpF and the

already stored prototypes in the rule nodes jr ,

j=1..R, where R is the current number of rule
nodes:

∑

∑

=

=
−

=
R

j
r

R

j
ri

ji

j

j

W

WInpF

,rInpFD

1

1

1

1

)(

b) calculate the activation 
jrA1  of the rule nodes

jr , j=1..R:

2

),(
11 ji

r
rInpFD

A
j

−=

c) find the rule node *jr  with highest activation

1A

d) if sThrA
jr <
*

1 then

create a new rule node:

1ii targetW2,InpFW1
1

== ;

j=j+1;

else
w

 propagate the activation of *jr  to the action

neurons: 
**

212
jj rr WAA ⋅=

x
 calculate the fuzzy output error:

itargetAErr −= 2
y

 find the action node k* with highest
activation 2A
z

 if ( (k* ≠ t) or ( )*)( errThrkErr > ) then

create a new rule node:

1ii targetW2,InpFW1
1

== ;

j=j+1;

else update the input and output

connections of rule node k*:

),(111 *
1

* ji
t
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t
k rinpFDlrWW ⋅+=+

***
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t
k

t
k AErrlrWW ⋅⋅+=+

e) if (i = iAg) then aggregate:
{

 for each rule node jr , j=1..R find the subset of

rule nodes ar , a=1..A, A<R for which the

normalized Eucledian distances )1,1(
aj rreuc WWD

and )2,2(
aj rreuc WWD  are below the thresholds

w1Thr and w2Thr, respectively:
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where m and l are the numbers of conditional nodes
and action nodes, respectively.
|

 merge the nodes ar , a=1..A and update

jrW1 and 
jrW 2 as follows:
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 delete ar , a=1..A

Classification:  
To classify an example that has not been seen during
the learning phase, it is first normalized and then
propagated through EFuNN. The propagation from



rule nodes to output layer is restricted only for the
winning rule node. The example is classified as an
instance of the class y, where y is the index of the
output neuron with the highest value.
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Figure 2. Motion vector patterns corresponding to the
different classes

3 Data Description
3.1 Video frame classification

Following [5], six classes are defined:

• static - stationary camera and little scene
motion;

• panning - camera rotation around its horizontal
axis;

• zooming - focal length change of a stationary
camera;

• object motion - stationary camera and large
scene motion;

• tracking - moving object being tracked by a
camera

• dissolve - gradual transition between two
sequences showing one image superimposed on
the other as the frames of the first shot get
dimmer and these of the second one get
brighter.

Each of these six classes is characterized by a specific
pattern in the field of MVs of P and B frames in a
MPEG encoded sequence, as shown in Figure 2.
Hence, the goal is to build an EFuNN classifier for
successful recognition of the samples.

The well-known benchmark sequences Akiyo,
Salesman, Miss America, Basketball, Football,
Tennis, Flower Garden, and Coastguard have been
used in our experiments. As the image format is CIF
(288x352 pixels), there are 396 (16x16 pixels) MBs
in each frame. While the first three video sequences
are static, the next three involve a lot of object
motion, and the last two are mainly examples for
panning and tracking, respectively. Since there were
only few frames with zoom in the sequences above,
additional zooming was generated artificially for each
of them.

3.2 Data pre-processing
Pre-processing of the data and feature extraction were
done as in [6]. After their compression by the MPEG
Software Simulation Group Encoder1, the MVs
associated with each MB in P and B frames have
been extracted and smoothed by the application of
3x3 cross shaped vector median filter. Based on them,
a 22-dimentional feature vector has been generated
for each frame. The first component (V1) is the
fraction of MBs with no motion, calculated as:
(Zf+Zb+Zdf+Zdb)/(f+b+2d), where Zf, Zb, Zdf and Zdb are
the number of zero MVs in forward and backward
predicted MBs, forward and backward MV
components of bi-directional MBs of the current
frame, respectively. Then, the forward MV area is
sub-divided in 7 vertical strips, for which 3
parameters are computed: the average of the MV
direction (V2 ÷ V8), the standard deviation of the MV

                                                
1 http://www.mpeg.org/MPEG/MSSG/VMPEG



direction (V9 ÷ V15) and the average of MV modulus
(V16 ÷ V22).
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Figure 3. Video data pre-processing

In order to build the EFuNN classifier, the MV
patterns of 1200 P and B frames, have been visually
examined and manually labeled. The frames were
selected so that the number of examples for each type
is equal (i.e. 200).

Several aspects of data complicate learning. First, as
it could be seen from Figure 2, the three static
examples have rather different MV fields. While the
frames of Akiyo can be viewed as examples of ideal
static images, there are occasionally sharp movements
in the second video sequence (Salesman). The MV
field of the last static sequence (Miss America) is
completely different because the homogeneous black
background results in random orientation of the
respective MVs.

4. Experiments
The goal of the experiments was fourfold: 1) to test
the overall classification performance of EFuNN for
video frames classification; 2) to analyze the
recognition of the individual classes; 3) to find how

the different number of fuzzy membership functions
influence the EFuNN performance; 4) to assess the
contribution of the hidden nodes aggregation.

4.1 Evaluation methodology
For the evaluation of the results of the EFuNN
classification we used 10-fold cross validation [11].
The original data file was randomly split into 10 non-
overlapping subsets of equal size (120 examples).
Each time the examples of 9 of the subsets were used
for training and the resulting classifier was tested on
the remaining partition. The experiments were
repeated 10 times and the results were averaged. This
methodology is known to provide a very good error
estimate.

4.2 EFuNN Parameters
Apart from the various values for mf and
w1Thr/w2Thr as discussed below, we use the
following EFuNN parameters: sThr=0.92,
errThr=0.08, lr1=0.05, lr2=0.01, nAgg=60. No
pruning was applied.

4.3 Results and discussion
Table 1 shows the classification accuracy of EFuNN
with different number of membership functions when
applied for video frames classification. The respective
number of nodes are presented in Table 2. For the
needs of comparison, Table 3 summarizes the results
achieved by learning vector quantization (LVQ) [1]
using the public domain package LVQPack2.

mf accuracy [%] on the
training set

accuracy [%] on the
testing set

2 85.84 ± 1.47 84.50 ± 2.39
3 91.43 ± 1.09 86.75 ± 4.5
4 95.26 ± 0.62 91.58 ± 2.9
5 95.50 ± 0.38 89.25 ± 4.3
6 95.23 ± 0.87 88.58 ± 4.45

Table 1. EFuNN classification accuracy [%] on the
training and testing set (w1Thr=w2Thr=0.2)

mf
nodes 2 3 4 5 6
input 22 22 22 22 22

fuzzy input 44 66 88 110 132
rule

(hidden)
30

± 2.0
101.3
± 5.5

183.1
± 5.5

204.9
± 9.6

229.5
± 7.9

fuzzy output 12 18 24 30 36
output 6 6 6 6 6
total 114 213 323 362 425

Table 2. Number of nodes for the various EFuNN
architectures (mf=2÷6)

                                                
2 http://nucleus.hut.fi/nnrc/



accuracy
[%] on the
training set

accuracy
[%] on the
testing set

nodes
(input &

codebook)

training
epochs

85.42 ± 2.5 85.83 ± 2.2 60 (22 inp.
& 38 cod.)

1520

Table 3. LVQ performance on video frame
classification

As it can be seen from Table 1, EFuNN achieves best
classification accuracy when 4 membership functions
are used. Further increase in the number of
membership functions almost does not affect the
accuracy on the training set but results in worse
accuracy on unseen examples due to overtraining.

On the other hand, Table 2 indicates that increasing
the number of the membership functions implies
considerable growth in the number of rule nodes and,
hence, the computational complexity of the EFuNN’s
training algorithm. As a result, learning speed slows
down significantly. However, depending on the
specific application a suitable trade-off between the
learning time and the classification accuracy can be
found.

The performance of EFuNN compares favourably
with LVQ in terms of classification accuracy (see
Table 1,2 and Table 3). Another advantage of EFuNN
is that it requires only 1 epoch for training in contrast
to LVQ’s multi pass learning algorithms that needs
1520 epochs in our case study. It should be noted,
however, that the LVQ network is much smaller than
the EFuNN architectures.

mf zoom pan object mov.
2 100 ± 0.0 97.19 ± 5.42 74.58 ± 12.01
3 100 ± 0.0 92.75 ± 14.11 78.05 ± 12.69
4 100 ± 0.0 97.36 ± 2.80 88.08 ± 10.70
5 100 ± 0.0 99.01 ± 2.11 84.96 ± 9.20
6 100 ± 0.0 94.28 ± 5.22 88.38 ± 9.66

mf static tracking dissolve
2 95.00 ± 6.59 75.85 ± 15.58 62.08 ± 14.79
3 97.75 ± 4.41 72.89 ± 20.55 77.29 ± 14.65
4 98.11 ± 2.45 83.02 ± 11.46 83.95 ± 10.83
5 97.73 ± 3.11 69.70 ± 21.51 85.15 ± 9.54
6 97.68 ± 3.26 63.54 ± 18.84 87.57 ± 8.03

Table 4. Classification accuracy [%] of the individual
video classes using EfuNN with different number of

fuzzy membership functions

Table 4 summarizes the EFuNN classification of the
individual classes. It was found that while some
classes are easily identified (e.g. zoom, pan), the
recognition of object movement, tracking and
dissolve is more difficult. A more detailed analysis
indicates that the algorithm actually has difficulties to
discriminate well between these three classes which
explains also the large standard deviations. Despite

the fact that the MV fields of Miss America were not
typical for static sequences and complicated learning,
they are correctly classified by the EFuNN system.

Figure 4 and Figure 5 show the impact of the
aggregation on the classification accuracy and the
number of rule nodes, respectively. Again, 10-fold
cross validation was applied and each number
represents the mean value for the ten runs3.

Figure 4. Impact of the aggregation parameters
w1Thr & w2Thr on the classification accuracy (mf=2)

Figure 5. Impact of the aggregation parameters
w1Thr and w2Thr on the number of rule nodes (mf=2)

As expected, the results demonstrate that the
aggregation is an important factor for good
generalization and keeping the network’s architecture
at reasonable size. The best performance in terms of a
good trade-off between the recognition accuracy and
the network size was achieved for
w1Thr=w2Thr=0.15, 0.2. When the aggregation
coefficients are between 0.25 and 0.55, the
classification accuracy on the testing set drops with
about 10% as the number of rule nodes becomes
insufficient. Further increase in the values of the

                                                
3 For the sake of visualization the standard deviations
are omitted.
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aggregation coefficients results in network with one
rule node that obviously can not be expected to
generalize well.

5. Conclusions
An application of EFuNN for compressed video
parsing was presented. EFuNN learns from examples
in the form of motion vector patterns, extracted from
the MPEG-2 stream. The success of the neural system
can be summarized as high classification accuracy
and fast training.

Future work will focus on the possibility to further
improve the performance combining image and
motion information with audio features and text
captions. The approach will be also extended to
incrementally accommodate new classes, e.g. other
common types of gradual transitions and camera
operations.
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