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Abstract. The interplay of interactions between DNA, RNA and proteins leads 
to genetic regulatory networks (GRN) and in turn controls the gene regulation. 
Directly or indirectly in a cell such molecules either interact in a positive or in 
repressive manner therefore it is hard to obtain the accurate computational 
models through which the final state of a cell can be predicted with certain 
accuracy. This paper describes biological behaviour of actual regulatory 
systems and we propose a novel method for GRN discovery of a large number 
of genes from multiple time series gene expression observations over small and 
irregular time intervals. The method integrates a genetic algorithm (GA) to 
select a small number of genes and a Kalman filter to derive the GRN of these 
genes. After GRNs of smaller number of genes are obtained, these GRNs may 
be integrated in order to create the GRN of a larger group of genes of interest.  

1   Introduction 

Gene regulatory network is one of the two main targets in biological systems because 
they are systems controlling the fundamental mechanisms that govern biological 
systems. A single gene interacts with many other genes in the cell, inhibiting or 
promoting directly or indirectly, the expression of some of them at the same time. 
Gene interaction may control whether and how vigorously that gene will produce 
RNA with the help of a group of important proteins known as transcription factors. 
When these active transcription factors associate with the target gene sequence (DNA 
bases), they can function to specifically suppress or activate synthesis of the 
corresponding RNA. Each RNA transcript then functions as the template for synthesis 
of a specific protein. Thus the gene, transcription factor and other proteins may 
interact in a manner that is very important for determination of cell function. Much 
less is known about the functioning of the regulatory systems of which the individual 
genes and interaction form a part [6], [8], [15], [20]. Transcription factors provide a 
feedback pathway by which genes can regulate one another’s expression as mRNA 
and then as protein [3], [5]. 
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The discovery of gene regulatory networks (GRN) from time series of gene 
expression observations can be used to: (1) Identify important genes in relation to a 
disease or a biological function, (2) Gain an understanding on the dynamic interaction 
between genes, (3) Predict gene expression values at future time points. The major 
approaches that deals with the modelling of gene regulatory networks involve 
differential equations [14], stochastic models [16], evolving connectionist systems 
[13], boolean networks [18], generalized logical equations [21], threshold models 
[19], petri nets [11], bayesian networks [9], directed and undirected graphs. 

We propose here a novel method that integrates Kalman Filter [4] and Genetic 
Algorithm (GA) [10], [12]. The GA is used to select a small number of genes, and the 
Kalman filter method is used to derive the GRN of these genes. After GRNs of 
smaller number of genes are obtained, these GRNs may be integrated in order to 
create the GRN of a larger group of genes of interest. The goal of this work is develop 
a method for GRN discovery from multiple and short time series data of a large 
number of genes. The secondary goal is to apply the method as to identify the genes 
that co-regulate telomerase from the extracts of the U937 plus and minus series 
obtained in NCI, NIH. Each series contains the time-series expression of 32 pre-
selected candidate genes that have been found potentially relevant, as well as the 
expression of the telomerase. Both the plus series and minus series contains four 
samples recorded at the (0, 6, 24, 48) th hour. Discovering GRN from these two series 
is challenging in two aspects: first, both series are sampled at irregular time intervals; 
second, the number of samples is scarce (only 4 samples). A third potential problem is 
that the search space grows exponentially in size as more candidate genes are 
identified in the future. Several GRNs of 3 most related to the telomerase genes are 
discovered, analysed and integrated. The results and their interpretation confirm the 
validity and the applicability of the proposed method. The integrated method can be 
easily generalized to extract GRN from other time series gene expression data.  This 
paper reports the methodology and the experimental findings. 

2   Modelling GRN with first-order  differential equations, state-
space representation and Kalman Filter  

2.1   Discrete-Time Approximation of First-Order  Differential Equations  

Our GRN is modelled with the discrete time approximation of first-order differential 
equations, given by:  

ttt
�Fxx +=+1  (1) 

where ),...,( 21 ′= nt xxxx  is the gene expression at the t-th time interval and n is 
the number of genes modelled, � t is a noise component with covariance E=cov ( � t), 
and F=(f ij) i=1,n, j=1,n is the transition matrix relating xt to xt+1.  It is related to the 
continuous first-order differential equations e

�
xx +=dtd  by I

�
F += τ and e� τ=t  
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where �  is the time interval { note the subscript notation (t+k) is actually the common 
abbreviation for (t+k� )} [7]. We work here with a discrete approximation instead of a 
continuous model for the ease of modelling and processing the irregular time–course 
data (with Kalman filter). Besides being a tool widely used for modelling biological 
processes, there are two advantages in using first-order differential equations. 

First, gene relations can be elucidated from the transition matrix F through 
choosing a threshold value (ζ; 1>ζ>0). If |fij| is larger then the threshold value ζ, xt, j is 
assumed to have significant influence on xt+1,i. A positive value of fij indicates a 
positive influence and vice-versa. Second, they can be easily manipulated with KF to 
handle irregularly sampled data, which allow parameter estimation, likelihood 
evaluation and model simulation and prediction.  

The main drawback of using differential equations is that it requires the estimation 
of n2 parameters for the transition matrix F and n (n-1)/2 parameters for the noise 
covariance E. To minimize the number of model parameters, we estimate only F and 
fix E to a small value.  Since both series contain only 4 samples, we avoid over-
parameterization by setting n to 4, which is the maximum number of n before the 
number of parameters exceeds the number of training data { It matches the number of 
model parameters (the size of F is n2=16) to the number of training data (n×4 samples 
=16)} . Since in our case study one of the n genes must be telomerase, we can search 
for a subset of size K=3 other genes to form a GRN. 

To handle irregularly sampled data, we employ the state-space methodology and 
the KF. We treat the true trajectories as a set of unobserved or hidden variables called 
the state variables, and then apply the KF to compute their optimal estimates based on 
the observed data. The state variables that are regular/complete can now be applied to 
perform model functions like prediction, parameter estimations instead of the 
observed data that are irregular/incomplete. This approach is more superior to 
interpolation methods as it prevents false modelling by trusting a fixed set of 
interpolated points that may be erroneous.  

2.2   State-Space Representation 

To apply the state-space methodology, a model must be expressed in the following 
format called the discrete-time state space representation 

ttt w
�

xx +=+1  
(2) 

ttt vAxy +=  
(3) 

QwRv == )cov()cov( tt  
(4) 

where, xt is the system state; yt is the observed data; ΦΦΦΦ is the state transition matrix 
that relates xt to xt+1; A is the linear connection matrix that relates xt to yt; wt and vt 
are uncorrelated white noise sequences whose covariance matrices are Q and R 
respectively. The first equation is called the state equation that describes the 
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dynamics of the state variables. The second equation is called the observation 
equation that relates the states to the observation.   

To represent the discrete-time model in the state-space format, we simply 
substitute the discrete-time equation (1) into the state equation (2) by setting ΦΦΦΦ=F, 
wt=εεεεt and Q=E and form a direct mapping between states and observations by setting 
A=I . The state transition matrix ΦΦΦΦ (functional equivalent to F) is the parameter of 
interest as it relates the future response of the system to the present state and governs 
the dynamics of the entire system. The covariance matrices Q and R are of secondary 
interest and are fixed to small values to reduce the number of model parameters. 

2.3   Kalman Filter  (KF) 

KF is a set of recursive equations capable of computing optimal estimates (in the 
least-square sense) of the past, present and future states of the state-space model 
based on the observed data. Here we use it to estimate gene expression trajectories 
given irregularly sampled data. To specify the operation of Kalman filter, we define 
the conditional mean value of the state xt

s and its covariance Ptu
s as: 

),...,,|( 21 st
s
t E yyyxx =  

(5) 

[ ]s
s
uu
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tt

s
tu E yyxxxxP ,...,|))(( 1′−−=  

(6) 

For prediction, we use the KF forward recursions to compute the state estimates 
for (s<t).  For likelihood evaluation and parameter estimation, we use the KF 
backward recursions to compute the estimates called the smoothed estimates based on 
the entire data, i.e. (s=T; T>t is the index of the last observation), which in turn are 
used to compute the required statistics.  

2.4   Using GA for  the selection of a gene subset for  a GRN 

The task is to search for the genes that form the most probable GRN models, using the 
model likelihood computed by the KF as an objective function. Given N the number 
of candidates and K the size of the subset, the number of different gene combinations 
is N!/K!(N-K)!. In our case study, N=32 is small enough for an exhaustive search.  
However, as more candidates are identified in the future, the search space grows 
exponentially in size and exhaustive search will soon become infeasible. For this 
reason a method based on GA is proposed. The strength of GA is twofold: 

 
1. Unlike most classical gradient methods or greedy algorithms that search along a 

single hill-climbing path, a GA searches with multiple points and generates new 
points through applying genetic operators that are stochastic in nature. These 
properties allow for the search to escape local optima in a multi-modal 
environment. GA is therefore useful for optimizing high dimensional functions and 
noisy functions whose search space contains many local optima points. 
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2. A GA is more effective than a random search method as it focuses its search in the 
promising regions of the problem space.   

2.5   GA Design for  Gene Subset Selection 

In the GA-based method for gene subset selection proposed here, each solution is 
coded as a binary string of N bits. A “1”  in the ith bit position denotes that the ith 
gene is selected and a “0”  otherwise.  Each solution must have exactly K “1”s and a 
repair operator is included to add or delete “1”s when this is violated. The genetic 
operators used for crossover, mutation and selection are respectively the standard 
crossover, the binary mutation and the (µ, λ) selection operators. Since there are two 
series – the plus and the minus series of time-course gene expression observations in 
our case study, a new fitness function is designed to incorporate the model likelihood 
in both series. For each solution, the ranking of its model likelihood in the plus series 
and in the minus series are obtained and then summed to obtain a joint fitness 
ranking. This favors convergence towards solutions that are consistently good in both 
the plus and the minus series. The approach is applicable to multiple time series data.   

2.6   Procedures of the GA-based method for  gene subset selection 

Population Initialization. Create a population of µ random individuals (genes from 
the initial gene set, e.g. of 32) as the first generation parents. 
 
Reproduction. The goal of reproduction is to create λ offspring from µ parents.  This 
process involves three steps: crossover, mutation and repair. 

• Crossover. The crossover operator transfers parental traits to the offspring. We 
use the uniform crossover that samples the value of each bit position from 
the first parent at the crossover probability pc and from the second parent 
otherwise. In general, performance of GA is not sensitive to the crossover 
probability and it is set to a large value in the range of [0.5, 0.9] [1]. Here we 
set it to 0.7. 

• Mutation. The mutation operator induces diversity to the population by injecting 
new genetic material into the offspring. For each bit position of the 
offspring, mutation inverts the value at a small mutation rate pm. 
Performance of GA is very sensitive to the mutation probability and it 
usually adapts a very small value to avoid disrupting convergence. Here we 
use pm=1/N, which has been shown to be both the lower bound value and the 
optimal value for many test functions [17], [1], providing an average of one 
mutation in every offspring. 

• Repair. The function of the repair operator is to ensure that each offspring 
solution has exactly K “1”  to present the indices of the K selected genes in 
the subset.  If the number of “1”s is greater than K, invert a “1”  at random; 
and vice-versa. Repeat the process until the number of “1”s matches the 
subset size K. 
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Fitness Evaluation. Here λ offspring individuals (solutions) are evaluated for their 
fitness. For each offspring solution, we obtain the model likelihood in the both the 
plus and the minus series and compute their ranking (lower the rank, higher the 
likelihood) within the population.  Next, we sum the rankings and use the negated 
sum as fitness estimation so that the lower the joint ranking, the higher the fitness. 
 
Selection. The selection operator determines which offspring or parents will become 
the next generation parents based on their fitness function. We use the (µ, λ) scheme 
that selects the fittest µ of λ offspring to be the next generation parents. It is worth 
comparing this scheme to another popular selection scheme (µ+λ) that selects the 
fittest µ of the joint pool of µ parents and λ offspring to be the next generation 
parents, in which the best-fitness individuals found are always maintained in the 
population, convergence is therefore faster. We use the (µ, λ) scheme because it 
offers a slower but more diversified search that is less likely to be trapped in local 
optima. 
 
Test for  termination. Stop the procedure if the maximum number of generations is 
reached. Otherwise go back to the reproduction phase. 
 

Upon completion, GA returns the highest likelihood GRNs found in both the plus 
and the minus series of gene expression observations. The proposed method includes 
running the GA-based procedure over many iterations (e.g. 50) thus obtaining 
different GRN that include possibly different genes. Then we summarize the 
significance of the genes based on their frequency of occurrence in these GRNs and if 
necessary we put together all these GRNs thus creating a global GRN on the whole 
gene set. 

3   Exper iments and Results 

The integrated GA-KF method introduced above is applied to identify genes that 
regulate telomerase in a GRN from a set of 32 pre-selected genes. Since the search 
space is small (only C3

32=4960 combinations), we apply exhaustive search as well as 
GA for validation and comparative analysis.   

The experimental settings are as follows. The expression values of each gene in 
the plus and minus series are jointly normalized in the interval [-1, 1]. The purpose of 
the joint normalization is to preserve the information on the difference between the 
two series in the mean. For each subset of n genes defined by the GA, we apply KF 
for parameter estimation and likelihood evaluation of the GRN model. Each GRN is 
trained for at least 50 epochs (which is usually sufficient) until the likelihood value 
increases by less than 0.1. During training, the model is tested for stability by 
computing the eigenvalues of (Φ-I) [2], [7].  If any of the real part of eigenvalues is 
positive, the model is unstable and is abandoned. 

For the experiments reported in this paper a relatively low resource settings are 
used. Parent and offspring population sizes (µ, λ) are set to (20, 40) and maximum 
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number of generations is set to 50. These values are empirically found to yield 
consistent results over different runs. We run it for 20 times from different initial 
population to obtain the cumulated results. The results are interpreted from the list of 
50 most probable GRNs found in each series (we can lower this number to narrow 
down the shortlist of significant genes). The frequencies of each gene being part of 
the highest likelihood GRNs in the plus and in the minus series are recorded. Next, a 
joint frequency is calculated by summing the two frequencies. The genes that have a 
high joint frequency are considered to be significant in both minus and plus series.   

For exhaustive search, we simply run through all gene combinations of 3 genes 
plus the telomerase; then evolve through KF a GRN for each combination and record 
the likelihood of each model in both the plus and minus series. A similar scoring 
system as GA’s fitness function is employed. We obtain a joint ranking by summing 
the model likelihood rankings in the plus series and the minus series, and then count 
the frequency of the genes that belong to the best 50 GRNs in the joint ranking. The 
top ten highest scoring genes obtained by GA and exhaustive search are tabulated in 
Table 1.  

Table 1. Significant genes extracted by GA and through an exhaustive search from 32 selected 
genes 

Rank Indices of significant genes found 
by GA (Freq. of occurrence in 
M inus GRNs, Freq. of occur rence 
in Plus GRNs) and their  accession 
numbers in Genbank 

Indices of significant 
genes found by 
exhaustive search 
(gene Index) 

1 27 (179,185) X59871 20 M98833 
2 21 (261,0) U15655 27 X59871 
3 12 (146, 48) J04101 32 X79067 
4 32 (64, 118) X79067 12 J04101 
5 20 (0, 159) M98833 6 AL021154 
6 22 (118, 24) U25435 29 X66867 
7 11 (0, 126) HG3523-HT4899 5 D50692 
8 5 (111, 0) D50692 22 U25435 
9 18 (0, 105) D89667 10 HG3521-HT3715 
10 6 (75, 0) AL021154 13 J04102 

 
The results obtained by GA and exhaustive search are strikingly similar. In both 

lists, seven out of top ten genes are common (genes 27, 12, 32, 20, 22, 5, 6) and four 
out of top five genes are the same (genes 27, 12, 32 and 20). The similarity in the 
results supports the applicability of a GA-based method in this search problem and in 
particular, when the search space is too large for an exhaustive search. An outstanding 
gene identified is gene 27, TCF-1. The biological implications of TCF-1 and other 
high scoring genes are currently under investigation.  

The identified GRNs can be used for model simulation and prediction. The GRN 
dynamics can also be visualized with a network diagram using the influential 
information extracted from the state transition matrix. As an example, we examine 
one of the discovered GRN of genes (33, 8, 27, 21) for both the plus and minus series, 
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shown in Fig. 1 and Fig. 2 respectively. The network diagram shows only the 
components of �  whose absolute values are above the threshold value � =0.3. 

For the plus series, the network diagram in Fig. 1 (a) shows that gene 27 has the 
most significant role regulating all other genes (note that gene 27 has all its arrows 
out-going). The network simulation, shown in Fig. 1 (b) fits the true observations well 
and the predicted values appear stable, suggesting that the model is accurate and 
robust. For the minus series, the network diagram in Fig. 2 (a) shows a different 
network from that of the plus series. The role of gene 27 is not as prominent. The 
relationship between genes is no more causal but interdependent, with genes 27, 33 
and 21 simultaneously affecting each other. The difference between the plus and 
minus models is expected. Again, the network simulation result shown in Fig. 2 (b) 
shows that the model fits the data well and the prediction appears reasonable. 

 

 

                  

predictions

 

(a)     (b)  

Fig. 1. The identified best GRN of gene 33 (telomerase) and genes 8, 27 and 21 for the plus 
series: (a) The network diagram (b) The network simulation and gene expression prediction 
over future time. Solid markers represent observations. 

 

               

predictions

 

(a)     (b)  

Fig. 2. The identified best GRN of gene 33 (telomerase) and genes 8, 27 and 21 for the minus 
series: (a) The network diagram (b) The network simulation and gene expression prediction 
over future time.  Solid markers represent observations. 
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3.1   Building a global GRN of the whole gene set out of the GRNs of smaller  
number  of genes (Putting the pieces of the puzzle together) 

After many GRNs of smaller number of genes are discovered, each involving 
different genes (with a different frequency of occurring), these GRNs can be put 
together to create a GRN of the whole gene set. Representation and illustration for the 
top five (fittest) GRNs from our experiment are shown in Fig3 and Table 3 
respectively. 

 

 

Fig. 3. The five highest likelihood GRN models found by GA in the plus series are put 
together.  

Table 2. Illustration of top five fittest GRNs (plus series) 

 
 
 
 
 
 
 

4   Conclusions 

In this work, we propose a novel method that integrates Kalman Filter and Genetic 
Algorithm for the discovery of GRN from gene expression observations of several 
time series (in this case they are two) of small number of observations. As a case 
study we have applied the method for the discovery of GRN of genes that regulate 
telomerase in two sub-clones of the human leukemic cell line U937. The time-series 
contain 12,625 genes, each of which sampled 4 times at irregular time intervals, but 
only 32 genes of interest are dealt with in the paper. The method is designed to deal 
effectively with irregular and scarce data collected from a large number of variables 
(genes). GRNs are modelled as discrete-time approximations of first-order differential 
equations and Kalman Filter is applied to estimate the true gene trajectories from the 
irregular observations and to evaluate the likelihood of the GRN models. GA is 
applied to search for smaller subset of genes that are probable in forming GRN using 

GRN Number GRN identified 
1 (33 32 17 11)
2 (33 31 27 23)
3 (33 27 18 10)
4 (33 27 21 18)
5 (33 21 13 9) 
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the model likelihood as an optimization objective. The biological implications of the 
identified networks are complex and currently under investigation. 
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